Biochemical adaptability of the relationship between tropical hard corals and photosynthetic symbiotic algae under climate change 

Tropical coral reefs, a vital component of the global marine ecosystem, are currently under threat from climate change factors such as rising temperatures, ocean acidification, and extreme weather events. High temperatures induce coral bleaching, resulting in the loss of their energy supply and an acceleration of metabolic rates, rendering them more vulnerable. Ocean acidification affects the formation of calcium carbonate skeletons in symbiotic algae and decreases photosynthetic efficiency, further exacerbating the risk of damage to the symbiotic algae in high-temperature conditions. Extreme weather events directly cause physical damage to corals and alter marine environments, reducing their chances of survival. This review focuses on the impact of climate change on the biochemical adaptability between tropical hard corals and photosynthetic symbiotic algae, exploring their ecological relationship, the influence of climate change on this relationship, and the adaptive mechanisms. Understanding the adaptive mechanisms between hard corals and symbiotic algae is crucial for developing conservation strategies and management plans to maintain the functionality and biodiversity of coral reef ecosystems. It also aids in ensuring the survival and prosperity of this delicate relationship under the challenges posed by climate change, allowing future generations to continue enjoying the magnificence of tropical coral reefs.

Yang X., 2024. Biochemical adaptability of the relationship between tropical hard corals and photosynthetic symbiotic algae under climate change. International Journal of Aquaculture 14(1): 1-7. Article.


Subscribe

Search

  • Reset

OA-ICC Highlights

Resources


Discover more from Ocean Acidification

Subscribe now to keep reading and get access to the full archive.

Continue reading