Posts Tagged 'corals'

Socio-economic tools to mitigate the impacts of ocean acidification on economies and communities reliant on coral reefs–a framework for prioritization

Coral reef preservation is a challenge for the whole of humanity, not just for the estimated three billion people that directly depend upon coral reefs for their livelihoods and food security. Ocean acidification combined with rising sea surface temperatures, and an array of other anthropogenic influences such as pollution, sedimentation, over fishing, and coral mining represent the key threats currently facing coral reef survival. Here we summarise a list of agreements, policies, and socio-economic tools and instruments that can be used by global, national and local decision-makers to address ocean acidification and associated threats, as identified during an expert workshop in October 2017. We then discuss these tools and instruments at a global level and identify the key tasks for raising decision makers’ awareness. Finally, we suggest ways of prioritizing between different actions or tools for mitigation and adaptation.

Continue reading ‘Socio-economic tools to mitigate the impacts of ocean acidification on economies and communities reliant on coral reefs–a framework for prioritization’

Ocean warming drives decline in coral metabolism while acidification highlights species-specific responses

Ocean warming and acidification can have negative implications on coral reefs. This mechanistic study aims to evaluate the proximal causes of the observed negative response of Hawaiian corals to climate change scenarios. Net calcification (Gnet), gross photosynthesis, and dark respiration were measured in three species of Hawaiian corals across a range of temperature and acidification regimes using endpoint incubations. Calcification rates showed a curvilinear response with temperature, with the highest calcification rates observed at 26°C. Coral response to ocean acidification (OA) was species dependent and highly variable. OA enhanced calcification rates by 45% in the perforate coral, Montipora capitata, but had no short-term effect on the calcification or photosynthetic rates of imperforate corals, Pocillopora damicornis or Leptastrea purpurea. Further investigations revealed M. capitata to effectively dissipate protons (H+) while increasing uptake of bicarbonate (HCO−3), therefore maintaining high rates of Gnet under acute OA stress. This study demonstrates the first experimental evidence of the ability of a coral species to take advantage of increased dissolved inorganic carbon and overcome an increasing proton gradient in the boundary layer under OA conditions. These observed differences in coral metabolism may underlie the species-specific responses to climate change.

Continue reading ‘Ocean warming drives decline in coral metabolism while acidification highlights species-specific responses’

Ocean acidification impacts in select Pacific Basin coral reef ecosystems

In the vast tropical Pacific Basin islands, corals reef ecosystems are one of the defining marine habitats, critical for maintaining biodiversity and supporting highly productive fisheries. These reefs are also vital for tourism and armoring exposed shorelines against erosion and other storm-related effects. Since the 1980’s, there has been growing evidence that these Pacific Basin coral reef ecosystems are highly vulnerable to the combined effects of both climatic and non-climatic stressors. Observations of widespread bleaching in the region has been linked to acute temperature stress, and the heightened recurrence intervals and intensity of storms has been correlated to recent climate-change induced impacts. Ocean acidification is another ubiquitous stressor with dramatic consequences to biological systems. In this paper we describe what sets this region apart from other coral reef regions around the world, and highlight some examples of the diverse response to ocean acidification threats and associated socio-economic impacts.

Continue reading ‘Ocean acidification impacts in select Pacific Basin coral reef ecosystems’

Ocean acidification impacts on coral reefs: from sciences to solutions

Coral reefs distinctly illustrate the close relationship between biodiversity and ecosystem services. They are rich marine ecosystems, hosting extensive biological diversity, and yet that diversity and the ecosystem services provided are among the most endangered because of global changes. By reducing and altering coral reef biodiversity, global changes are endangering the lives of hundreds of millions of people. It was therefore appropriate that the ongoing workshop series ”Bridging the gap between Ocean Acidification and Economic Valuation” dedicated, during the International Year of Coral Reefs, its 4edition in search of solutions inspired by the most recent data of the Natural, Economic and Social Sciences. This article summarizes the ecological and human importance of coral reefs, the reasons for their sensitivity to global changes, and presents the major conclusions of the workshop as well as policy options.

Continue reading ‘Ocean acidification impacts on coral reefs: from sciences to solutions’

Environmental and biological controls on Na / Ca ratios in scleractinian cold-water corals

Here we present a comprehensive attempt to correlate aragonitic Na / Ca ratios from Lophelia pertusa, Madrepora oculata and a caryophylliid cold-water coral (CWC) species with different seawater parameters such as temperature, salinity and pH. Living CWC specimens were collected from 16 different locations and analyzed for their Na / Ca content using solution-based inductively coupled plasma-optical emission spectrometry (ICP-OES) measurements. The results reveal no apparent correlation with salinity (30.1–40.57 g/kg) but a significant inverse correlation with temperature (−0.31 mmol/mol/°C). Other marine aragonitic organisms such as Mytilus edulis (inner aragonitic shell portion) and Porites sp. exhibit similar results highlighting the consistency of the calculated CWC regressions. Corresponding Na / Mg ratios show a similar temperature sensitivity to Na / Ca ratios, but the combination of two ratios appear to reduce the impact of vital effects and domain-dependent geochemical variation. The high degree of scatter and elemental heterogeneities between the different skeletal features in both Na / Ca and Na / Mg however limit the use of these ratios as a proxy and/or make a high number of samples necessary. Additionally, we explore two models to explain the observed temperature sensitivity of Na / Ca ratios for an open and semi-enclosed calcifying space based on temperature sensitive Na and Ca pumping enzymes and transport proteins that change the composition of the calcifying fluid and consequently the skeletal Na / Ca ratio.

Continue reading ‘Environmental and biological controls on Na / Ca ratios in scleractinian cold-water corals’

Ecological and physiological constraints of deep-sea corals in a changing environment

Deep-water or cold-water corals are abundant and highly diverse, greatly increase habitat heterogeneity and species richness, thereby forming one of the most significant ecosystems in the deep sea. Despite this remote location, they are not removed from the different anthropogenic disturbances that commonly impact their shallow-water counterparts. The global decrease in seawater pH due to increases in atmospheric CO2 are changing the chemical properties of the seawater, decreasing the concentration of carbonate ions that are important elements for different physiological and ecological processes. Predictive models forecast a shoaling of the carbonate saturation in the water column due to OA, and suggest that cold-water corals are at high risk, since large areas of suitable habitat will experience suboptimal conditions by the end of the century. The main objective of this study was to explore the fate of the deep-water coral community in time of environmental change. To better understand the impact of climate change this study focused in two of the most important elements of dee-sea coral habitat, the reef forming coral Lophelia pertusa and the octocoral community, particularly the gorgonian Callogorgia delta. By means of controlled experiments, I examined the effects of longand short-term exposures to seawater simulating future scenarios of ocean acidification on calcification and feeding efficiency. Finally In order to understand how the environment influences the community assembly, and ultimately how species cope with particular ecological filters, I integrated different aspects of biology such functional diversity and ecology into a more evolutionary context in the face of changing environment. My results suggest that I) deep-water corals responds negatively to future OA by lowering the calcification rates, II) not all individuals respond in the same way to OA with high intra-specific variability providing a potential for adaptation in the longterm III) there is a disruption in the balance between accretion and dissolution that in the long term can shift from net accretion to net dissolution, and IV) there is an evolutionary implication for certain morphological features in the coral community that can give an advantage under stresfull conditions. Nevertheless, the suboptimal conditions that deepwater corals will experience by the end of the century could potentially threaten their persistence, with potentially negative consequences for the future stability of this already fragile ecosystem.

Continue reading ‘Ecological and physiological constraints of deep-sea corals in a changing environment’

Effects of light and darkness on pH regulation in three coral species exposed to seawater acidification

The resilience of corals to ocean acidification has been proposed to rely on regulation of extracellular calcifying medium pH (pHECM), but few studies have compared the capacity of coral species to control this parameter at elevated pCO2. Furthermore, exposure to light and darkness influences both pH regulation and calcification in corals, but little is known about its effect under conditions of seawater acidification. Here we investigated the effect of acidification in light and darkness on pHECM, calcifying cell intracellular pH (pHI), calcification, photosynthesis and respiration in three coral species: Stylophora pistillata, Pocillopora damicornis and Acropora hyacinthus. We show that S. pistillata was able to maintain pHECM under acidification in light and darkness, but pHECM decreased in P. damicornis and A. hyacinthus to a much greater extent in darkness than in the light. Acidification depressed calcifying cell pHI in all three species, but we identified an unexpected positive effect of light on pHI. Calcification rate and pHECM decreased together under acidification, but there are inconsistencies in their relationship indicating that other physiological parameters are likely to shape how coral calcification responds to acidification. Overall our study reveals interspecies differences in coral regulation of pHECM and pHI when exposed to acidification, influenced by exposure to light and darkness.

Continue reading ‘Effects of light and darkness on pH regulation in three coral species exposed to seawater acidification’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,178,819 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book