Posts Tagged 'corals'

Separate and combined effects of elevated pCO2 and temperature on the branching reef corals Acropora digitifera and Montipora digitata

Ocean acidification (OA) and warming (OW) are major global threats to coral reef ecosystems; however, studies on their combined effects (OA + OW) are scarce. Therefore, we evaluated the effects of OA, OW, and OA + OW in the branching reef corals Acropora digitifera and Montipora digitata, which have been found to respond differently to environmental changes. Our results indicate that OW has a greater impact on A. digitifera and M. digitata than OA and that the former species is more vulnerable to OW than the latter. OW was the main stressor for increased mortality and decreased calcification in the OA + OW group, and the effect of OA + OW was additive in both species. Our findings suggest that the relative abundance and cover of M. digitata are expected to increase whereas those of A. digitifera may decrease in the near future in Okinawa.

Continue reading ‘Separate and combined effects of elevated pCO2 and temperature on the branching reef corals Acropora digitifera and Montipora digitata’

Acid times in physiology: a systematic review of the effects of ocean acidification on calcifying invertebrates

The reduction in seawater pH from rising levels of carbon dioxide (CO2) in the oceans has been recognized as an important force shaping the future of marine ecosystems. Therefore, numerous studies have reported the effects of ocean acidification (OA) in different compartments of important animal groups, based on field and/or laboratory observations. Calcifying invertebrates have received considerable attention in recent years. In the present systematic review, we have summarized the physiological responses to OA in coral, echinoderm, mollusk, and crustacean species exposed to predicted ocean acidification conditions in the near future. The Scopus, Web of Science, and PubMed databases were used for the literature search, and 75 articles were obtained based on the inclusion criteria. Six main physiological responses have been reported after exposure to low pH. Growth (21.6%), metabolism (20.8%), and acid-base balance (17.6%) were the most frequent among the phyla, while calcification and growth were the physiological responses most affected by OA (>40%). Studies show that the reduction of pH in the aquatic environment, in general, supports the maintenance of metabolic parameters in invertebrates, with redistribution of energy to biological functions, generating limitations to calcification, which can have severe consequences for the health and survival of these organisms. It should be noted that the OA results are variable, with inter and/or intraspecific differences. In summary, this systematic review offers important scientific evidence for establishing paradigms in the physiology of climate change in addition to gathering valuable information on the subject and future research perspectives.

Continue reading ‘Acid times in physiology: a systematic review of the effects of ocean acidification on calcifying invertebrates’

Coral persistence despite marginal conditions in the Port of Miami

Coral cover has declined worldwide due to anthropogenic stressors that manifest on both global and local scales. Coral communities that exist in extreme conditions can provide information on how these stressors influence ecosystem structure, with implications for their persistence under future conditions. The Port of Miami is located within an urbanized environment, with active coastal development, as well as commercial shipping and recreational boating activity. Monitoring of sites throughout the Port since 2018 has revealed periodic extremes in temperature, seawater pH, and salinity, far in excess of what have been measured in most coral reef environments. Despite conditions that would kill many reef species, we have documented diverse coral communities growing on artificial substrates at these sites—reflecting remarkable tolerance to environmental stressors. Furthermore, many of the more prevalent species within these communities are now conspicuously absent or in low abundance on nearby reefs, owing to their susceptibility and exposure to stony coral tissue loss disease. Natural reef frameworks, however, are largely absent at the urban sites and while diverse fish communities are documented, it is unlikely that these communities provide the same goods and services as natural reef habitats. Regardless, the existence of these communities indicates unlikely persistence and highlights the potential for coexistence of threatened species in anthropogenic environments, provided that suitable stewardship strategies are in place.

Continue reading ‘Coral persistence despite marginal conditions in the Port of Miami’

Short-term responses of Corallina officinalis (rhodophyta) to global-change drivers in a stressful environment of Patagonia, Argentina

Over the last two decades, an increasing interest has arisen in the responses of primary producers to global-change drivers and, more recently, in the need to consider how those various drivers may interact. To understand how Corallina officinalis (hereafter Corallina) can be affected by future changing conditions, we investigated the short-term direct effects of co-occurring increased nutrient loads, solar radiation, and lower pH, assessing how these clustered drivers affected Corallina‘s overall physiological performance in a harsh Patagonian coastal environment. To describe the seasonal trend of the physiological parameters in the field, we sampled subtidal Corallina to determine their net oxygen production (NOP), pigments, and carbonate content (CC). Furthermore, we conducted seasonal 10-days experiments, simulating the conditions predicted for the year 2100 by the IPCC (RCP 8.5) —manipulating pH, nutrients, and irradiance—along with the current conditions. The pigments and carotenoids/chlorophyll-a ratio were, in general, constant in the field over the seasons; but the NOP and CC dropped in spring, when the carotenoids peaked. After the experiment, the highest carotenoid/chlorophyll-a ratio was registered in summer under both the currentand the predictedconditions and in winter under the predictedcondition. This lower physiological status was also reflected in almost all other variables. Thus, Corallina may display an acclimatation strategy to cope with high ultraviolet-radiation levels by adjusting its pigment composition to avoid photoinhibition. An understanding of how Corallina, as a habitat-forming species, will respond to future global-change may provide clues about the extent of effects on the ecosystem functions and services.

Continue reading ‘Short-term responses of Corallina officinalis (rhodophyta) to global-change drivers in a stressful environment of Patagonia, Argentina’

Seasonal upwelling conditions modulate the calcification response of a tropical scleractinian coral

Natural processes such as upwelling of deeper-water masses change the physical-chemical conditions of the water column creating localized ocean acidification events that can have an impact on the natural communities. This study was performed in a coral reef system of an archetypical bay within the Tayrona National Natural Park (PNNT) (Colombia), and aimed to quantify net calcification rates of a foundational coral species within a temporal context (6 months) taking into account the dynamics of seasonal upwelling that influence the study area. Net calcification rates of coral fragments were obtained in situ by the alkalinity anomaly technique in short-term incubations (~2.5 h). We found a significant effect of the upwelling on net calcification rates (Gnet) (p < 0.05) with an 42% increase in CaCO3 accretion compared to non-upwelling season. We found an increase in total alkalinity (AT) and dissolved inorganic carbon (DIC) with decreased aragonite saturation (Ωara) for the upwelling months, indicating an influence of the Subtropical Under Water mass (SAW) in the PNNT coral community. Significant negative correlations between net calcification with temperature and Ωara, which indicates a positive response of M. auretenra with the upwelling conditions, thus, acting as “enhancer” of resilience for coral calcification.

Continue reading ‘Seasonal upwelling conditions modulate the calcification response of a tropical scleractinian coral’

Adaptive governance of coral reefs: cases of Florida and the Caribbean

Coral reefs are one of the most imperiled yet one of the most valuable ecosystems on the planet, providing food, medicine, and property protection to hundreds of millions of coastal people all over the world. Coral reefs are being lost at an unprecedented rate throughout their range. In the Florida Reef Tract alone, 98% of hard coral has died due to heat waves, disease, and poor water quality, making modern reefs almost unrecognizable. Given the stress that coral reefs are facing due to human and natural causes, there are two key knowledge gaps that are essential to address: the significance of the losses of culturally important benefits that coral reefs provide to people, and the ways that people are adapting to the rapid loss of coral reefs. This dissertation aims to address both gaps.

Continue reading ‘Adaptive governance of coral reefs: cases of Florida and the Caribbean’

What conservation strategies support the adaptive capacity of coastal ecosystems in three island states facing a changing climate in Micronesia?

Coastal ecosystems, such as coral reefs, mangroves, and seagrass beds, are highly vulnerable to the impacts of climate change. The degradation and loss of these ecosystems, stemming from the increased impacts of climate change-related drivers, threaten the well-being of island communities in Micronesia, as they are very reliant on and connected with these coastal ecosystems. Supporting the adaptive capacity of ecosystems through climate adaptive conservation, and thus better equipping them to recover from and adapt to the potential impacts, in turn reduces the vulnerability of the social-ecological system. This thesis identified five main climate change-related drivers that impact coastal systems across three selected states in Micronesia. First, based on a conceptual social-ecological systems (SES) framework, a literature review and analysis were conducted to identify and select three ecosystem adaptive capacity (AC) elements: Heterogeneity, connectivity, and ecosystem functioning. Building on that, second, a literature review aided the identification of climate adaptive conservation strategies and related actions that can support the adaptive capacity of ecosystems. Following a qualitative content analysis, eight climate adaptive conservation strategies and 26 activities were selected and categorized. Third, the extent of (1) the strategy effectiveness, (2) their integration in conservation policy and planning documents, and (3) their implementation on a national scale were evaluated through a semi-quantitative expert consultation in each of the selected states, exemplified with coral reefs.

The findings from this research showed that while the climate adaptive strategies and activities were considered effective in supporting the adaptive capacity of coral reefs in Micronesia, the extent of their implementation ranked low. Strategies, such as “Addressing non-climatic drivers” were considered highly effective, however their implementation fell comparably short. Contrary, targeting heterogeneity was considered of least importance. Thus, as their regional implementation ranked low, the ability of the strategies to support coral adaptive capacity was limited for all three countries. Particularly, the upscaling and mainstreaming of these strategies was considered crucial by the experts. Therefore, this research proposed to prioritize addressing non-climatic drivers, supporting coral reef restoration, and recommended to integrate communities in the design of climate adaptive conservation. Further to apply actionable co-produced science to advance the evidence base and applicability of the strategies in supporting ecosystem AC.

Continue reading ‘What conservation strategies support the adaptive capacity of coastal ecosystems in three island states facing a changing climate in Micronesia?’

Coral adaptive capacity insufficient to halt global transition of coral reefs into net erosion under climate change

Projecting the effects of climate change on net reef calcium carbonate production is critical to understanding the future impacts on ecosystem function, but prior estimates have not included corals’ natural adaptive capacity to such change. Here we estimate how the ability of symbionts to evolve tolerance to heat stress, or for coral hosts to shuffle to favourable symbionts, and their combination, may influence responses to the combined impacts of ocean warming and acidification under three representative concentration pathway (RCP) emissions scenarios (RCP2.6, RCP4.5 and RCP8.5). We show that symbiont evolution and shuffling, both individually and when combined, favours persistent positive net reef calcium carbonate production. However, our projections of future net calcium carbonate production (NCCP) under climate change vary both spatially and by RCP. For example, 19%–35% of modelled coral reefs are still projected to have net positive NCCP by 2050 if symbionts can evolve increased thermal tolerance, depending on the RCP. Without symbiont adaptive capacity, the number of coral reefs with positive NCCP drops to 9%–13% by 2050. Accounting for both symbiont evolution and shuffling, we project median positive NCPP of coral reefs will still occur under low greenhouse emissions (RCP2.6) in the Indian Ocean, and even under moderate emissions (RCP4.5) in the Pacific Ocean. However, adaptive capacity will be insufficient to halt the transition of coral reefs globally into erosion by 2050 under severe emissions scenarios (RCP8.5).

Continue reading ‘Coral adaptive capacity insufficient to halt global transition of coral reefs into net erosion under climate change’

Projected effects of climate change on marine ecosystems in Southeast Asian seas

The seas of Southeast Asia are home to some of the world’s most diverse ecosystems and resources that support the livelihoods of millions of people. Climate change will bring temperature changes, acidification and other environmental change, with uncertain consequences for human and natural systems, but there has been little regional-scale climate modelling of the marine ecosystem. We present initial dynamically downscaled projections using a biogeochemical model suitable for coastal and shelf seas. A coupled physical-biogeochemical model with a resolution of 0.1° (approximately 11 km) was used to create projections of future environmental conditions under moderate (RCP4.5) and high (RCP8.5) greenhouse gas scenarios. Changes for different parts of the region are presented, including four sensitive coastal sites of key importance for biodiversity and sustainable development: UNESCO Biosphere Reserves at Cu Lao Cham-Hoi An in Vietnam, Palawan in the Philippines and Taka Bonerate-Kepulauan Selayar in Indonesia, and coastal waters of Sabah, Malaysia, which include several marine parks. The projections show a sea that is warming by 1.1 to 2.9°C through the 21st century, with dissolved oxygen decreasing by 5 to 13 mmol m-3 and changes in many other environmental variables. The changes reach all parts of the water column and many places are projected to experience conditions well outside the range seen at the start of the century. The resulting damage to coral reefs and altered species distribution would have consequences for biodiversity, the livelihoods of small-scale fishers and the food security of coastal communities. Further work using a range of global models and regional models with different biogeochemical components is needed to provide confidence levels, and we suggest some ways forward. Projections of this type serve as a key tool for communities and policymakers as they plan how they will adapt to the challenge of climate change.

Continue reading ‘Projected effects of climate change on marine ecosystems in Southeast Asian seas’

Macroalgal cover on coral reefs: spatial and environmental predictors, and decadal trends in the Great Barrier Reef

Macroalgae are an important component of coral reef ecosystems. We identified spatial patterns, environmental drivers and long-term trends of total cover of upright fleshy and calcareous coral reef inhabiting macroalgae in the Great Barrier Reef. The spatial study comprised of one-off surveys of 1257 sites (latitude 11–24°S, coastal to offshore, 0–18 m depth), while the temporal trends analysis was based on 26 years of long-term monitoring data from 93 reefs. Environmental predictors were obtained from in situ data and from the coupled hydrodynamic-biochemical model eReefs. Macroalgae dominated the benthos (≥50% cover) on at least one site of 40.4% of surveyed inshore reefs. Spatially, macroalgal cover increased steeply towards the coast, with latitude away from the equator, and towards shallow (≤3 m) depth. Environmental conditions associated with macroalgal dominance were: high tidal range, wave exposure and irradiance, and low aragonite saturation state, Secchi depth, total alkalinity and temperature. Evidence of space competition between macroalgal cover and hard coral cover was restricted to shallow inshore sites. Temporally, macroalgal cover on inshore and mid-shelf reefs showed some fluctuations, but unlike hard corals they showed no systematic trends. Our extensive empirical data may serve to parameterize ecosystem models, and to refine reef condition indices based on macroalgal data for Pacific coral reefs.

Continue reading ‘Macroalgal cover on coral reefs: spatial and environmental predictors, and decadal trends in the Great Barrier Reef’

Paris Agreement could prevent regional mass extinctions of coral species

Coral reef ecosystems are expected to undergo significant declines over the coming decades as oceans become warmer and more acidic. We investigate the environmental tolerances of over 650 Scleractinian coral species based on the conditions found within their present-day ranges and in areas where they are currently absent but could potentially reach via larval dispersal. These “environmental envelopes” and connectivity constraints are then used to develop global forecasts for potential coral species richness under two emission scenarios, representing the Paris Agreement target (“SSP1-2.6”) and high levels of emissions (“SSP5-8.5”). Although we do not directly predict coral mortality or adaptation, the projected changes to environmental suitability suggest considerable potential declines in coral species richness for the majority of the world’s tropical coral reefs, with a net loss in average local richness of 73% (Paris Agreement) to 91% (High Emissions) by 2080-2090 and particularly large declines across sites in the Great Barrier Reef, Coral Sea, Western Indian Ocean and Caribbean. However, at the regional scale, we find that environmental suitability for the majority of coral species can be largely maintained under the Paris Agreement target, with 0-30% potential net species lost in most regions (increasing to 50% for the Great Barrier Reef) as opposed to 80-90% losses in most areas under High Emissions. Projections for sub-tropical areas suggest that range expansion will give rise to coral reefs with low species richness (typically 10-20 coral species per region) and will not meaningfully offset declines in the tropics. This work represents the first global projection of coral species richness under oceanic warming and acidification. Our results highlight the critical importance of mitigating climate change to avoid potentially massive extinctions of coral species.

Continue reading ‘Paris Agreement could prevent regional mass extinctions of coral species’

Sterols, free fatty acids, and total fatty acid content in the massive Porites spp. corals cultured under different pCO2 and temperature treatments

Lipids may serve as energy reserves to support coral calcification, allow acclimation to higher temperatures, and are implicated in the control of CaCO3 precipitation. Here, we report the lipid composition of the soft tissues (including host and symbionts) of 7 massive Porites spp. coral colonies (4 × P. lutea and 3 × P. murrayensis), which were cultured under different pCO2 concentrations (180, 260, 400 and 750 µatm) and at two temperatures (25 ℃ and 28 ℃), below the thermal stress threshold. We report the fatty acid methyl esters (FAME), free fatty acid (FFA) to total fatty acid content, sterol and wax ester profiles, and identify two ketones (n-alkanone) and three long chain aldehyde (n-alkanal) derivatives. Increasing seawater temperature significantly increases the contributions of FFAs to the total lipids, of C18:2 and C20:0 to the total FFA pool, of C14:0 to total FAME, and of campesterol to total sterol. The temperature increase also reduces the contributions of unusual fatty acid derivatives to total lipids, of C14:0, C15:0, C16:0 and C17:0 saturated free fatty acids to total FFAs, and of C16:0 FA to total FAME. Fatty acids are implicated in the control of membrane structure fluidity and the observed changes may promote acclimation and thermostability as temperature varies. Seawater pCO2 has no significant effect on the composition of tissue lipids with the exception that the contribution of C14:0 FA to total lipid content is significantly lower at 180 µatm compared to 260 and 750 µatm. Decreased contribution of total sterols and unusual fatty acid derivatives and increased contribution of total FFAs to total lipids are observed in the fastest calcifying coral (a P. lutea specimen) compared to the other corals, under all pCO2 and temperature conditions. Although a rapid calcifier this genotype has been shown previously to exhibit pronounced abnormal changes in skeletal morphology in response to decreased seawater pCO2. Variations in tissue lipid composition between coral genotypes may influence their resilience to future climate change.

Continue reading ‘Sterols, free fatty acids, and total fatty acid content in the massive Porites spp. corals cultured under different pCO2 and temperature treatments’

The evolution of coral reef under changing climate: a scientometric review

Simple Summary

Coral reefs are vital ecosystems with high biodiversity and ecological services for coastal communities. Climate change is accelerating, with detrimental consequences on coral reefs and related communities, but it is challenging to keep up with the literature given its current rapid expansion. The current review foresees three future trends in the area of coral reefs and climate change, including (i) incorporating future scenarios, (ii) climate-induced temperature changes, and (iii) adaptation strategies, which are expected to move society closer to the following Sustainable Development Goal: 13 Climate Action.


In this scientometric review, we employ the Web of Science Core Collection to assess current publications and research trends regarding coral reefs in relation to climate change. Thirty-seven keywords for climate change and seven keywords for coral reefs were used in the analysis of 7743 articles on coral reefs and climate change. The field entered an accelerated uptrend phase in 2016, and it is anticipated that this phase will last for the next 5 to 10 years of research publication and citation. The United States and Australia have produced the greatest number of publications in this field. A cluster (i.e., focused issue) analysis showed that coral bleaching dominated the literature from 2000 to 2010, ocean acidification from 2010 to 2020, and sea-level rise, as well as the central Red Sea (Africa/Asia), in 2021. Three different types of keywords appear in the analysis based on which are the (i) most recent (2021), (ii) most influential (highly cited), and (iii) mostly used (frequently used keywords in the article) in the field. The Great Barrier Reef, which is found in the waters of Australia, is thought to be the subject of current coral reef and climate change research. Interestingly, climate-induced temperature changes in “ocean warming” and “sea surface temperature” are the most recent significant and dominant keywords in the coral reef and climate change area.

Continue reading ‘The evolution of coral reef under changing climate: a scientometric review’

Symbiont composition and coral genotype determines massive coral species performance under end-of-century climate scenarios

The recent decline of coral health and substantial loss of coral cover along Florida’s Coral Reef (FCR) results from local stressors such as degraded water quality and disease outbreaks in addition to anthropogenically driven global stressors including ocean warming and acidification. Intervention strategies intended for the restoration of degraded reef habitats need a better understanding of the influence of ocean warming and acidification on coral health to target coral species and individual genotypes that may be more resistant or resilient to such stressors. Here, we examined a suite of physiological traits (coral host and algal symbiont) in response to experimentally elevated water temperatures and pCO2 levels, both separately and in concert, using threatened reef-building corals Pseudodiploria clivosa and Orbicella faveolata reared within a land-based coral nursery. After two months of exposure, responses differed by coral species, where P. clivosa showed declined physiology in response to combined ocean warming and acidification stress and ocean warming alone, whereas O. faveolata showed a positive response under ocean acidification. Responses to temperature could be associated with the algal symbionts harbored, as P. clivosa was dominated by the thermally sensitive Breviolum, and O. faveolata was dominated by the thermally tolerant Durusdinium. Additionally, corals were raised in well-sourced seawater that was naturally high in pCO2, which could have led to corals acclimating to acidified conditions. Of the three P. clivosa genets tested, we determined a top-performing genotype under the combined warming and acidification treatment. O. faveolata, however, displayed high genet variation by treatment and phenotypic trait, making genotype performance rankings challenging to discern. The evidence provided in this study demonstrates that high phenotypic variation in nursery-reared corals contributes to variable warming-acidification responses, suggesting that high-standing genetic variation in nursery-reared corals could support diverse coral restoration population outcomes along FCR.

Continue reading ‘Symbiont composition and coral genotype determines massive coral species performance under end-of-century climate scenarios’

Wanted dead or alive: skeletal structure alteration of cold-water coral Desmophyllum pertusum (Lophelia pertusa) from anthropogenic stressors

Ocean acidification (OA) has provoked changes in the carbonate saturation state that may alter the formation and structural biomineralisation of calcium carbonate exoskeletons for marine organisms. Biomineral production in organisms such as cold-water corals (CWC) rely on available carbonate in the water column and the ability of the organism to sequester ions from seawater or nutrients for the formation and growth of a skeletal structure. As an important habitat structuring species, it is essential to examine the impact that anthropogenic stressors (i.e., OA and rising seawater temperatures) have on living corals and the structural properties of dead coral skeletons; these are important contributors to the entire reef structure and the stability of CWC mounds. In this study, dead coral skeletons in seawater were exposed to various levels of pCO2 and different temperatures over a 12-month period. Nanoindentation was subsequently conducted to assess the structural properties of coral samples’ elasticity (E) and hardness (H), whereas the amount of dissolution was assessed through scanning electron microscopy. Overall, CWC samples exposed to elevated pCO2 and temperature show changes in properties which leave them more susceptible to breakage and may in turn negatively impact the formation and stability of CWC mound development.

Continue reading ‘Wanted dead or alive: skeletal structure alteration of cold-water coral Desmophyllum pertusum (Lophelia pertusa) from anthropogenic stressors’

Effects of climate change on the Kenyan coral reef eco-system

The coral reef ecosystem is a natural habitat for many marine organisms that has high economic and tourist significance. Nonetheless, this ecosystem has very low tolerance to the effects of changes brought about by increasing sea surface temperatures and ocean acidification. This study sought to investigate the combined effect of rising sea surface temperatures and ocean acidification on the Kenyan coral reef ecosystem. This was achieved by determining the spatial-temporal variability of ocean acidification over the Kenyan coastline; and simulating the combined effect of sea surface temperature increases and ocean acidification on the coral reef ecosystem.

Historical (2000-2021) data on sea surface temperature (SSTs) was obtained from the National Oceanic and Atmospheric Administration (NOAA) and data on dissolved total carbon dioxide (TCO2) and pH from Global Ocean Data Analysis Project (GLODAP). Future (2022-2081) sea surface temperature and dissolved carbon dioxide data was downloaded from Coupled Model Intercomparison Project (CMIP6) experiment for two Shared Socioeconomic Pathways (SSPs) namely SSP2-4.5 and SSP5-8.5. Statistical, graphical and model simulations analyses were applied in the study to investigate the combined effect of increasing SST and ocean acidification on coral reef ecosystem over the Kenyan coastline.

Results indicate that mean sea surface temperature and dissolved carbon dioxide along the Kenyan coastline varied with seasons and had increased between the years 2000-2021. Trend tests of SSTs and TCO2 revealed a significant upward trend at 5% level of significance. Rising SSTs led to bleaching in coral reefs along this coastline whereas TCO2 led to reduced amount of carbonate ion concentration and reduced pH in the sea surface waters which affected the rates of calcification and survival of the coral reefs. The results of the Combined Mortality and Bleaching Output model simulation revealed that bleaching and ocean acidification had negatively affected the coral reef cover resulting in a decline of more than 30% of cover between 2000 and 2021. The results of the simulation also projected that the coral reef cover will continue to decline in the long-term by 52% under SSP2-4.5 and 63% under SSP5-8.5 if the trends in SSTs and TCO2 are maintained.

This study recommends collaborative implementation of climate change policies and practices by national and regional governments, communities and policy makers; enhanced efforts by coastal county governments in Kenya and research organisations to expound on scientific knowledge base while simultaneously implementing sustainable targeted solutions to ensure that the socio-economic benefits of the coral reef ecosystem are sustained.

Continue reading ‘Effects of climate change on the Kenyan coral reef eco-system’

Deciphering pH-dependent microbial taxa and functional gene co-occurrence in the coral Galaxea fascicularis

How the coral microbiome responds to oceanic pH changes due to anthropogenic climate change, including ocean acidification and deliberate artificial alkalization, remains an open question. Here, we applied a 16S profile and GeoChip approach to microbial taxonomic and gene functional landscapes in the coral Galaxea fascicularis under three pH levels (7.85, 8.15, and 8.45) and tested the influence of pH changes on the cell growth of several coral-associated strains and bacterial populations. Statistical analysis of GeoChip-based data suggested that both ocean acidification and alkalization destabilized functional cores related to aromatic degradation, carbon degradation, carbon fixation, stress response, and antibiotic biosynthesis in the microbiome, which are related to holobiont carbon cycling and health. The taxonomic analysis revealed that bacterial species richness was not significantly different among the three pH treatments, but the community compositions were significantly distinct. Acute seawater alkalization leads to an increase in pathogens as well as a stronger taxonomic shift than acidification, which is worth considering when using artificial ocean alkalization to protect coral ecosystems from ocean acidification. In addition, our co-occurrence network analysis reflected microbial community and functional shifts in response to pH change cues, which will further help to understand the functional ecological role of the microbiome in coral resilience.

Continue reading ‘Deciphering pH-dependent microbial taxa and functional gene co-occurrence in the coral Galaxea fascicularis’

Similarities in biomass and energy reserves among coral colonies from contrasting reef environments

Coral reefs are declining worldwide, yet some coral populations are better adapted to withstand reductions in pH and the rising frequency of marine heatwaves. The nearshore reef habitats of Palau, Micronesia are a proxy for a future of warmer, more acidic oceans. Coral populations in these habitats can resist, and recover from, episodes of thermal stress better than offshore conspecifics. To explore the physiological basis of this tolerance, we compared tissue biomass (ash-free dry weight cm−2), energy reserves (i.e., protein, total lipid, carbohydrate content), and several important lipid classes in six coral species living in both offshore and nearshore environments. In contrast to expectations, a trend emerged of many nearshore colonies exhibiting lower biomass and energy reserves than colonies from offshore sites, which may be explained by the increased metabolic demand of living in a warmer, acidic, environment. Despite hosting different dinoflagellate symbiont species and having access to contrasting prey abundances, total lipid and lipid class compositions were similar in colonies from each habitat. Ultimately, while the regulation of colony biomass and energy reserves may be influenced by factors, including the identity of the resident symbiont, kind of food consumed, and host genetic attributes, these independent processes converged to a similar homeostatic set point under different environmental conditions.

Continue reading ‘Similarities in biomass and energy reserves among coral colonies from contrasting reef environments’

Acclimatization of a coral-dinoflagellate mutualism at a CO2 vent

Ocean acidification caused by shifts in ocean carbonate chemistry resulting from increased atmospheric CO2 concentrations is threatening many calcifying organisms, including corals. Here we assessed autotrophy vs heterotrophy shifts in the Mediterranean zooxanthellate scleractinian coral Balanophyllia europaea acclimatized to low pH/high pCO2 conditions at a CO2 vent off Panarea Island (Italy). Dinoflagellate endosymbiont densities were higher at lowest pH Sites where changes in the distribution of distinct haplotypes of a host-specific symbiont species, Philozoon balanophyllum, were observed. An increase in symbiont C/N ratios was observed at low pH, likely as a result of increased C fixation by higher symbiont cell densities. δ13C values of the symbionts and host tissue reached similar values at the lowest pH Site, suggesting an increased influence of autotrophy with increasing acidification. Host tissue δ15N values of 0‰ strongly suggest that diazotroph N2 fixation is occurring within the coral tissue/mucus at the low pH Sites, likely explaining the decrease in host tissue C/N ratios with acidification. Overall, our findings show an acclimatization of this coral-dinoflagellate mutualism through trophic adjustment and symbiont haplotype differences with increasing acidification, highlighting that some corals are capable of acclimatizing to ocean acidification predicted under end-of-century scenarios.

Continue reading ‘Acclimatization of a coral-dinoflagellate mutualism at a CO2 vent’

Dissolved CO2 and oxygen dynamics on coral reefs: from natural variability and impacts on calcification to projections under warming

Coral reefs globally are facing impacts from ocean warming, acidification, and oxygen loss as a result of anthropogenic climate change. Understanding the spatiotemporal patterns of reef carbonate chemistry and oxygen variability, as well as how low pH or oxygen conditions might affect coral physiology, is key to predicting how global reefs will be impacted in the future. In this dissertation, I leveraged dissolved oxygen data from autonomous sensors deployed at 32 sites around the world to explore present-day oxygen variability and project changes in hypoxia exposure under modeled ocean warming. I show that hypoxia is pervasive on global coral reefs, with 84 % of the reef habitats surveyed experiencing weak to moderate hypoxia and 13 % experiencing severe hypoxia under present-day conditions. Calculations of reef oxygen loss under 5 warming scenarios reveal that warming will increase the duration, intensity, and severity of hypoxic events on reefs, leading to severely hypoxic conditions on more than a third of these reef habitats by 2100. In case studies of reefs in Bermuda and Taiwan, I examined multidimensional variability in carbonate chemistry and oxygen across a reef and assessed the potential for seagrass beds to serve as refugia for corals from ocean acidification and deoxygenation. In Bermuda, data from spatial seawater surveys and a suite of autonomous sensors at the surface and benthos revealed strong signals of both benthic and water column productivity that interacted with local geomorphology and hydrodynamics to create the observed patterns in carbonate chemistry and oxygen across the reef. In Taiwan, strong gradients in temperature, pH, and oxygen across the seagrass bed were associated with significant differences in coral skeletal extension rate, density, and ∂13C isotopic composition measured from coral cores. However, there was no evidence that the presence of seagrass significantly impacted coral calcification rates along this gradient. Altogether, this dissertation provides projections of coral reef oxygen loss under rapid climate change and highlights the contributions of local conditions to observed variability in seawater chemistry with complex impacts on coral growth.

Continue reading ‘Dissolved CO2 and oxygen dynamics on coral reefs: from natural variability and impacts on calcification to projections under warming’

  • Reset


OA-ICC Highlights

%d bloggers like this: