Posts Tagged 'corals'

Defying dissolution: discovery of deep-sea scleractinian coral reefs in the North Pacific

Deep-sea scleractinian coral reefs are protected ecologically and biologically significant areas that support global fisheries. The absence of observations of deep-sea scleractinian reefs in the Central and Northeast Pacific, combined with the shallow aragonite saturation horizon (ASH) and high carbonate dissolution rates there, fueled the hypothesis that reef formation in the North Pacific was improbable. Despite this, we report the discovery of live scleractinian reefs on six seamounts of the Northwestern Hawaiian Islands and Emperor Seamount Chain at depths of 535–732 m and aragonite saturation state (Ωarag) values of 0.71–1.33. Although the ASH becomes deeper moving northwest along the chains, the depth distribution of the reefs becomes shallower, suggesting the ASH is having little influence on their distribution. Higher chlorophyll moving to the northwest may partially explain the geographic distribution of the reefs. Principle Components Analysis suggests that currents are also an important factor in their distribution, but neither chlorophyll nor the available current data can explain the unexpected depth distribution. Further environmental data is needed to elucidate the reason for the distribution of these reefs. The discovery of reef-forming scleractinians in this region is of concern because a number of the sites occur on seamounts with active trawl fisheries.

Continue reading ‘Defying dissolution: discovery of deep-sea scleractinian coral reefs in the North Pacific’

Coral calcifying fluid aragonite saturation states derived from Raman spectroscopy

Quantifying the saturation state of aragonite (ΩAr) within the calcifying fluid of corals is critical for understanding their biomineralisation process and sensitivity to environmental changes including ocean acidification. Recent advances in microscopy, microprobes, and isotope geochemistry allow determination of calcifying fluid pH and [CO32−], but direct quantification of ΩAr (where ΩAr =[CO32−][Ca2+]/Ksp) has proved elusive. Here we test a new technique for deriving ΩAr based on Raman spectroscopy. First, we analysed abiogenic aragonite crystals precipitated under a range of ΩAr from 10 to 34, and found a strong dependence of Raman peak width on ΩAr that was independent of other factors including pH, Mg/Ca partitioning, and temperature. Validation of our Raman technique for corals is difficult because there are presently no direct measurements of calcifying fluid ΩAr available for comparison. However, Raman analysis of the international coral standard JCp-1 produced ΩAr of 12.3 ± 0.3, which we demonstrate is consistent with published skeletal Sr/Ca, Mg/Ca, B/Ca, δ44Ca, and δ11B data. Raman measurements are rapid (≤ 1 s), high-resolution (< 1 μm), precise (derived ΩAr ±1 to 2), and require minimal sample preparation; making the technique well suited for testing the sensitivity of coral calcifying fluid ΩAr to ocean acidification and warming using samples from natural and laboratory settings. To demonstrate this, we also show a high-resolution time series of ΩAr over multiple years of growth in a Porites skeleton from the Great Barrier Reef, and we evaluate the response of ΩAr in juvenile Acropora cultured under elevated CO2 and temperature.

Continue reading ‘Coral calcifying fluid aragonite saturation states derived from Raman spectroscopy’

Calcium carbonate (CaCO3) sediment dissolution under elevated concentrations of carbon dioxide (CO2) and nitrate (NO3−)

Ocean acidification (OA), attributed to the sequestration of atmospheric carbon dioxide (CO2) into the surface ocean, and coastal eutrophication, attributed in part to land-use change and terrestrial runoff of fertilizers, have received recent attention in an experimental framework examining the effects of each on coral reef net ecosystem calcification (Gnet). However, OA and eutrophication in conjunction have yet to receive attention from the perspective of coral reef sediment dissolution. To address this omission, CO2 and nitrate (NO3−) addition experiments were performed in Mo’orea, French Polynesia. Incubation chambers were used to measure sediment Gnet during the day and night under three different [NO3−] (0, 9.8, and 19.7 μM) that were nested within four separate constructed coral reef communities maintained at different PCO2 levels (417, 721, 1030, and 1333 μatm, respectively). PCO2 negatively affected sediment Gnetduring the day and night, resulting in a shift to diel net dissolution at a PCO2 of 1030 μatm. Elevated NO3− alone, and the combination of NO3− and PCO2, both negatively affected sediment Gnet at night. However, the response of Gnet to NO3− was less clear during the day, where diurnal sediment Gnet was enhanced under the combined treatment of elevated NO3− and PCO2, resulting in no net effect of NO3− on sediment Gnet on diel timescales. Overall, these results show that ocean acidification represents a greater threat to the balance of calcification and dissolution in Mo’orea’s back reef sediment communities than the potential impact of NO3− enrichment on relatively short timescales.

Continue reading ‘Calcium carbonate (CaCO3) sediment dissolution under elevated concentrations of carbon dioxide (CO2) and nitrate (NO3−)’

Effects of acidified seawater on calcification, photosynthetic efficiencies and the recovery processes from strong light exposure in the coral Stylophora pistillata

The aim of this study was to investigate whether coral photosynthetic efficiencies and recovery processes are affected by CO2-driven ocean acidification in symbiont photosynthesis and coral calcification. We investigated the effects of five CO2 partial pressure (pCO2) levels in adjusted seawater ranging from 300 μatm (pre-industrial) to 800 μatm (near-future) and strong and weak light intensity on maximum photosynthetic efficiency and calcification of a branching coral, Stylophora pistillata, as this species has often been used in rearing experiments to investigate the effects of acidified seawater on calcification and photosynthetic algae of corals. We found that, the photosynthetic efficiencies and recovery patterns under different light conditions did not differ among pCO2 treatments. Furthermore, calcification of S. pistillata was not affected by acidified seawater under weak or strong light conditions. Our results indicate that the photosynthetic efficiency and calcification of S. pistillata are insensitive to changes in ocean acidity.

Continue reading ‘Effects of acidified seawater on calcification, photosynthetic efficiencies and the recovery processes from strong light exposure in the coral Stylophora pistillata’

Intraspecific variations in responses to ocean acidification in two branching coral species

Ocean acidification is widely recognised to have a negative impact on marine calcifying organisms by reducing calcifications, but controversy remains over whether such organisms could cope with ocean acidification within a range of phenotypic plasticity and/or adapt to future acidifying ocean. We performed a laboratory rearing experiment using clonal fragments of the common branching corals Montipora digitata and Porites cylindrica under control and acidified seawater (lower pH) conditions (approximately 400 and 900 μatm pCO2, respectively) and evaluated the intraspecific variations in their responses to ocean acidification. Intra- and interspecific variations in calcification and photosynthetic efficiency were evident according to both pCO2 conditions and colony, indicating that responses to acidification may be individually variable at the colony level. Our results suggest that some corals may cope with ocean acidification within their present genotypic composition by adaptation through phenotypic plasticity, while others may be placed under selective pressures resulting in population alteration.

Continue reading ‘Intraspecific variations in responses to ocean acidification in two branching coral species’

Coral calcification in a changing World and the interactive dynamics of pH and DIC upregulation

Coral calcification is dependent on the mutualistic partnership between endosymbiotic zooxanthellae and the coral host. Here, using newly developed geochemical proxies (δ11B and B/Ca), we show that Poritescorals from natural reef environments exhibit a close (r2 ∼0.9) antithetic relationship between dissolved inorganic carbon (DIC) and pH of the corals’ calcifying fluid (cf). The highest DICcf (∼ × 3.2 seawater) is found during summer, consistent with thermal/light enhancement of metabolically (zooxanthellae) derived carbon, while the highest pHcf(∼8.5) occurs in winter during periods of low DICcf (∼ × 2 seawater). These opposing changes in DICcf and pHcf are shown to maintain oversaturated but stable levels of carbonate saturation (Ωcf ∼ × 5 seawater), the key parameter controlling coral calcification. These findings are in marked contrast to artificial experiments and show that pHcf upregulation occurs largely independent of changes in seawater carbonate chemistry, and hence ocean acidification, but is highly vulnerable to thermally induced stress from global warming.

Continue reading ‘Coral calcification in a changing World and the interactive dynamics of pH and DIC upregulation’

The vulnerability and resilience of reef-building corals

Reef-building corals provide the foundation for the structural and biological diversity of coral-reef ecosystems. These massive biological structures, which can be seen from space, are the culmination of complex interactions between the tiny polyps of the coral animal in concert with its unicellular symbiotic algae and a wide diversity of closely associated microorganisms (bacteria, archaea, fungi, and viruses). While reef-building corals have persisted in various forms for over 200 million years, human-induced conditions threaten their function and persistence. The scope for loss associated with the destruction of coral reef systems is economically, biologically, physically and culturally immense. Here, we provide a micro-to-macro perspective on the biology of scleractinian corals and discuss how cellular processes of the host and symbionts potentially affect the response of these reef builders to the wide variety of both natural and anthropogenic stressors encountered by corals in the Anthropocene. We argue that the internal physicochemical settings matter to both the performance of the host and microbiome, as bio-physical feedbacks may enhance stress tolerance through environmentally mediated host priming and effects on microbiome ecological and evolutionary dynamics.

Continue reading ‘The vulnerability and resilience of reef-building corals’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,013,357 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book