Posts Tagged 'corals'

Contrasting changes in diel variations of net community calcification support that carbonate dissolution can be more sensitive to ocean acidification than coral calcification

Previous studies have found that calcification in coral reefs is generally stronger during the day, whereas dissolution is prevalent at night. On the basis of these contrasting patterns, the diel variations of net community calcification (NCC) were monitored to examine the relative sensitivity of CaCO3 production (calcification) and dissolution in coral reefs to ocean acidification (OA), using two mesocosms that replicated a typical subtropical coral reef ecosystem in southern Taiwan. The results revealed that the daytime NCC remained unchanged, whereas the nighttime NCC decreased between the control (ambient) and treatment (OA) conditions, suggesting that carbonate dissolution could be more sensitive to OA than coral calcification. The average sensitivity of the integrated daily NCC to changes in the seawater saturation state (Ωa) was estimated to be a reduction of 54% in NCC per unit change in Ωa, which is consistent with the global average. In summary, our results support the prevailing anticipation that OA would lead to a reduction in the overall accretion of coral reef ecosystems. However, increased CaCO3 dissolution rather than decreased coral calcification could be the dominant driving force responsible for this OA-induced reduction in NCC.

Continue reading ‘Contrasting changes in diel variations of net community calcification support that carbonate dissolution can be more sensitive to ocean acidification than coral calcification’

Paradise lost: end‐of‐century warming and acidification under business‐as‐usual emissions have severe consequences for symbiotic corals

Despite recent efforts to curtail greenhouse gas emissions, current global emission trajectories are still following the business‐as‐usual RCP8.5 emission pathway. The resulting ocean warming and acidification have transformative impacts on coral reef ecosystems, detrimentally affecting coral physiology and health, and these impacts are predicted to worsen in the near future. In this study, we kept fragments of the symbiotic corals Acropora intermedia (thermally sensitive) and Porites lobata (thermally tolerant) for 7 weeks under an orthogonal design of predicted end‐of‐century RCP8.5 conditions for temperature and pCO2 (3.5 °C and 570 ppm above present‐day respectively) to unravel how temperature and acidification, individually or interactively, influence metabolic and physiological performance. Our results pinpoint thermal stress as the dominant driver of deteriorating health in both species because of its propensity to destabilize coral‐dinoflagellate symbiosis (bleaching). Acidification had no influence on metabolism but had a significant negative effect on skeleton growth, particularly when photosynthesis was absent such as in bleached corals or under dark conditions. Total loss of photosynthesis after bleaching caused an exhaustion of protein and lipid stores and collapse of calcification that ultimately led to A. intermedia mortality. Despite complete loss of symbionts from its tissue, P. lobata maintained small amounts of photosynthesis and experienced a weaker decline in lipid and protein reserves that presumably contributed to higher survival of this species. Our results indicate that ocean warming and acidification under business‐as‐usual CO2 emission scenarios will likely extirpate thermally‐sensitive coral species before the end of the century, while slowing the recovery of more thermally‐tolerant species from increasingly severe mass coral bleaching and mortality. This could ultimately lead to the gradual disappearance of tropical coral reefs globally, and a shift on surviving reefs to only the most resilient coral species.

Continue reading ‘Paradise lost: end‐of‐century warming and acidification under business‐as‐usual emissions have severe consequences for symbiotic corals’

A framework for experimental scenarios of global change in marine systems using coral reefs as a case study

Understanding the consequences of rising CO2 and warming on marine ecosystems is a pressing issue in ecology. Manipulative experiments that assess responses of biota to future ocean warming and acidification conditions form a necessary basis for expectations on how marine taxa may respond. Although designing experiments in the context of local variability is most appropriate, local temperature and CO2 characteristics are often unknown as such measures necessitate significant resources, and even less is known about local future scenarios. To help address these issues, we summarize current uncertainties in CO2 emission trajectories and climate sensitivity, examine region-specific changes in the ocean, and present a straightforward global framework to guide experimental designs. We advocate for the inclusion of multiple plausible future scenarios of predicted levels of ocean warming and acidification in forthcoming experimental research. Growing a robust experimental base is crucial to understanding the prospect form and function of marine ecosystems in the Anthropocene.

Continue reading ‘A framework for experimental scenarios of global change in marine systems using coral reefs as a case study’

From science to solutions: ocean acidification impacts on select coral reefs

Ocean acidification (OA), often called “the other CO2 problem” (Doney et al., 2009), is a consequence of an increased release of anthropogenic carbon dioxide. Man-made CO2 does not only accumulate in the atmosphere, it also dissolves readily in seawater to form bicarbonate ions, thereby releasing protons () and increasing seawater acidity. The acidity of the oceans has increased by about 30% since the beginning of the industrial period, and may increase by more than 150% by the end of the century. This increase in acidity impacts the lives and well-being of many marine organisms and can also disrupt coastal and marine ecosystems and the services they provide.

In October 2008, the Monaco Declaration, drafted at the request of His Serene Highness Prince Albert II, had a global impact far beyond the scientific community. Since this Declaration, the Principality of Monaco and its various institutions (IAEA, CSM, FPA2, IOM1 ) have developed even more intensive work in this field, bringing the Principality of Monaco to the forefront in defending the oceans against this problem. This collaboration took shape in 2015 with the creation of a Monegasque Association for Ocean Acidification (AMAO), bringing together the FPA2, the Monegasque Government, the Oceanographic Institute, the CSM and the IAEA. In September 2019, the Intergovernmental Panel on Climate Change (IPCC) held its 51 session in the Principality of Monaco to launch the Special Report on the Ocean and Cryosphere in a Changing Climate Context (SROCC), which assessed the physical processes and impacts of climate change on ocean, coastal, polar and mountain ecosystems.

Continue reading ‘From science to solutions: ocean acidification impacts on select coral reefs’

Effects of low pH and feeding on calcification rates of the cold-water coral Desmophyllum dianthus

Cold-Water Corals (CWCs), and most marine calcifiers, are especially threatened by ocean acidification (OA) and the decrease in the carbonate saturation state of seawater. The vulnerability of these organisms, however, also involves other global stressors like warming, deoxygenation or changes in sea surface productivity and, hence, food supply via the downward transport of organic matter to the deep ocean. This study examined the response of the CWC Desmophyllum dianthus to low pH under different feeding regimes through a long-term incubation experiment. For this experiment, 152 polyps were incubated at pH 8.1, 7.8, 7.5 and 7.2 and two feeding regimes for 14 months. Mean calcification rates over the entire duration of the experiment ranged between −0.3 and 0.3 mg CaCO3 g−1d−1. Polyps incubated at pH 7.2 were the most affected and 30% mortality was observed in this treatment. In addition, many of the surviving polyps at pH 7.2 showed negative calcification rates indicating that, in the long term, CWCs may have difficulty thriving in such aragonite undersaturated waters. The feeding regime had a significant effect on skeletal growth of corals, with high feeding frequency resulting in more positive and variable calcification rates. This was especially evident in corals reared at pH 7.5 (ΩA = 0.8) compared to the low frequency feeding treatment. Early life-stages, which are essential for the recruitment and maintenance of coral communities and their associated biodiversity, were revealed to be at highest risk. Overall, this study demonstrates the vulnerability of D. dianthus corals to low pH and low food availability. Future projected pH decreases and related changes in zooplankton communities may potentially compromise the viability of CWC populations.

Continue reading ‘Effects of low pH and feeding on calcification rates of the cold-water coral Desmophyllum dianthus’

High heritability of coral calcification rates and evolutionary potential under ocean acidification

Estimates of heritability inform evolutionary potential and the likely outcome of many management actions, but such estimates remain scarce for marine organisms. Here, we report high heritability of calcification rate among the eight most dominant Hawaiian coral species under reduced pH simulating future ocean conditions. Coral colonies were sampled from up to six locations across a natural mosaic in seawater chemistry throughout Hawaiʻi and fragmented into clonal replicates maintained under both ambient and high pCO2 conditions. Broad sense heritability of calcification rates was high among all eight species, ranging from a low of 0.32 in Porites evermanni to a high of 0.61 in Porites compressa. The overall results were inconsistent with short-term acclimatization to the local environment or adaptation to the mean or ideal conditions. Similarly, in ‘local vs. foreign’ and ‘home vs. away’ tests there was no clear signature of local adaptation. Instead, the data are most consistent with a protected polymorphism as the mechanism which maintains differential pH tolerance within the populations. Substantial individual variation, coupled with high heritability and large population sizes, imply considerable scope for natural selection and adaptive capacity, which has major implications for evolutionary potential and management of corals in response to climate change.

Continue reading ‘High heritability of coral calcification rates and evolutionary potential under ocean acidification’

Responses of symbiotic cnidarians to environmental change

As climate change intensifies, the capacity of organisms to adapt to changing environments becomes increasingly relevant. Heat-induced coral bleaching –the breakdown of the symbiotic association between coral hosts and photosynthetic algae of the family Symbiodiniaceae– is rapidly degrading reefs worldwide. Hence, there is a growing interest to study symbioses that can persist in extreme conditions. The Red Sea is such a place, known as one of the hottest seas where healthy coral reef systems thrive. Here (Chapter 1), we tested the potential of symbiont manipulation as means to improve the thermal resilience of the cnidarian holobiont, particularly using heat tolerant symbiont species from the Red Sea. We used clonal lineages of the model system Aiptasia (host and symbiont), originating from different thermal environments to assess how interchanging either partner affected their short- and long-term performance under heat stress. Our findings revealed that symbioses are not only intra-specific but have also adapted to native, local environments, thus potentially limiting the acclimation capacity of symbiotic cnidarians to climate change. As such, infection with more heat resistant species, even if native, might not necessarily improve thermotolerance of the holobiont. We further investigated (Chapter 2) how environment-dependent specificity, in this case elevated temperature, affects the establishment of novel symbioses. That is, if Aiptasia hosts are, despite exhibiting a high degree of partner fidelity, capable of acquiring more thermotolerant symbionts under stress conditions. Thus, we examined the infection dynamics of multi-species symbioses under different thermal environments and assessed their performance to subsequent heat stress. We showed that temperature, more than host identity, plays a critical role in symbiont uptake and overall performance when heatchallenged. Additionally, we found that pre-exposure to high temperature plays a fundamental role in improving the response to thermal stress, yet, this can be heavily influenced by other factors like feeding. Like climate change, ocean acidification is a serious threat to corals. Yet, most research has focused on the host and little is known for the algal partner. Thus, here we studied (Chapter 3) the global transcriptomic response of an endosymbiotic dinoflagellate to long-term seawater acidification stress. Our results revealed that despite observing an enrichment of processes related to photosynthesis and carbon fixation, which might seem beneficial to the symbiont, low pH has a detrimental effect on its photo-physiology. Taken together, this dissertation provides valuable insights into the responses of symbiotic cnidarians to future climate and ocean changes.

Continue reading ‘Responses of symbiotic cnidarians to environmental change’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,318,642 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book