Posts Tagged 'prokaryotes'

The effects of warming and ocean acidification on growth, photosynthesis, and bacterial communities for the marine invasive macroalga Caulerpa taxifolia

Caulerpa taxifolia is a pantropical green benthic marine macroalga, and one of the best known marine invasive species in temperate coastal habitats. In Australia, this species has been introduced to seven estuaries along New South Wales and one in South Australia. How this alga will perform under future climate change scenarios is however not well defined. This study experimentally assessed the effects of ocean acidification and global warming on the growth, photosynthetic performance and the bacterial community on two populations of C. taxifolia, one native and one invasive. A range of complex significant interactive effects between pH, temperature, and initial plant size on the growth of C. taxifolia were observed, but no effect of population origin and photosystem II (PSII) fluorescence quantum yield parameters were detected. No significant effects of the treatment combinations were observed on bacterial community richness or diversity. Only one bacterial species out of 1087 present on the algae showed significant changes between pH treatments at high temperature (24°C). This bacterium belonged to the genus Planctomyces and its relative abundance was more than 10 times higher in samples with low pH compared to the control. Higher plant growth was observed under all higher pCO2 and lower pH conditions suggesting that C. taxifolia will benefit from climate change, posing a potential higher risk in invaded locations.

Continue reading ‘The effects of warming and ocean acidification on growth, photosynthesis, and bacterial communities for the marine invasive macroalga Caulerpa taxifolia’

Marine iron biogeochemistry under a changing climate: impact on the phytoplankton and the diazotroph communities

Diatoms constitute a major group of phytoplankton, accounting for ~20% of the world’s primary production. Biological dinitrogen (N2) fixation by diazotrophic cyanobacteria has great biogeochemical implications in nitrogen (N) cycling, being the major source of new N input to the oceans and thereby contributing significantly to carbon (C) export production. It has been shown that iron (Fe) can be the limiting nutrient for phytoplankton growth, in particular, in the HNLC (High Nutrient Low Chlorophyll) regions. Iron plays thus an essential role in governing the marine primary productivity and the efficiency of biological carbon pump. Oceanic systems are undergoing continuous modifications at varying rates and magnitudes as a result of changing climate. The objective of our research is to evaluate the effects of global climate change processes (changing dust deposition, ocean acidification and sea-surface warming) on phytoplankton growth, biological N2 fixation, biogeochemical cycles, and the controlling role of Fe within these impacts. Laboratory culture experiments using a marine diatom Chaetoceros socialis were conducted at two temperatures (13 ℃ and 18 ℃) and two carbon dioxide partial pressures (pCO2, 400 µatm and 800 µatm). The present study clearly highlights the effect of ocean acidification on enhancing the release of Fe upon dust deposition. Our results also confirm that being a potential source of Fe, mineral dust provides in addition a readily utilizable source of macronutrients such as phosphorus (P) and silicon (Si). However, elevated atmospheric CO2 concentrations and ocean acidification may also have an adverse impact on diatom growth, causing a decrease in cell size and possible further changes in phytoplankton composition. Meanwhile, increasing temperature and ocean warming may lead to the reduction of diatom production as well as cell size, inducing poleward shifts in the biogeographic distribution of diatoms. Numerous factors can affect the extent of N2 fixation. A better understanding of the major environmental and nutrient controls governing this process is highly required. Iron and/or phosphorus are thought to be limiting factors in most oceanic regions. Special attention has been given to studying the effects of mineral dust deposition which is believed to promote N2 fixation as it increases the availability of both Fe and P. Three laboratory bioassays (+Fe, +P, +Dust) via incubation experiments were performed on Trichodesmium IMS101, an important contributor to marine N2 fixation. Each addition of Fe, P or desert dust was found to stimulate the growth and the N2 fixation activity of Trichodesmium IMS101. Several adaptive nutrient utilization strategies were observed, such as a Fe luxury uptake mechanism, a P-sparing effect and colony formation. In addition, during a field study in the temperate Northeast Atlantic Ocean using natural phytoplankton assemblages, N2 fixation was remarkably stimulated through the addition of dissolved Fe under low temperature and depleted P conditions, highlighting the critical role of Fe. At the time of this study, no Trichodesmium filaments were found in the region of investigation. The diazotrophic community was dominated by the unicellular cyanobacteria symbiont (prymnesiophyte-UCYN-A1) and heterotrophic diazotrophs, therefore suggesting that Fe could be the ultimate factor limiting N2 fixation of these smaller diazotrophs as well. Recently, the effects of ongoing climate change (ocean warming and acidification) on N2 fixation drew much attention, but various studies led to controversial conclusions. Semi-continuous dilution growth experiments were conducted on Trichodesmium IMS101 under future high pCO2 and warming seawater conditions (800 µatm and 28 °C) and compared to the present-day situations (400 µatm and 24 °C). The results indicate that higher pCO2 and therefore ocean acidification may be beneficial for Trichodesmium growth and N2 fixation. However, the present study suggests that Fe or P limitation in oligotrophic seawaters may offset the stimulation induced on Trichodesmium IMS101 due to ocean acidification. In contrast, ocean warming may not play an important role in Trichodesmium growth and N2 fixation with a 4 °C increase from 24 °C to 28 °C. Nevertheless, ocean warming was previously predicted to cause a shift in the geographical distribution of Trichodesmium toward higher latitudes, extending its niche to subtropical regions and potentially reducing its range in tropical ocean basins.Overall, the biological responses of the marine diatom Chaetoceros socialis and the N2-fixing cyanobacteria Trichodesmium IMS101 to several key climate change processes were presented and discussed in this study. These processes included dust deposition, and ocean acidification and warming, which were shown to have a significant impact on oceanic phytoplankton growth, cell size and primary productivity, biological N2 fixation, phytoplankton distribution and community composition. They would thus affect the C, N, P, Si and Fe biogeochemical cycles in various ways. Iron, as one of the most crucial micronutrients for marine phytoplankton, has in particular strong links to climate change and biogeochemical feedback mechanisms.

Continue reading ‘Marine iron biogeochemistry under a changing climate: impact on the phytoplankton and the diazotroph communities’

Interactive network configuration maintains bacterioplankton community structure under elevated CO2 in a eutrophic coastal mesocosm experiment (update)

There is increasing concern about the effects of ocean acidification on marine biogeochemical and ecological processes and the organisms that drive them, including marine bacteria. Here, we examine the effects of elevated CO2 on the bacterioplankton community during a mesocosm experiment using an artificial phytoplankton community in subtropical, eutrophic coastal waters of Xiamen, southern China. Through sequencing the bacterial 16S rRNA gene V3-V4 region, we found that the bacterioplankton community in this high-nutrient coastal environment was relatively resilient to changes in seawater carbonate chemistry. Based on comparative ecological network analysis, we found that elevated CO2 hardly altered the network structure of high-abundance bacterioplankton taxa but appeared to reassemble the community network of low abundance taxa. This led to relatively high resilience of the whole bacterioplankton community to the elevated CO2 level and associated chemical changes. We also observed that the Flavobacteria group, which plays an important role in the microbial carbon pump, showed higher relative abundance under the elevated CO2 condition during the early stage of the phytoplankton bloom in the mesocosms. Our results provide new insights into how elevated CO2 may influence bacterioplankton community structure.

Continue reading ‘Interactive network configuration maintains bacterioplankton community structure under elevated CO2 in a eutrophic coastal mesocosm experiment (update)’

Coral physiology and microbiome dynamics under combined warming and ocean acidification

Rising seawater temperature and ocean acidification threaten the survival of coral reefs. The relationship between coral physiology and its microbiome may reveal why some corals are more resilient to these global change conditions. Here, we conducted the first experiment to simultaneously investigate changes in the coral microbiome and coral physiology in response to the dual stress of elevated seawater temperature and ocean acidification expected by the end of this century. Two species of corals, Acropora millepora containing the thermally sensitive endosymbiont C21a and Turbinaria reniformis containing the thermally tolerant endosymbiont Symbiodinium trenchi, were exposed to control (26.5°C and pCO2 of 364 μatm) and treatment (29.0°C and pCO2 of 750 μatm) conditions for 24 days, after which we measured the microbial community composition. These microbial findings were interpreted within the context of previously published physiological measurements from the exact same corals in this study (calcification, organic carbon flux, ratio of photosynthesis to respiration, photosystem II maximal efficiency, total lipids, soluble animal protein, soluble animal carbohydrates, soluble algal protein, soluble algal carbohydrate, biomass, endosymbiotic algal density, and chlorophyll a). Overall, dually stressed A. millepora had reduced microbial diversity, experienced large changes in microbial community composition, and experienced dramatic physiological declines in calcification, photosystem II maximal efficiency, and algal carbohydrates. In contrast, the dually stressed coral T. reniformis experienced a stable and more diverse microbiome community with minimal physiological decline, coupled with very high total energy reserves and particulate organic carbon release rates. Thus, the microbiome changed and microbial diversity decreased in the physiologically sensitive coral with the thermally sensitive endosymbiotic algae but not in the physiologically tolerant coral with the thermally tolerant endosymbiont. Our results confirm recent findings that temperature-stress tolerant corals have a more stable microbiome, and demonstrate for the first time that this is also the case under the dual stresses of ocean warming and acidification. We propose that coral with a stable microbiome are also more physiologically resilient and thus more likely to persist in the future, and shape the coral species diversity of future reef ecosystems.

Continue reading ‘Coral physiology and microbiome dynamics under combined warming and ocean acidification’

Interaction between elevated CO2 and phytoplankton-derived organic matter under solar radiation on bacterial metabolism from coastal waters

Microcosm experiments to assess bacterioplankton response to phytoplankton-derived organic matter obtained under current and future-ocean CO2 levels were performed. Surface seawater enriched with inorganic nutrients was bubbled for 8 days with air (current CO2 scenario) or with a 1000 ppm CO2–air mixture (future CO2 scenario) under solar radiation. The organic matter produced under the current and future CO2 scenarios was subsequently used as inoculum. Triplicate 12 L flasks filled with 1.2 µm-filtered natural seawater enriched with the organic matter inocula were incubated in the dark for 8 days under CO2 conditions simulating current and future CO2 scenarios to study the bacterial response. The acidification of the media increased bacterial respiration at the beginning of the experiment while the addition of the organic matter produced under future levels of CO2 was related to changes in bacterial production and abundance. The balance between both, respiration and production, made that the bacteria grown under future CO2 levels with an addition of non-acidified matter showed the best growth efficiency at the end of the incubation. However cells grown under future scenarios with high CO2 levels and acidified organic matter additions did not perform differently than those grown under present CO2 conditions, independently of the addition of acidified or non-acidified organic matter. This study demonstrates that the increase in atmospheric CO2 concentrations can affect bacterioplankton directly by changes in the respiration rate and indirectly by changes on the organic matter with concomitant effects on bacterial production and abundance.

Continue reading ‘Interaction between elevated CO2 and phytoplankton-derived organic matter under solar radiation on bacterial metabolism from coastal waters’

Ocean acidification of a coastal Antarctic marine microbial community reveals a critical threshold for CO2 tolerance in phytoplankton productivity (update)

High-latitude oceans are anticipated to be some of the first regions affected by ocean acidification. Despite this, the effect of ocean acidification on natural communities of Antarctic marine microbes is still not well understood. In this study we exposed an early spring, coastal marine microbial community in Prydz Bay to CO2 levels ranging from ambient (343 µatm) to 1641 µatm in six 650 L minicosms. Productivity assays were performed to identify whether a CO2 threshold existed that led to a change in primary productivity, bacterial productivity, and the accumulation of chlorophyll a (Chl a) and particulate organic matter (POM) in the minicosms. In addition, photophysiological measurements were performed to identify possible mechanisms driving changes in the phytoplankton community. A critical threshold for tolerance to ocean acidification was identified in the phytoplankton community between 953 and 1140 µatm. CO2 levels  ≥ 1140 µatm negatively affected photosynthetic performance and Chl a-normalised primary productivity (csGPP14C), causing significant reductions in gross primary production (GPP14C), Chl a accumulation, nutrient uptake, and POM production. However, there was no effect of CO2 on C : N ratios. Over time, the phytoplankton community acclimated to high CO2 conditions, showing a down-regulation of carbon concentrating mechanisms (CCMs) and likely adjusting other intracellular processes. Bacterial abundance initially increased in CO2 treatments  ≥ 953 µatm (days 3–5), yet gross bacterial production (GBP14C) remained unchanged and cell-specific bacterial productivity (csBP14C) was reduced. Towards the end of the experiment, GBP14C and csBP14C markedly increased across all treatments regardless of CO2 availability. This coincided with increased organic matter availability (POC and PON) combined with improved efficiency of carbon uptake. Changes in phytoplankton community production could have negative effects on the Antarctic food web and the biological pump, resulting in negative feedbacks on anthropogenic CO2 uptake. Increases in bacterial abundance under high CO2 conditions may also increase the efficiency of the microbial loop, resulting in increased organic matter remineralisation and further declines in carbon sequestration.

Continue reading ‘Ocean acidification of a coastal Antarctic marine microbial community reveals a critical threshold for CO2 tolerance in phytoplankton productivity (update)’

Bacterioplankton in the light of seasonality and environmental drivers

Bacterioplankton are keystone organisms in marine ecosystems. They are important for element cycles, by transforming dissolved organic carbon and other nutrients. Bacterioplankton community composition and productivity rates change in surface waters over spatial and temporal scales. Yet, many underlying biological processes determining when, why and how bacterioplankton react to changes in environmental conditions are poorly understood. Here, I used experiments with model bacteria and natural assemblages as well as field studies to determine molecular, physiological and ecological responses allowing marine bacteria to adapt to their environment.

Experiments with the flavobacterium Dokdonia sp. MED134 aimed to determine how the metabolism of bacteria is influenced by light and different organic matter. Under light exposure, Dokdonia sp. MED134 expressed proteorhodopsin and adjusted its metabolism to use resources more efficiently when growing with lower-quality organic matter. Similar expression patterns were found in oceanic datasets, implying a global importance of photoheterotrophic metabolisms for the ecology of bacterioplankton.

Further, I investigated how the composition and physiology of bacterial assemblages are affected by elevated CO2 concentrations and inorganic nutrients. In a large-scale experiment, bacterioplankton could keep productivity and community structure unaltered by adapting the gene expression under CO2 stress. To maintain pH homeostasis, bacteria induced higher expression of genes related to respiration, membrane transport and light acquisition under low-nutrient conditions. Under high-nutrient conditions with phytoplankton blooms, such regulatory mechanisms were not necessary. These findings indicate that open ocean systems are more vulnerable to ocean acidification than coastal waters.

Lastly, I used field studies to resolve how bacterioplankton is influenced by environmental changes, and how this leads to seasonal succession of marine bacteria. Using high frequency sampling over three years, we uncovered notable variability both between and within years in several biological features that rapidly changed over short time scales. These included potential phytoplankton-bacteria linkages, substrate uptake rates, and shifts in bacterial community structure. Thus, high resolution time series can provide important insights into the mechanisms controlling microbial communities.

Overall, this thesis highlights the advantages of combining molecular and traditional oceanographic methodological approaches to study ecosystems at high resolution for improving our understanding of the physiology and ecology of microbial communities and, ultimately, how they influence biogeochemical processes.

Continue reading ‘Bacterioplankton in the light of seasonality and environmental drivers’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,061,307 hits


Ocean acidification in the IPCC AR5 WG II

OUP book