Posts Tagged 'prokaryotes'

Effects of ocean acidification and short-term light/temperature stress on biogenic dimethylated sulfur compounds cycling in the Changjiang River Estuary

Ocean acidification (OA) affects marine primary productivity and community structure. Therefore, OA may influence the biogeochemical cycles of volatile biogenic dimethyl sulfide (DMS), and its precursor dimethylsulfoniopropionate (DMSP) and photochemical oxidation product dimethyl sulfoxide (DMSO). A 23-day shipboard incubation experiment investigated the short-term response of the production and cycling of biogenic sulfur compounds to OA in the Changjiang River Estuary to understand the effects of OA on biogenic sulfur compounds. Phytoplankton abundance and community composition showed a marked difference at three different pH levels at the late stage of the experiment. Significant reductions in chlorophyll a (Chl-a), DMS, particulate DMSP (DMSPp) and dissolved DMSO (DMSOd) concentrations were identified under high CO2 levels. Moreover, minimal changes were observed in the productions of dissolved DMSP (DMSPd) and particulate DMSO (DMSOp) among the treatments. The ratios of DMS, total DMSP (DMSPt) and total DMSO (DMSOt) to Chl-a were not affected by a change in pH. Furthermore, the concentrations of DMS and DMSOd were closely related to the mean bacterial abundance at the three pH levels. Additional short-term (8 h) incubation experiments on the light and temperature effects showed that the influence of pH on the production of dimethylated sulfur compounds also depended on solar radiation and temperature. Under natural and UVB light, DMS photodegradation rates increased by 1.6 to 4.2 times at low pH levels. Thus, OA may lead to decreasing DMS concentrations in surface seawater. Light and temperature conditions also play important roles in the production and cycling of biogenic sulfur compounds.

Continue reading ‘Effects of ocean acidification and short-term light/temperature stress on biogenic dimethylated sulfur compounds cycling in the Changjiang River Estuary’

Effect of pH on the bacterial community present in larvae and spat of Crassostrea gigas

Changes in marine environments, including pH changes, have been correlated to alterations in the physiology and disease susceptibility of cultured organisms at the early stages of development. In this study, high-throughput sequencing of the V3-V4 region of the 16S rRNA gene was performed to evaluate the bacterial
biodiversity of Crassostrea gigas pediveliger larvae and spat under acidic stress compared to that of larvae at normal pH value. The evaluation was performed in an experimental system with continuous water flow and pH
manipulation by CO2 bubbling to simulate acidification (pH 7.38 ± 0.039), using the current ocean pH conditions (pH 8.116 ± 0.023) as a reference. The results indicated that the bacterial communities associated with both pediveliger larvae and spat were modified in response to acidic conditions. The families Rhodobacteraceae and Campylobacteraceae were the most affected by the change in pH, with increases in Vibrionaceae in pediveliger larvae and Planctomycetaceae and Phyllobacteriaceae in spat detected. The results of this study demonstrate that the bacterial communities associated with C. gigas pediveliger larvae and spat are responsive to changes in ocean acidification

Continue reading ‘Effect of pH on the bacterial community present in larvae and spat of Crassostrea gigas’

Kelp beds and their local effects on seawater chemistry, productivity, and microbial communities

Kelp forests are known as key habitats for species diversity and macroalgal productivity; however, we know little about how these biogenic habitats interact with seawater chemistry and phototroph productivity in the water column. We examined kelp forest functions at three locales along the Olympic Peninsula of Washington state by quantifying carbonate chemistry, nutrient concentrations, phytoplankton productivity, and seawater microbial communities inside and outside of kelp beds dominated by the canopy kelp species Nereocystis luetkeana and Macrocystis pyrifera. Kelp beds locally increased the pH, oxygen, and aragonite saturation state of the seawater, but lowered seawater inorganic carbon content and total alkalinity. While kelp beds depleted nitrate and phosphorus concentrations, ammonium and DOC concentrations were enhanced. Kelp beds also decreased chlorophyll concentrations and carbon fixed by phytoplankton, although kelp carbon fixation more than compensated for any difference in phytoplankton production. Kelp beds also entrained distinct microbial communities, with higher taxonomic and phylogenetic diversity compared to seawater outside of the kelp bed. Kelp forests thus had significant effects on seawater chemistry, productivity and the microbial assemblages in their proximity. Thereby, the diversity of pathways for carbon and nitrogen cycling was also enhanced. Overall, these observations suggest that the contribution of kelp forests to nearshore carbon and nitrogen cycling is greater than previously documented.

Continue reading ‘Kelp beds and their local effects on seawater chemistry, productivity, and microbial communities’

Ocean acidification reduces growth and grazing of Antarctic heterotrophic nanoflagellates

High-latitude oceans have been identified as particularly vulnerable to ocean acidification if anthropogenic CO2 emissions continue. Marine microbes are an essential part of the marine food web and are a critical link in biogeochemical processes in the ocean, such as the cycling of nutrients and carbon. Despite this, the response of Antarctic marine microbial communities to ocean acidification is poorly understood. We investigated the effect of increasing fCO2 on the growth of heterotrophic nanoflagellates (HNF), nano- and picophytoplankton, and prokaryotes in a natural coastal Antarctic marine microbial community from Prydz Bay, East Antarctica. At CO2 levels ≥ 634 μatm, HNF abundance was reduced, coinciding with significantly increased abundance of picophytoplankton and prokaryotes. This increase in picophytoplankton and prokaryote abundance was likely due to a reduction in top-down control of grazing HNF. Nanophytoplankton abundance was significantly elevated in the 634 and 953 μatm treatments, suggesting that moderate increases in CO2 may stimulate growth. Changes in predator-prey interactions with ocean acidification could have a significant effect on the food web and biogeochemistry in the Southern Ocean. Based on these results, it is likely that the phytoplankton community composition in these waters will shift to communities dominated by prokaryotes, nano- and picophytoplankton. This may intensify organic matter recycling in surface waters, leading to a decline in carbon flux, as well as a reducing the quality and quantity of food available to higher trophic organisms.

Continue reading ‘Ocean acidification reduces growth and grazing of Antarctic heterotrophic nanoflagellates’

Nutrient enrichment promotes eutrophication in the form of macroalgal blooms causing cascading effects in two anthropogenically disturbed coastal ecosystems

Humans are impacting almost every major ecological process that structures communities and ecosystems. Examples of how human activity can directly control key processes in ecosystems include destruction of habitat changing trophic structure, nutrient pollution altering competitive outcomes, overharvesting of consumers reducing top down control, and now climate change impacting virtually every global biogeochemical cycle. These human impacts may have an independent effect on the ecosystem, but they also have the potential to cause cascading effects and promote subsequent stressors. Also, these impacts are not limited to a particular system or geographic location making research on their overall effects vital for management practices. For example, tropical reefs have been transitioning from coral to mixed communities dominated by macroalgae, motivating research on how macroalgae respond to anthropogenic stressors and interact with each other during these stressful events. Further, while eutrophication of coastal estuaries due to increased anthropogenic supplies of nutrients has been of critical global concern for decades, the potential for eutrophication to drive new stressors is a growing concern. To address these knowledge gaps, I investigated how human stressors impact two different and major coastal ecosystems known to be vulnerable to anthropogenic disturbances.

In chapter 1, I demonstrate that anthropogenic stressors in the form of increased nutrients in the water and sediments have strong impacts on interspecific interactions of coral reef macroalgae. Abiotic stressors such as nutrients have been linked to phase-shifts from coral to algal domination on tropical reefs. However, few studies have considered how these stressors impact changes in the biotic and abiotic constituents of dominant species of calcifying macroalgae, and how this may be mediated by species-species interactions. I conducted 4 mesocosm experiments to examine whether different nutrient sources (water column vs. terrestrial sediment) as well as species interactions (alone vs. mixed species) affected total mass (biomass + calcium carbonate (CaCO3)) of two common calcifying macroalgae (Padina boryana and Galaxaura fasciculata). P. boryana gained total mass with increased water column nutrients but declined with increased nutrients supplied by the sediment. Conversely, G. fasciculata gained total mass with increased nutrients in the sediment but declined with increased water column nutrients. In both interactions, the “winner” (i.e., G. fasciculata in the sediment experiment) also had a greater % of thallus mass comprised of CaCO3, potentially due to the subsequent decomposition of the “loser” as this result was not found in the alone treatments. These findings ultimately suggest that nutrient stressors can cause cascading effects, such as promoting calcification and biomass growth or loss in these macroalgal communities, and the potential for domination or decline is based on the nutrient source and community composition.

In chapter 2, I demonstrate that decomposition of macroalgal blooms cause a sequence of biogeochemical processes that can drive acidification in shallow coastal estuaries, and that these processes are mediated by a dynamic microbial community. Eutrophication and ocean acidification are both widely acknowledged as major human-induced stressors in marine environments. While the link between eutrophication and acidification has been established for phytoplankton, it is unclear whether eutrophication in the form of macroalgal blooms can cause cascading effects like acidification in shallow eutrophic estuaries. I conducted seasonal field surveys and assessed microbial communities and functional genes to evaluate changes in biotic and abiotic characteristics between seasons that may be associated with acidification in Upper Newport Bay, CA, USA. Acidification, measured as a drop in pH of 0.7, occurred in summer at the site with the most macroalgal cover. Microbial community composition and functional gene expression provide evidence that decomposition processes contributed to acidification, and also suggest that other biogeochemical processes like nitrification and degradation of polyphosphate also contributed to acidification. To my knowledge, my findings represent the first field evidence that eutrophication of shallow coastal estuaries dominated by green macroalgal blooms can cascade to acidification.

In chapter 3, I demonstrate that macroalgal blooms in shallow estuaries are strong drivers of key microbially-mediated biogeochemical processes that can cause cascading effects, such as acidification and nutrient fluxing, regardless of simulated tidal flushing. Estuaries are productive and diverse ecosystems and are vulnerable to eutrophication from increased anthropogenic nutrients. While it is known that enhanced tidal flushing can reduce adverse effects of anthropogenic disturbances in larger, deeper estuarine ecosystems, this is unexplored for eutrophication in shallow coastal estuaries where macroalgae usually dominate. I simulated eutrophication as a macroalgal bloom in a mesocosm experiment, varied tidal flushing (flushed daily vs unflushed), and assessed the effects on water column and sediment biogeochemical processes and the sediment microbial community. While flushing did not ameliorate the negative effects of the macroalgal bloom, it caused transient differences in the rate of change in biogeochemical processes and promoted increased fluxes of nutrients from the sediment. In the beginning, the macroalgal bloom induced basification and increased total alkalinity, but during decomposition, acidification and the accumulation of nutrients in the sediment and water column occurred. The findings from this chapter ultimately suggest that macroalgal blooms have the potential to be the cause of, yet may also offer a partial solution to, global ecological changes to biogeochemical processes.

Overall, my results indicate that anthropogenic disturbances, particularly in the form of increased nutrients, can cause cascading effects like macroalgal blooms that in turn cause acidification, basification, increased interspecific interactions, nutrient depletion, and nutrient fluxing in multiple ecosystems. These data advance our current understanding of the ecological consequences of eutrophication in the form of macroalgal blooms in different ecosystems. It also provides mechanistic links to microbial communities and biogeochemical processes not previously identified for shallow coastal estuaries. As human population and subsequent nutrient pollution increases in watersheds globally, ecological phenomenon such as eutrophication will only be intensified, and macroalgal communities will continue to dominate. Consequently, this dominance, especially during decomposition as shown here, can drive a multitude of subsequent stressors that can impact the entire ecosystem.

Continue reading ‘Nutrient enrichment promotes eutrophication in the form of macroalgal blooms causing cascading effects in two anthropogenically disturbed coastal ecosystems’

Proteomic responses to ocean acidification of the marine diazotroph Trichodesmium under iron-replete and iron-limited conditions

Growth and dinitrogen (N2) fixation of the globally important diazotrophic cyanobacteria Trichodesmium are often limited by iron (Fe) availability in surface seawaters. To systematically examine the combined effects of Fe limitation and ocean acidification (OA), T. erythraeum strain IMS101 was acclimated to both Fe-replete and Fe-limited concentrations under ambient and acidified conditions. Proteomic analysis showed that OA affected a wider range of proteins under Fe-limited conditions compared to Fe-replete conditions. OA also led to an intensification of Fe deficiency in key cellular processes (e.g., photosystem I and chlorophyll a synthesis) in already Fe-limited T. erythraeum. This is a result of reallocating Fe from these processes to Fe-rich nitrogenase to compensate for the suppressed N2 fixation. To alleviate the Fe shortage, the diazotroph adopts a series of Fe-based economic strategies (e.g., upregulating Fe acquisition systems for organically complexed Fe and particulate Fe, replacing ferredoxin by flavodoxin, and using alternative electron flow pathways to produce ATP). This was more pronounced under Fe-limited-OA conditions than under Fe limitation only. Consequently, OA resulted in a further decrease of N2- and carbon-fixation rates in Fe-limited T. erythraeum. In contrast, Fe-replete T. erythraeum induced photosystem I (PSI) expression to potentially enhance the PSI cyclic flow for ATP production to meet the higher demand for energy to cope with the stress caused by OA. Our study provides mechanistic insight into the holistic response of the globally important N2-fixing marine cyanobacteria Trichodesmium to acidified and Fe-limited conditions of future oceans.

Continue reading ‘Proteomic responses to ocean acidification of the marine diazotroph Trichodesmium under iron-replete and iron-limited conditions’

Limited response of a spring bloom community inoculated with filamentous cyanobacteria to elevated temperature and pCO2

Temperature and CO2 levels are projected to increase in the future, with consequences for carbon and nutrient cycling in brackish environments, such as the Baltic Sea. Moreover, filamentous cyanobacteria are predicted to be favored over other phytoplankton groups under these conditions. Under a 12-day outdoor experiment, we examined the effect on a natural phytoplankton spring bloom community of elevated temperature (from 1°C to 4°C) and elevated pCO2 (from 390 to 970 μatm). No effects of elevated pCO2 or temperature were observed on phytoplankton biovolumes, but a significantly higher photosystem II activity was observed at elevated temperature after 9 days. In addition, three species of diazotrophic filamentous cyanobacteria were inoculated to test their competitive capacity under spring bloom conditions. The toxic cyanobacterium Nodularia spumigena exhibited an average specific growth rate of 0.10 d−1 by the end of the experiment, indicating potential prevalence even during wintertime in the Baltic Sea. Generally, none of the inoculated cyanobacteria species were able to outcompete the natural phytoplankton species at temperatures ≤4°C. No direct effects were found on heterotrophic bacteria. This study demonstrates the highly efficient resistance towards short-term (12 days) changes in abiotic factors by the natural Baltic Sea spring bloom community.

Continue reading ‘Limited response of a spring bloom community inoculated with filamentous cyanobacteria to elevated temperature and pCO2’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,278,514 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book