Posts Tagged 'prokaryotes'

Bacterial community responses during a possible CO2 leaking from sub-seabed storage in marine polluted sediments

Carbon capture and storage (CCS) is a viable option to reduce high concentrations of CO2 and mitigate their negative effects. This option has associated risks such as possible CO2 leakage from the storage sites. So far, negative effects deriving from a CO2 release have been reported for benthic macrofauna in both polluted and nonpolluted sediments. However, bacterial communities has no considered. In this work, risk assessment was carried out in order to evaluate the possible effects in a contaminated area considering bacterial responses (total number of cells, respiring activity, changes in the bacterial community composition and diversity). Four microcosms were placed into an integrated CO2 injection system with a non-pressurized chamber to simulate four different pH treatments (pH control 7.8, 7, 6.5 and 6). Results showed an impact on bacterial communities because of the CO2 treatment. Changes in respiring activity, community composition groups and diversity were found. This study highlights the use of respiring bacteria activity not only as bioindicator for environmental risk assessment and monitoring purposes but also as a bioindicador during a CO2 leakage event or CO2 enrichment process among all the responses studied.

Continue reading ‘Bacterial community responses during a possible CO2 leaking from sub-seabed storage in marine polluted sediments’

Impact of ocean acidification on Arctic phytoplankton blooms and dimethyl sulfide concentration under simulated ice-free and under-ice conditions (update)

In an experimental assessment of the potential impact of Arctic Ocean acidification on seasonal phytoplankton blooms and associated dimethyl sulfide (DMS) dynamics, we incubated water from Baffin Bay under conditions representing an acidified Arctic Ocean. Using two light regimes simulating under-ice or subsurface chlorophyll maxima (low light; low PAR and no UVB) and ice-free (high light; high PAR + UVA + UVB) conditions, water collected at 38 m was exposed over 9 days to 6 levels of decreasing pH from 8.1 to 7.2. A phytoplankton bloom dominated by the centric diatoms Chaetoceros spp. reaching up to 7.5 µg chlorophyll a L−1 took place in all experimental bags. Total dimethylsulfoniopropionate (DMSPT) and DMS concentrations reached 155 and 19 nmol L−1, respectively. The sharp increase in DMSPT and DMS concentrations coincided with the exhaustion of NO3− in most microcosms, suggesting that nutrient stress stimulated DMS(P) synthesis by the diatom community. Under both light regimes, chlorophyll a and DMS concentrations decreased linearly with increasing proton concentration at all pH levels tested. Concentrations of DMSPT also decreased but only under high light and over a smaller pH range (from 8.1 to 7.6). In contrast to nano-phytoplankton (2–20 µm), pico-phytoplankton ( ≤  2 µm) was stimulated by the decreasing pH. We furthermore observed no significant difference between the two light regimes tested in term of chlorophyll a, phytoplankton abundance and taxonomy, and DMSP and DMS net concentrations. These results show that ocean acidification could significantly decrease the algal biomass and inhibit DMS production during the seasonal phytoplankton bloom in the Arctic, with possible consequences for the regional climate.

Continue reading ‘Impact of ocean acidification on Arctic phytoplankton blooms and dimethyl sulfide concentration under simulated ice-free and under-ice conditions (update)’

The future for microplankton in the Baltic Sea – Effects of SWS and climate change

The Baltic Sea is located between 53°N to 66°N and from 10°E to 30°E and is the second largest brackish water body in the world. It consists of several basins where the Baltic Proper is the major water mass. Around 85 million people live in the catchment area of the Baltic Sea, which subjects it to a range of environmental pressures, such as increased nutrient inputs from human activities (eutrophication), shipping, over-fishing, acid rain and trace metals released from anti-fouling paint. All these stressors, combined with low alkalinity, variable salinity and limited water exchange, makes the Baltic Sea a very sensitive area that may be less resilient to future stressors such as climate change or increased shipping activities. Microplankton communities consist of small heterotrophic bacteria, picoplankton, phytoplankton, cyanobacteria and smaller grazers, such as ciliates and zooplankton. In the Baltic Proper, there is a succession of blooms, within the microplankton community, from diatoms and dinoflagellates in the early spring to cyanobacteria during summer and ending with a second diatom and dinoflagellate bloom in the autumn. The cyanobacteria of the Baltic Proper bloom every summer and are dominated by Aphanizomenon sp. and Nodularia spumigena. Dolichospermum spp. is present but is less abundant. The effects of climate change were tested on a natural microplankton community, as well as on isolated cyanobacteria species from the Baltic Sea. To simulate effects of climate change, the temperature was increased from 12°C to 16°C, salinity decreased from 6-7 to 3-4 and atmospheric pCO2-levels was increased from 380 ppm to 960 ppm. The biovolume of Aphanizomenon sp. and N. spumigena increased when temperature was increased by 4°C. When salinity was decreased by three units, both the growth and photosynthetic activity of N. spumigena were reduced while Aphanizomenon sp. was unaffected, and the growth of Dolichospermum sp. was increased. Furthermore, present-day salinities were beneficial, in terms of increased biovolumes, of diatoms, dinoflagellates and ciliates, compared to reduced future salinity. Increased atmospheric pCO2 had no effect on any of the species in the microplankton community. These results show that the future microplankton community may be positive, in terms of increased biovolume, for the cyanobacteria species Aphanizomenon sp. and Dolichospermum spp. An increase of cyanobacteria blooms may open up to the possibility to grow and/or harvest these species as a source of biofuel or fatty acids (FA). Dolichospermum sp. yielded higher total FA content per biovolume, compared to the other two cyanobacteria species in phosphorus-depleted medium and Aphanizomenon sp. in nitrogen-depleted medium. Natural nutrient levels in the Baltic Proper are low both in nitrogen and phosphorus, which indicates a possible future market for biofuel and FA technologies. Additionally, the effects of seawater scrubbing (SWS) were tested on a natural summer-bloom microplankton community. Three different concentrations of scrubber water were added; 1%, 3% and 10%. To elucidate effects of decreased pH alone, water acidified with H2SO4 was added in equal concentrations. The six treatments were compared to a control without acidifying substances. SWS or the corresponding pH treatments, did not have a direct effect on microplankton species composition and biovolume. However, the increased amount of Cu and Zn in the scrubber water, combined with significant decrease in pH and alkalinity already at the 1% scrubber water treatment calls for precaution when implementing scrubber units on the shipping fleet of the Baltic Sea. The accumulated effects of long-term repeated addition constantly throughout the year, i.e. in a shipping lane, are yet to be elucidated.

Continue reading ‘The future for microplankton in the Baltic Sea – Effects of SWS and climate change’

Large-scale seaweed cultivation diverges water and sediment microbial communities in the coast of Nan’ao Island, South China Sea

Seaweed cultivation not only provides economy benefits, but also remediates the environment contaminated by mariculture of animals (e.g., fish, shrimps). However, the response of microbial communities to seaweed cultivation is poorly understood. In this study, we analyzed the diversity, composition, and structure of water and sediment microbial communities at a seaweed, Gracilaria lemaneiformis, cultivation zone and a control zone near Nan’ao Island, South China Sea by MiSeq sequencing of 16S rRNA gene amplicons. We found that large-scale cultivation of G. lemaneiformis increased dissolved oxygen (DO) and pH but decreased inorganic nutrients, possibly due to nutrient uptake, photosynthesis and other physiological processes of G. lemaneiformis. These environmental changes significantly (adonis, P < 0.05) shifted the microbial community composition and structure of both water column and sediment samples in the G. lemaneiformis cultivation zone, compared to the control zone. Also, certain microbial taxa associated with seaweed, such as Arenibacter, Croceitalea, Glaciecola, Leucothrix and Maribacter were enriched at the cultivation zone. In addition, we have proposed a conceptual model to summarize the results in this study and guide future studies on relationships among seaweed processes, microbial communities and their environments. Thus, this study not only provides new insights into our understanding the effect of G. lemaneiformis cultivation on microbial communities, but also guides future studies on coastal ecosystems.

Continue reading ‘Large-scale seaweed cultivation diverges water and sediment microbial communities in the coast of Nan’ao Island, South China Sea’

Ice Acidification: A review of the effects of ocean acidification on sea ice microbial communities

Sea ice algae are naturally exposed to a wider range of pH and CO2 concentrations than marine phytoplankton. While climate change and ocean acidification (OA) will impact pelagic communities, their effects on sea ice microbial communities remains unclear.

Sea ice contains several distinct microbial communities, which are exposed to differing environmental conditions depending on their depth within the ice. Bottom communities mostly experience relatively benign bulk ocean properties, while interior brine and surface communities experience much greater extremes.

Most OA studies have examined the impacts on single sea ice algae species in culture. Although some studies examined the effects of OA alone, most also examined the effects of OA and either light, nutrients or temperature. With few exceptions, increased CO2 concentration caused either no change or an increase in growth and/or photosynthesis. In situ studies of brine and surface algae also demonstrated a wide tolerance to increased and decreased pH and showed increased growth at higher CO2 concentrations. The short time period of most experiments (< 10 days) together with limited genetic diversity (i.e. use of only a single strain), however, has been identified as a limitation to the broader interpretation of results.

While there have been few studies on the effects of OA on marine bacterial communities in general, impacts appear to be minimal. In sea ice also, the few reports available suggest no negative impacts on growth or community richness.

Sea ice ecosystems are ephemeral, melting and re-forming each year. Thus, for some part of each year organisms inhabiting the ice must also survive outside of the ice, either as part of the phytoplankton or as resting spores on the bottom. During these times, they will be exposed to the full range of co-stressors that pelagic organisms experience. Their ability to continue to make a major contribution to sea ice productivity will depend not only on their ability to survive in the ice but also on their ability to survive the increasing seawater temperatures, changing distribution of nutrients and declining pH forecast for the water column over the next centuries.

Continue reading ‘Ice Acidification: A review of the effects of ocean acidification on sea ice microbial communities’

Variable response to warming and ocean acidification by bacterial processes in different plankton communities

Extracellular bacterial enzymes play an important role in the degradation of organic matter in the surface ocean but are sensitive to changes in pH and temperature. This study tested the individual and combined effects of lower pH (-0.3) and warming (+3°C) projected for the year 2100 on bacterial abundance, process rates and diversity in plankton communities of differing composition from 4 locations east of New Zealand. Variation was observed in magnitude and temporal response between the different communities during 5 to 6 day incubations. Leucine aminopeptidase activity showed the strongest response, with an increase in potential activity under low pH alone and in combination with elevated temperature in 3 of 4 incubations. Temperature had a greater effect on bacterial cell numbers and protein synthesis, with stronger responses in the elevated temperature and combined treatments. However, the most common interactive effect between temperature and pH was antagonistic, with lower bacterial secondary production in the combined treatment relative to elevated temperature, and lower leucine aminopeptidase activity in the combined treatment relative to low pH. These results highlight the variability of responses to and interactions of environmental drivers, and the importance of considering these in experimental studies and prognostic models of microbial responses to climate change.

Continue reading ‘Variable response to warming and ocean acidification by bacterial processes in different plankton communities’

Effects of CO2 concentration on a late summer surface sea ice community

Annual fast ice at Scott Base (Antarctica) in late summer contained a high biomass surface community of mixed phytoflagellates, dominated by the dinoflagellate, Polarella glacialis. At this time of the year, ice temperatures rise close to melting point and salinities drop to less than 20. At the same time, pH levels can rise above 9 and nutrients can become limiting. In January 2014, the sea ice microbial community from the top 30 cm of the ice was exposed to a gradient of pH and CO2 (5 treatments) that ranged from 8.87 to 7.12 and 5–215 µmol CO2 kg−1, respectively, and incubated in situ. While growth rates were reduced at the highest and lowest pH, the differences were not significant. Likewise, there were no significant differences in maximum quantum yield of PSII (Fv/Fm) or relative maximum electron transfer rates (rETRmax) among treatments. In a parallel experiment, a CO2 gradient of 26–230 µmol CO2 kg−1 (5 treatments) was tested, keeping pH constant. In this experiment, growth rates increased by approximately 40% with increasing CO2, although differences among treatments were not significant.. As in the previous experiment, there was no significant response in Fv/Fm or rETRmax. A synchronous grazing dilution experiment found grazing rates to be inconclusive These results suggest that the summer sea ice brine communities were not limited by in situ CO2 concentrations and were not adversely affected by pH values down to 7.1.

Continue reading ‘Effects of CO2 concentration on a late summer surface sea ice community’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,000,802 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book