Posts Tagged 'prokaryotes'

The effects of ocean acidification on Prochlorococcus

Prochlorococcus is the most abundant cyanobacteria in the global ocean, and is a part of the marine microbial loop. Climate change, a stressor, presents many threats to Prochlorococcus, two of which are of major concern: increased temperature and increased acidity. Both pH and temperature are not constant and vary in the ocean seasonally, diurnally, and meteorologically. This variation suggests that stress related to interactions with these variables may be complex. This present study examined the effects of lowered pH and increased temperature on Prochlorococcus in the short term. Two strains of Prochlorococcus, high-light and low-light, were manipulated to experience increased temperature, decreased pH, and a combination of the effects and both strains’ responses was observed. Photosynthetic health significantly differed in the low-light clade when the pH was lowered (p = 0.045). Extracted chlorophyll showed statistical variation in the high-light clade when pH was lowered (p = 0.036), and in the low-light clade in both treatments where pH was lowered and temperature was increased (both p < 0.001). There was no statistical difference when temperature and pH were manipulated at the same time. However, more data is needed to see if these results are replicable and to see how this would affect grazing intensity and community structure.

Continue reading ‘The effects of ocean acidification on Prochlorococcus’

Impact of ocean acidification on the biogeochemistry and meiofaunal assemblage of carbonate-rich sediments: results from core incubations (Bay of Villefranche, NW Mediterranean Sea)

Highlights

• A sediment incubation experiment to assess the effect of ocean acidification
• Porewater concentration gradients and sediment-water fluxes (DIC, TA, pH, Ca2+, O2)
• Ocean acidification impacts early diagenesis in carbonate-rich sediments.
• CaCO3 dissolution and the TA release may increase the buffering capacity of bottom water.

Abstract

Marine sediments are an important carbonate reservoir whose partial dissolution could buffer seawater pH decreases in the water column as a consequence of anthropogenic CO2 uptake by the ocean. This study investigates the impact of ocean acidification on the carbonate chemistry at the sediment-water interface (SWI) of shallow-water carbonate sediments. Twelve sediment cores were sampled at one station in the Bay of Villefranche (NW Mediterranean Sea). Four sediment cores were immediately analyzed in order to determine the initial distribution (T0) of dissolved inorganic carbon (DIC), total alkalinity (TA), pH and dissolved oxygen (O2) in the porewaters and to quantify sediment-water fluxes. Four other cores were kept submerged in the laboratory for 25 days with ambient seawater (pHT = 8.12) and the remaining four cores were incubated with acidified seawater (average pH offset of −0.68). This acidification experiment was carried out in an open-flow system, in the dark and at in-situ temperature (15 °C). Every three days, sediment-water fluxes (DIC, TA, pH, O2 and nutrients) were determined using a whole core 12-h incubation technique. Additionally, vertical O2 and pH microprofiles were regularly recorded in the first 2 cm of the sediment during the entire experiment. At the end of the experiment, TA, DIC and Ca2+ concentrations were analyzed in the porewaters and the abundance and taxonomic composition of meiofaunal organisms were assessed. The saturation states of the porewaters with respect to calcite and aragonite were over-saturated but under-saturated with respect to 12 mol% Mg-calcite, in both acidified and non-acidified treatments. The sediment-water fluxes of TA and DIC increased in the acidified treatment, likely as a consequence of enhanced carbonate dissolution. In contrast, the acidification of the overlying water did not significantly affect the O2 and nutrients fluxes at the SWI. Meiofaunal abundance decreased in both treatments over the duration of the experiment, but the organisms seemed unaffected by the acidification. Our results demonstrate that carbonate dissolution increased under acidified conditions but other parameters, such as microbial redox processes, were apparently not affected by the pH decrease, at least during the duration of our experiment. The dissolution of sedimentary carbonates and the associated release of TA may potentially buffer bottom water, depending on the intensity of the TA flux, the TA/DIC ratio, vertical mixing and, therefore, the residence time of bottom water. Under certain conditions, this process may mitigate the effect of ocean acidification on benthic ecosystems.

Continue reading ‘Impact of ocean acidification on the biogeochemistry and meiofaunal assemblage of carbonate-rich sediments: results from core incubations (Bay of Villefranche, NW Mediterranean Sea)’

Acidification increases abundances of Vibrionales and Planctomycetia associated to a seaweed-grazer system: potential consequences for disease and prey digestion efficiency

Ocean acidification significantly affects marine organisms in several ways, with complex interactions. Seaweeds might benefit from rising CO2 through increased photosynthesis and carbon acquisition, with subsequent higher growth rates. However, changes in seaweed chemistry due to increased CO2 may change the nutritional quality of tissue for grazers. In addition, organisms live in close association with a diverse microbiota, which can also be influenced by environmental changes, with feedback effects. As gut microbiomes are often linked to diet, changes in seaweed characteristics and associated microbiome can affect the gut microbiome of the grazer, with possible fitness consequences. In this study, we experimentally investigated the effects of acidification on the microbiome of the invasive brown seaweed Sargassum muticum and a native isopod consumer Synisoma nadejda. Both were exposed to ambient CO2 conditions (380 ppm, pH 8.16) and an acidification treatment (1,000 ppm, pH 7.86) for three weeks. Microbiome diversity and composition were determined using high-throughput sequencing of the variable regions V5-7 of 16S rRNA. We anticipated that as a result of acidification, the seaweed-associated bacterial community would change, leading to further changes in the gut microbiome of grazers. However, no significant effects of elevated CO2 on the overall bacterial community structure and composition were revealed in the seaweed. In contrast, significant changes were observed in the bacterial community of the grazer gut. Although the bacterial community of S. muticum as whole did not change, Oceanospirillales and Vibrionales (mainly Pseudoalteromonas) significantly increased their abundance in acidified conditions. The former, which uses organic matter compounds as its main source, may have opportunistically taken advantage of the possible increase of the C/N ratio in the seaweed under acidified conditions. Pseudoalteromonas, commonly associated to diseased seaweeds, suggesting that acidification may facilitate opportunistic/pathogenic bacteria. In the gut of S. nadejda, the bacterial genus Planctomycetia increased abundance under elevated CO2. This shift might be associated to changes in food (S. muticum) quality under acidification. Planctomycetia are slow-acting decomposers of algal polymers that could be providing the isopod with an elevated algal digestion and availability of inorganic compounds to compensate the shifted C/N ratio under acidification in their food.

In conclusion, our results indicate that even after only three weeks of acidified conditions, bacterial communities associated to ungrazed seaweed and to an isopod grazer show specific, differential shifts in associated bacterial community. These have potential consequences for seaweed health (as shown in corals) and isopod food digestion. The observed changes in the gut microbiome of the grazer seem to reflect changes in the seaweed chemistry rather than its microbial composition.

Continue reading ‘Acidification increases abundances of Vibrionales and Planctomycetia associated to a seaweed-grazer system: potential consequences for disease and prey digestion efficiency’

The influence of abrupt increases in seawater pCO2 on plankton productivity in the subtropical North Pacific Ocean

We conducted a series of experiments to examine short-term (2–5 days) effects of abrupt increases in the partial pressure of carbon dioxide (pCO2) in seawater on rates of primary and bacterial production at Station ALOHA (22°45’ N, 158° W) in the North Pacific Subtropical Gyre (NPSG). The majority of experiments (8 of 10 total) displayed no response in rates of primary production (measured by 14C-bicarbonate assimilation; 14C-PP) under elevated pCO2 (~1100 μatm) compared to ambient pCO2 (~387 μatm). In 2 of 10 experiments, rates of 14C-PP decreased significantly (~43%) under elevated pCO2 treatments relative to controls. Similarly, no significant differences between treatments were observed in 6 of 7 experiments where bacterial production was measured via incorporation of 3H-leucine (3H-Leu), while in 1 experiment, rates of 3H-Leu incorporation measured in the dark (3H-LeuDark) increased more than 2-fold under high pCO2 conditions. We also examined photoperiod-length, depth-dependent (0–125 m) responses in rates of 14C-PP and 3H-Leu incorporation to abrupt pCO2 increases (to ~750 μatm). In the majority of these depth-resolved experiments (4 of 5 total), rates of 14C-PP demonstrated no consistent response to elevated pCO2. In 2 of 5 depth-resolved experiments, rates of 3H-LeuDark incorporation were lower (10% to 15%) under elevated pCO2 compared to controls. Our results revealed that rates of 14C-PP and bacterial production in this persistently oligotrophic habitat generally demonstrated no or weak responses to abrupt changes in pCO2. We postulate that any effects caused by changes in pCO2 may be masked or outweighed by the role that nutrient availability and temperature play in controlling metabolism in this ecosystem.

Continue reading ‘The influence of abrupt increases in seawater pCO2 on plankton productivity in the subtropical North Pacific Ocean’

pH as a primary control in environmental microbiology: 1. Thermodynamic perspective

pH influences the occurrence and distribution of microorganisms. Microbes typically live over a range of 3–4 pH units and are described as acidophiles, neutrophiles, and alkaliphiles, depending on the optimal pH for growth. Their growth rates vary with pH along bell- or triangle-shaped curves, which reflect pH limits of cell structural integrity and the interference of pH with cell metabolism. We propose that pH can also affect the thermodynamics and kinetics of microbial respiration, which then help shape the composition and function of microbial communities. Here we use geochemical reaction modeling to examine how environmental pH controls the energy yields of common redox reactions in anoxic environments, including syntrophic oxidation, iron reduction, sulfate reduction, and methanogenesis. The results reveal that environmental pH changes energy yields both directly and indirectly. The direct change applies to reactions that consume or produce protons whereas the indirect effect, which applies to all redox reactions, comes from the regulation of chemical speciation by pH. The results also show that energy yields respond strongly to pH variation, which may modulate microbial interactions and help give rise to the pH limits of microbial metabolisms. These results underscore the importance of pH as a control on microbial metabolisms and provide insight into potential impacts of pH variation on the composition and activity of microbial communities. In a companion paper, we continue to explore how the kinetics of microbial metabolisms responds to pH variations, and how these responses control the outcome of microbial interactions, including the activity and membership of microbial consortia.

Continue reading ‘pH as a primary control in environmental microbiology: 1. Thermodynamic perspective’

Climate change impacts on natural sulfur production: ocean acidification and community shifts

Utilizing the reduced-complexity model Hector, a regional scale analysis was conducted quantifying the possible effects climate change may have on dimethyl sulfide (DMS) emissions within the oceans. The investigation began with a review of the sulfur cycle in modern Earth system models. We then expanded the biogeochemical representation within Hector to include a natural ocean component while accounting for acidification and planktonic community shifts. The report presents results from both a latitudinal and a global perspective. This new approach highlights disparate outcomes which have been inadequately characterized via planetary averages in past publications. Our findings suggest that natural sulfur emissions (ESN) may exert a forcing up to 4 times that of the CO2 marine feedback, 0.62 and 0.15 Wm−2, respectively, and reverse the radiative forcing sign in low latitudes. Additionally, sensitivity tests were conducted to demonstrate the need for further examination of the DMS loop. Ultimately, the present work attempts to include dynamic ESN within reduced-complexity simulations of the sulfur cycle, illustrating its impact on the global radiative budget.

Continue reading ‘Climate change impacts on natural sulfur production: ocean acidification and community shifts’

Ocean acidification changes the structure of an Antarctic coastal protistan community (update)

Antarctic near-shore waters are amongst the most sensitive in the world to ocean acidification. Microbes occupying these waters are critical drivers of ecosystem productivity, elemental cycling and ocean biogeochemistry, yet little is known about their sensitivity to ocean acidification. A six-level, dose–response experiment was conducted using 650 L incubation tanks (minicosms) adjusted to a gradient in fugacity of carbon dioxide (fCO2) from 343 to 1641 µatm. The six minicosms were filled with near-shore water from Prydz Bay, East Antarctica, and the protistan composition and abundance was determined by microscopy during 18 days of incubation. No CO2-related change in the protistan community composition was observed during the initial 8 day acclimation period under low light. Thereafter, the response of both autotrophic and heterotrophic protists to fCO2 was species-specific. The response of diatoms was mainly cell size related; microplanktonic diatoms ( >  20 µm) increased in abundance with low to moderate fCO2 (343–634 µatm) but decreased at fCO2  ≥  953 µatm. Similarly, the abundance of Phaeocystis antarctica increased with increasing fCO2 peaking at 634 µatm. Above this threshold the abundance of micro-sized diatoms and P. antarctica fell dramatically, and nanoplanktonic diatoms ( ≤  20 µm) dominated, therefore culminating in a significant change in the protistan community composition. Comparisons of these results with previous experiments conducted at this site show that the fCO2 thresholds are similar, despite seasonal and interannual differences in the physical and biotic environment. This suggests that near-shore microbial communities are likely to change significantly near the end of this century if anthropogenic CO2 release continues unabated, with profound ramifications for near-shore Antarctic ecosystem food webs and biogeochemical cycling.

Continue reading ‘Ocean acidification changes the structure of an Antarctic coastal protistan community (update)’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,088,568 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book