Posts Tagged 'prokaryotes'

Variability in the phytoplankton community of Kavaratti reef ecosystem (northern Indian Ocean) during peak and waning periods of El Niño 2016

El Niño, an interannual climate event characterized by elevated oceanic temperature, is a prime threat for coral reef ecosystems worldwide, owing to their thermal threshold sensitivity. Phytoplankton plays a crucial role in the sustenance of reef trophodynamics. The cell size of the phytoplankton forms the “master morphological trait” with implications for growth, resource acquisition, and adaptability to nutrients. In the context of a strong El Niño prediction for 2015–2016, the present study was undertaken to evaluate the variations in the size-structured phytoplankton of Kavaratti reef waters, a major coral atoll along the southeast coast of India. The present study witnessed a remarkable change in the physicochemical environment of the reef water and massive coral bleaching with the progression of El Niño 2015–2016 from its peak to waning phase. The fluctuations observed in sea surface temperature, pH, and nutrient concentration of the reef water with the El Niño progression resulted in a remarkable shift in phytoplankton size structure, abundance, and community composition of the reef waters. Though low nutrient concentration of the waning phase resulted in lower phytoplankton biomass and abundance, the diazotroph Trichodesmium erythraeum predominated the reef waters, owing to its capability of the atmospheric nitrogen fixation and dissolved organic phosphate utilization.

Continue reading ‘Variability in the phytoplankton community of Kavaratti reef ecosystem (northern Indian Ocean) during peak and waning periods of El Niño 2016’

Nutrient co-limited Trichodesmium as nitrogen source or sink in a future ocean

Nitrogen-fixing (N2) cyanobacteria provide bioavailable nitrogen to vast ocean regions but are in turn limited by iron (Fe) and/or phosphorus (P), which may force them to employ alternative nitrogen acquisition strategies. The adaptive responses of nitrogen-fixers to global-change drivers under nutrient-limited conditions could profoundly alter the current ocean nitrogen and carbon cycles. Here, we show that the globally-important N2-fixer Trichodesmium fundamentally shifts nitrogen metabolism towards organic-nitrogen scavenging following long-term high-CO2 adaptation under iron and/or phosphorus (co)-limitation. Global shifts in transcripts and proteins under high CO2/Fe-limited and/or P-limited conditions include decreases in the N2-fixing nitrogenase enzyme, coupled with major increases in enzymes that oxidize trimethylamine (TMA). TMA is an abundant, biogeochemically-important organic nitrogen compound that supports rapid Trichodesmium growth while inhibiting N2 fixation. In a future high-CO2 ocean, this whole-cell energetic reallocation towards organic nitrogen scavenging and away from N2-fixation may reduce new-nitrogen inputs by Trichodesmium, while simultaneously depleting the scarce fixed-nitrogen supplies of nitrogen-limited open ocean ecosystems.

Continue reading ‘Nutrient co-limited Trichodesmium as nitrogen source or sink in a future ocean’

Ocean acidification impacts primary and bacterial production in Antarctic coastal waters during austral summer

Highlights

• Elevated CO2 decreased primary productivity and gross primary production.
• Elevated CO2 decreased bacterial productivity but increased bacterial production.
• Increased bacterial production was associated with reduced grazing pressure.
• Elevated CO2 decreased net community production when nitrate was available.
• Under nitrate limitation net community production responses to CO2 were suppressed.

Abstract

Polar waters may be highly impacted by ocean acidification (OA) due to increased solubility of CO2 at colder water temperatures. Three experiments examining the influence of OA on primary and bacterial production were conducted during austral summer at Davis Station, East Antarctica (68°35′ S, 77°58′ E). For each experiment, six minicosm tanks (650 L) were filled with 200 μm filtered coastal seawater containing natural communities of Antarctic marine microbes. Assemblages were incubated for 10 to 12 days at CO2 concentrations ranging from pre-industrial to post-2300. Primary and bacterial production rates were determined using NaH14CO3 and 14C-leucine, respectively. Net community production (NCP) was also determined using dissolved oxygen. In all experiments, maximum photosynthetic rates (Pmax, mg C mg chl a− 1 h− 1) decreased with elevated CO2, clearly reducing rates of total gross primary production (mg C L− 1 h− 1). Rates of cell-specific bacterial productivity (μg C cell− 1 h− 1) also decreased under elevated CO2, yet total bacterial production (μg C L− 1 h− 1) and cell abundances increased with CO2 over Days 0–4. Initial increases in bacterial production and abundance were associated with fewer heterotrophic nanoflagellates and therefore less grazing pressure. The main changes in primary and bacterial productivity generally occurred at CO2 concentrations > 2 × present day (> 780 ppm), with the same responses occurring regardless of seasonally changing environmental conditions and microbial assemblages. However, NCP varied both within and among experiments, largely due to changing nitrate + nitrite (NOx) availability. At NOx concentrations < 1.5 μM photosynthesis to respiration ratios showed that populations switched from net autotrophy to heterotrophy and CO2 responses were suppressed. Overall, OA may reduce production in Antarctic coastal waters, thereby reducing food availability to higher trophic levels and reducing draw-down of atmospheric CO2, thus forming a positive feedback to climate change. NOX limitation may suppress this OA response but cause a similar decline.

Continue reading ‘Ocean acidification impacts primary and bacterial production in Antarctic coastal waters during austral summer’

Diversity and stability of coral endolithic microbial communities at a naturally high pCO2 reef

The health and functioning of reef-building corals is dependent on a balanced association with prokaryotic and eukaryotic microbes. The coral skeleton harbours numerous endolithic microbes, but their diversity, ecological roles and responses to environmental stress, including ocean acidification (OA), are not well characterized. This study tests whether pH affects the diversity and structure of prokaryotic and eukaryotic algal communities associated with skeletons of Porites spp. using targeted amplicon (16S rRNA gene, UPA and tufA) sequencing. We found that the composition of endolithic communities in the massive coral Porites spp. inhabiting a naturally high pCO2 reef (avg. pCO2 811 μatm) is not significantly different from corals inhabiting reference sites (avg. pCO2 357 μatm), suggesting that these microbiomes are less disturbed by OA than previously thought. Possible explanations may be that the endolithic microhabitat is highly homeostatic or that the endolithic micro-organisms are well adapted to a wide pH range. Some of the microbial taxa identified include nitrogen-fixing bacteria (Rhizobiales and cyanobacteria), algicidal bacteria in the phylum Bacteroidetes, symbiotic bacteria in the family Endozoicomoniaceae, and endolithic green algae, considered the major microbial agent of reef bioerosion. Additionally, we test whether host species has an effect on the endolithic community structure. We show that the endolithic community of massive Porites spp. is substantially different and more diverse than that found in skeletons of the branching species Seriatopora hystrix and Pocillopora damicornis. This study reveals highly diverse and structured microbial communities in Porites spp. skeletons that are possibly resilient to OA.

Continue reading ‘Diversity and stability of coral endolithic microbial communities at a naturally high pCO2 reef’

Effects of the interaction of ocean acidification, solar radiation, and warming on biogenic dimethylated sulfur compounds cycling in the Changjiang River Estuary

Ocean acidification (OA) affects marine primary productivity and community structure, and therefore may influence the biogeochemical cycles of volatile biogenic dimethyl sulfide (DMS) and its precursor dimethylsulfoniopropionate (DMSP) and photochemical oxidation product dimethyl sulfoxide (DMSO). A 23-day incubation experiment on board was conducted to investigate the short-term response of biogenic sulfur compounds production and cycling to OA in the Changjiang River Estuary and further understand its effects on biogenic sulfur compounds. Result showed that phytoplankton abundance and species presented remarkable differences under three different pH levels in the late stage of the experiment. A significant reduction in chlorophyll a (Chl-a), DMS, particulate DMSP (DMSPp), and dissolved DMSO (DMSOd) concentrations was identified under high CO2 levels. Moreover, minimal change was observed in the production of dissolved DMSP (DMSPd) and particulate DMSO (DMSOp) among treatments. The ratios of DMS, total DMSP (DMSPt), and total DMSO (DMSOt) to Chl-a were also not affected by a change in pH. In addition, DMS and DMSOd were highly related to mean bacterial abundance under three pH levels. Additional incubation experiments on light and temperature showed that the influence of pH on productions of dimethylated sulfur compounds also depended on solar radiation and temperature conditions. DMS photodegradation rate increased with decreasing pH under full-spectrum natural light and UVB light. Thus, OA may lead to decreasing DMS concentrations in the surface seawater. Light and temperature conditions also play an important role in the production and cycling of biogenic sulfur compounds.

Continue reading ‘Effects of the interaction of ocean acidification, solar radiation, and warming on biogenic dimethylated sulfur compounds cycling in the Changjiang River Estuary’

The impact of elevated CO2 on Prochlorococcus and microbial interactions with ‘helper’ bacterium Alteromonas

Prochlorococcus is a globally important marine cyanobacterium that lacks the gene catalase and relies on ‘helper’ bacteria such as Alteromonas to remove reactive oxygen species. Increasing atmospheric CO2 decreases the need for carbon concentrating mechanisms and photorespiration in phytoplankton, potentially altering their metabolism and microbial interactions even when carbon is not limiting growth. Here, Prochlorococcus (VOL4, MIT9312) was co-cultured with Alteromonas (strain EZ55) under ambient (400p.p.m.) and elevated CO2 (800p.p.m.). Under elevated CO2, Prochlorococcus had a significantly longer lag phase and greater apparent die-offs after transfers suggesting an increase in oxidative stress. Whole-transcriptome analysis of Prochlorococcus revealed decreased expression of the carbon fixation operon, including carboxysome subunits, corresponding with significantly fewer carboxysome structures observed by electron microscopy. Prochlorococcus co-culture responsive gene 1 had significantly increased expression in elevated CO2, potentially indicating a shift in the microbial interaction. Transcriptome analysis of Alteromonas in co-culture with Prochlorococcus revealed decreased expression of the catalase gene, known to be critical in relieving oxidative stress in Prochlorococcus by removing hydrogen peroxide. The decrease in catalase gene expression was corroborated by a significant ~6-fold decrease in removal rates of hydrogen peroxide from co-cultures. These data suggest Prochlorococcus may be more vulnerable to oxidative stress under elevated CO2 in part from a decrease in ecosystem services provided by heterotrophs like Alteromonas. This work highlights the importance of considering microbial interactions in the context of a changing ocean.

Continue reading ‘The impact of elevated CO2 on Prochlorococcus and microbial interactions with ‘helper’ bacterium Alteromonas’

Impact of climate change variables on nutrient cycling by marine microorganisms in the Southern California Bight and Ross Sea, Antarctica

Ocean environments are being impacted by climate warming, elevated carbon dioxide (CO2) levels, and shifting nutrient sources and sinks. It is essential to quantify the sensitivity of microorganisms to these effects of global change because they form the base of the marine food web and are an integral component of nutrient cycling on the planet. Their role in photosynthesis, nutrient uptake, and transfer of organic matter into higher trophic levels or to the deep ocean via the biological pump render microorganisms key in ecosystem structure and function and in regulating the global climate. The goal of this dissertation research was to determine how changing environmental conditions impact microbial communities and the rates at which they take up nutrients. Research for this dissertation took place in the Southern California Bight and in the Ross Sea, Antarctica, where fully factorial designs were used to investigate the response of microorganisms to multiple global change parameters. Nutrient uptake rates were measured using 13C and 15N stable isotopes for carbon and nitrogen substrates and 33P radioisotopes for phosphorus substrates. In the Southern California Bight, a microbial assemblage was collected and incubated in an ‘ecostat’ continuous culture system, where elevated temperature, CO2, and the dominant nitrogen substrate (nitrate or urea) in the diluent were manipulated. During this experiment uptake rates of dissolved inorganic carbon (DIC), nitrate (NO3-), and urea were determined for two microbial size classes (0.7-5.0 μm and >5.0 μm). Urea uptake rates were greater than NO3-, and uptake rates of urea and DIC for both size fractions increased at elevated temperature, while uptake rates of NO3- by smaller microorganisms increased when CO2 levels were high. In the Ross Sea, the impact of elevated temperature, CO2, and iron addition on DIC and NO3- uptake rates by two size classes (0.7-5.0 μm and >5.0 μm ) of a late-season microbial community were investigated using a semi-continuous and continuous ‘ecostat’ culturing approach. Temperature impacted the microbial community the most, significantly increasing NO3- and DIC uptake rates by larger microorganisms. The effects of iron addition were more apparent when temperature was also elevated, and CO2 did not impact rates. Bioassay experiments were also conducted in the Ross Sea to determine how increasing and decreasing the N:P supply ratio in combination with other parameters (temperature and iron) impact uptake rates of DIC, NO3-, and amino acids. Results from these experiments show that changes to the dissolved N:P supply ratio have the potential to alter nutrient uptake rates over short time scales, but that temperature elevation and iron addition have a larger impact. Additional experiments were completed on diatoms (Fragilariopsis cylindrus and Pseudo-nitzschia subcurvata) and Phaeocystis antarctica, three important phytoplankton species collected from the Ross Sea, to assess how temperature elevation and iron addition impact uptake rates of a number of inorganic and organic carbon, nitrogen, and phosphorus substrates. These culture studies generally show that when temperature is increased, diatoms are able to take up nutrients more rapidly than Phaeocystis antarctica.
Results from this dissertation show that nutrient cycles and phytoplankton communities in the Southern California Bight and the Ross Sea, Antarctica will likely be different in the future. Although all variables tested were found to exert some influence on microbial nutrient cycling, temperature elevation generally had the largest effect, increasing biomass and uptake rates, structuring the composition of the microbial community, and altering stoichiometry. This research did not include top down effects and it is limited spatially and temporally, however, it demonstrates the importance of studying different nutrient substrates and looking at multiple interactive stressors to gain a more comprehensive view of potential change.

Continue reading ‘Impact of climate change variables on nutrient cycling by marine microorganisms in the Southern California Bight and Ross Sea, Antarctica’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,045,898 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book