Posts Tagged 'otherprocess'

Impact of carbonate saturation on large Caribbean benthic foraminifera assemblages

Increasing atmospheric carbon dioxide and its dissolution in seawater have reduced ocean pH and carbonate ion concentrations, with potential implications on calcifying organisms. To assess the response of large Caribbean benthic foraminifera to low carbonate saturation conditions, we analyzed benthic foraminifers’ abundance and relative distribution in surface sediments in proximity to low-carbonate-saturation submarine springs and at adjacent control sites. Our results show that the total abundance of large benthic foraminifera was significantly lower at the low-pH submarine springs than at control sites, although responses were species specific. The relative abundance of high-magnesium, porcelaneous foraminifera was higher than that of hyaline foraminifera at the low-pH springs due to the abundant Archaias angulatus, a chlorophyte-bearing foraminifer, which secretes a large and robust test that is more resilient to dissolution at low-calcite saturation. The different assemblages found at the submarine springs indicate that calcareous symbiont-barren foraminifera are more sensitive to the effects of ocean acidification than agglutinated and symbiont-bearing foraminifera, suggesting that future ocean acidification will likely impact natural benthic foraminifera populations.

Continue reading ‘Impact of carbonate saturation on large Caribbean benthic foraminifera assemblages’

Condition of pteropod shells near a volcanic CO2 vent region

Highlights

 • in situ shell dissolution and change in shell biomass were the predominant features observed in the live pteropods collected within and nearby CO2 vent regions.

• Low pteropod biomass shells (collected nearby the CO2 vents) were more fragile and therefore more prone to fracture than the more robust, high biomass shells (collected in the control stations).

• In the Gulf of Naples, intermittent shifts away from optimum Ωar values can significantly affect pteropod calcification despite waters remaining oversaturated.

Abstract

Natural gradients of pH in the ocean are useful analogues for studying the projected impacts of Ocean Acidification (OA) on marine ecosystems. Here we document the in situ impact of submarine CO2 volcanic emissions (CO2 vents) on live shelled-pteropods (planktonic gastropods) species Creseis conica in the Gulf of Naples (Tyrrhenian Sea, Mediterranean). Since the currents inside the Gulf will likely drive those pelagic calcifying organisms into and out of the CO2 vent zones, we assume that pteropods will be occasionally exposed to the vents during their life cycle. Shell degradation and biomass were investigated in the stations located within and nearby the CO2 vent emission in relation to the variability of sea water carbonate chemistry. A relative decrease in shell biomass (22%), increase in incidence of shell fractures (38%) and extent of dissolution were observed in Creseis conica collected in the Gulf of Naples compared to those from the Northern Tyrrhenian Sea (control stations). These results suggest that discontinuous but recurrent exposure to highly variable carbonate chemistry could consistently affect the characteristic of the pteropod shells.

Continue reading ‘Condition of pteropod shells near a volcanic CO2 vent region’

Effect of elevated pCO2 on trace gas production during an ocean acidification mesocosm experiment (update)

A mesocosm experiment was conducted in Wuyuan Bay (Xiamen), China, to investigate the effects of elevated pCO2 on the phytoplankton species Phaeodactylum tricornutum (P. tricornutum), Thalassiosira weissflogii (T. weissflogii) and Emiliania huxleyi (E. huxleyi) and their production ability of dimethylsulfide (DMS), dimethylsulfoniopropionate (DMSP), as well as four halocarbon compounds, bromodichloromethane (CHBrCl2), methyl bromide (CH3Br), dibromomethane (CH2Br2) and iodomethane (CH3I). Over a period of 5 weeks, P. tricornuntum outcompeted T. weissflogii and E. huxleyi, comprising more than 99% of the final biomass. During the logarithmic growth phase (phase I), mean DMS concentration in high pCO2 mesocosms (1000µatm) was 28% lower than that in low pCO2 mesocosms (400µatm). Elevated pCO2 led to a delay in DMSP-consuming bacteria concentrations attached to T. weissflogii and P. tricornutum and finally resulted in the delay of DMS concentration in the high pCO2 treatment. Unlike DMS, the elevated pCO2 did not affect DMSP production ability of T. weissflogii or P. tricornuntum throughout the 5-week culture. A positive relationship was detected between CH3I and T. weissflogii and P. tricornuntum during the experiment, and there was a 40% reduction in mean CH3I concentration in the high pCO2 mesocosms. CHBrCl2, CH3Br, and CH2Br2 concentrations did not increase with elevated chlorophyll a (Chl a) concentrations compared with DMS(P) and CH3I, and there were no major peaks both in the high pCO2 or low pCO2 mesocosms. In addition, no effect of elevated pCO2 was identified for any of the three bromocarbons.

Continue reading ‘Effect of elevated pCO2 on trace gas production during an ocean acidification mesocosm experiment (update)’

CO2 modulation of the rates of photosynthesis and light-dependent O2 consumption in Trichodesmium

We established the relationship between gross photosynthetic O2 evolution and light-dependent O2 consumption in Trichodesmium erythraeum IMS101 acclimated to three targeted pCO2 concentrations (180 µmol mol-1 = low-CO2, 380 µmol mol-1 = mid-CO2 and 720 µmol mol-1 = high-CO2). We found that biomass (carbon) specific, light-saturated maximum net O2 evolution rates (PnC,max) and acclimated growth rates increased from low- to mid-CO2, but did not differ significantly between mid- and high-CO2. Dark respiration rates were five-times higher than required to maintain cellular metabolism, suggesting that respiration provides a substantial proportion of the ATP and reductant for N2 fixation. Oxygen uptake increased linearly with gross O2 evolution across light intensities ranging from darkness to 1100 µmol photons m-2 s-1. The slope of this relationship decreased with increasing CO2, which we attribute to the increased energetic cost of operating the carbon concentrating mechanism (CCM) at lower CO2 concentrations. Our results indicate that net photosynthesis and growth of T. erythraeum IMS101 would have been severely CO2 limited at the last glacial maximum, but that the direct effect of future increases of CO2 may only cause marginal increases in growth.

Continue reading ‘CO2 modulation of the rates of photosynthesis and light-dependent O2 consumption in Trichodesmium’

Differential physiological responses of the coastal cyanobacterium Synechococcus sp. PCC7002 to elevated pCO2 at lag, exponential, and stationary growth phases

We studied the effects of expected end-of-the-century pCO2 (1000 ppm) on the photosynthetic performance of a coastal marine cyanobacterium Synechococcus sp. PCC7002 during the lag, exponential, and stationary growth phases. Elevated pCO2 significantly stimulated growth, and enhanced the maximum cell density during the stationary phase. Under ambient pCO2 conditions, the lag phase lasted for 6 days, while elevated pCO2 shortened the lag phase to two days and extended the exponential phase by four days. The elevated pCO2 increased photosynthesis levels during the lag and exponential phases, but reduced them during the stationary phase. Moreover, the elevated pCO2 reduced the saturated growth light (Ik) and increased the light utilization efficiency (α) during the exponential and stationary phases, and elevated the phycobilisome:chlorophyll a (Chl a) ratio. Furthermore, the elevated pCO2 reduced the particulate organic carbon (POC):Chl a and particulate organic nitrogen (PON):Chl a ratios during the lag and stationary phases, but enhanced them during the exponential phase. Overall, Synechococcus showed differential physiological responses to elevated pCO2 during different growth phases, thus providing insight into previous studies that focused on only the exponential phase, which may have biased the results relative to the effects of elevated pCO2 in ecology or aquaculture.

Continue reading ‘Differential physiological responses of the coastal cyanobacterium Synechococcus sp. PCC7002 to elevated pCO2 at lag, exponential, and stationary growth phases’

Response of pelagic calcifiers (Foraminifera, Thecosomata) to ocean acidification during oligotrophic and simulated up-welling conditions in the subtropical North Atlantic off Gran Canaria

Planktonic Foraminifera and thecosome pteropods are major producers of calcite and aragonite in the ocean and play an important role for pelagic carbonate flux. The responses of planktonic foraminifers to ocean acidification (OA) are variable among the species tested and so far do not allow for reliable conclusion. Thecosome pteropods respond with reduced calcification and shell dissolution to OA and are considered at high risk especially at high latitudes. The present investigation was part of a large-scale in situ mesocosm experiment in the oligotrophic waters of the eastern subtropical North Atlantic. Over 62 days, we measured the abundance and vertical flux of pelagic foraminifers and thecosome pteropods as part of a natural plankton community over a range of OA scenarios. A bloom phase was initiated by the introduction of deep-water collected from approx. 650 m depth simulating a natural up-welling event. Foraminifers occurred throughout the entire experiment in both the water column and the sediment traps. Pteropods were present only in small numbers and disappeared after the first two weeks of the experiment. No significant CO2 related effects were observed for foraminifers, but cumulative sedimentary flux was reduced at the highest CO2 concentrations. This flux reduction was most likely accompanying an observed flux reduction of particulate organic matter (POM) so that less foraminifers were intercepted and transported downward.

Continue reading ‘Response of pelagic calcifiers (Foraminifera, Thecosomata) to ocean acidification during oligotrophic and simulated up-welling conditions in the subtropical North Atlantic off Gran Canaria’

The health risk for seafood consumers under future ocean acidification (OA) scenarios: OA alters bioaccumulation of three pollutants in an edible bivalve species through affecting the in vivo metabolism

Highlights

• OA increased B[a]P accumulation in blood clams.
• OA decreased the accumulation of NFZ and CAP in blood clams.
• Health risks increased for B[a]P but not for NFZ & CAP.
• Changes in accumulation may be due to altered eliminating ability.

Abstract

The current knowledge about the effect of pCO2-driven ocean acidification on the bioaccumulation of pollutants in marine species is still scarce, as only limited types of pollutants have been investigated. Therefore, to obtain a better understanding of the effect of ocean acidification on the process of bioaccumulation and subsequent food safety, the accumulation of benzo[a]pyrene (B[a]P), chloramphenicol (CAP), and nitrofurazone (NFZ) in an edible bivalve species, Tegillarca granosa, under present and near-future ocean acidification scenarios was investigated in the present study. The health risks associated with consuming contaminated blood clams were also assessed using target hazard quotient (THQ), lifetime cancer risk (CR), or margin of exposure (MoE). To explain the alterations in bioaccumulation of these pollutants, the expressions of genes encoding corresponding key metabolic proteins were analyzed as well. The results obtained showed that ocean acidification exerted a significant effect on the accumulation of B[a]P, NFZ, and CAP in the clams. After four-week exposure to B[a]P, NFZ, or CAP contaminated seawater acidified with CO2 at pH 7.8 and 7.4, significantly greater amounts of B[a]P and lower amounts of NFZ and CAP were accumulated in the clams compared to that in the control. Although no non-carcinogenic risk of consuming B[a]P-contaminated blood clams was detected using the THQ values obtained, the CR values obtained indicated a high life-time risk in all groups. In addition, according to the MoE values obtained, the health risks in terms of consuming NFZ- and CAP-contaminated clams were significantly reduced under ocean acidification scenarios but still cannot be ignored, especially for children. The gene expression results showed that the ability of clams to eliminate B[a]P may be significantly constrained, whereas the ability to eliminate NFZ and CAP may be enhanced under ocean acidification scenarios, indicating that the changes in the accumulation of these pollutants may be due to the altered in vivo metabolism.

Continue reading ‘The health risk for seafood consumers under future ocean acidification (OA) scenarios: OA alters bioaccumulation of three pollutants in an edible bivalve species through affecting the in vivo metabolism’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,123,905 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book