Posts Tagged 'otherprocess'

Over-calcified forms of the coccolithophore Emiliania huxleyi in high-CO2 waters are not preadapted to ocean acidification (update)

Marine multicellular organisms inhabiting waters with natural high fluctuations in pH appear more tolerant to acidification than conspecifics occurring in nearby stable waters, suggesting that environments of fluctuating pH hold genetic reservoirs for adaptation of key groups to ocean acidification (OA). The abundant and cosmopolitan calcifying phytoplankton Emiliania huxleyi exhibits a range of morphotypes with varying degrees of coccolith mineralization. We show that E. huxleyi populations in the naturally acidified upwelling waters of the eastern South Pacific, where pH drops below 7.8 as is predicted for the global surface ocean by the year 2100, are dominated by exceptionally over-calcified morphotypes whose distal coccolith shield can be almost solid calcite. Shifts in morphotype composition of E. huxleyi populations correlate with changes in carbonate system parameters. We tested if these correlations indicate that the hyper-calcified morphotype is adapted to OA. In experimental exposures to present-day vs. future pCO2 (400 vs. 1200 µatm), the over-calcified morphotypes showed the same growth inhibition (−29.1±6.3 %) as moderately calcified morphotypes isolated from non-acidified water (−30.7±8.8 %). Under the high-CO2–low-pH condition, production rates of particulate organic carbon (POC) increased, while production rates of particulate inorganic carbon (PIC) were maintained or decreased slightly (but not significantly), leading to lowered PIC ∕ POC ratios in all strains. There were no consistent correlations of response intensity with strain origin. The high-CO2–low-pH condition affected coccolith morphology equally or more strongly in over-calcified strains compared to moderately calcified strains. High-CO2–low-pH conditions appear not to directly select for exceptionally over-calcified morphotypes over other morphotypes, but perhaps indirectly by ecologically correlated factors. More generally, these results suggest that oceanic planktonic microorganisms, despite their rapid turnover and large population sizes, do not necessarily exhibit adaptations to naturally high-CO2 upwellings, and this ubiquitous coccolithophore may be near the limit of its capacity to adapt to ongoing ocean acidification.

Continue reading ‘Over-calcified forms of the coccolithophore Emiliania huxleyi in high-CO2 waters are not preadapted to ocean acidification (update)’

Coral reef carbonate budgets and ecological drivers in the naturally high temperature and high total alkalinity environment of the Red Sea

The coral structural framework is crucial for maintaining reef ecosystem function and services. Rising seawater temperatures impair the calcification capacity of reef-building organisms on a global scale, but in the Red Sea total alkalinity is naturally high and beneficial to reef growth. It is currently unknown how beneficial and detrimental factors affect the balance between calcification and erosion, and thereby overall reef growth, in the Red Sea. To provide estimates of present-day carbonate budgets and reef growth dynamics in the central Red Sea, we measured in situ net-accretion and net-erosion rates (Gnet) by deployment of limestone blocks to estimate census-based carbonate budgets (Gbudget) in four reef sites along a cross-shelf gradient (25 km). In addition, we assessed abiotic (i.e., temperature, inorganic nutrients, and carbonate system variables) and biotic (i.e., calcifier and bioeroder abundances) variables. Our data show that aragonite saturation states (Ω = 3.65–4.20) were in the upper range compared to the chemistry of other tropical reef sites. Further, Gnet and Gbudget encompassed positive (offshore) and negative (midshore-lagoon and exposed nearshore site) carbonate budgets. Notably, Gbudget maxima were lower compared to reef growth from undisturbed Indian Ocean reefs, but erosive forces for Red Sea reefs were not as strong as observed elsewhere. In line with this, a comparison with recent historical data from the northern Red Sea suggests that overall reef growth in the Red Sea has remained similar since 1995. When assessing reef sites across the shelf gradient, AT correlated well and positive with reef growth (ρ = 0.9), while temperature (ρ = −0.7), pH variation (ρ = −0.8), and pCO2 (ρ = −0.8) were weaker negative correlates. Noteworthy for this oligotrophic sea was the positive effect of PO43− (ρ = 0.7) on reef growth. In the best-fitting distance-based linear model, AT explained about 64 % of Gbudget. Interestingly, parrotfish abundances added up to 78 % of the explained variation, further corroborating recent studies that highlight the importance of parrotfish to reef ecosystem functioning. Our study provides a baseline for reef growth in the central Red Sea that will be particularly useful in assessing future trajectories of reef growth capacities under current and future ocean warming and acidification scenarios.

Continue reading ‘Coral reef carbonate budgets and ecological drivers in the naturally high temperature and high total alkalinity environment of the Red Sea’

Sand smelt ability to cope and recover from ocean’s elevated CO2 levels


• Sand smelt larvae were exposed to short and long-term acidification scenarios.
• Cope and recover were assessed at behavioural, morphometric and biochemical levels.
• Exposure to high pCO2 induces different responses at distinct exposure times.
• Contrary to biochemical and morphometric responses, lateralization was unaffected.
• Larvae were not able to recover from acidified scenarios within the study period.


Considered a major environmental concern, ocean acidification has induced a recent research boost into effects on marine biodiversity and possible ecological, physiological, and behavioural impacts. Although the majority of literature indicate negative effects of future acidification scenarios, most studies are conducted for just a few days or weeks, which may be insufficient to detect the capacity of an organism to adjust to environmental changes through phenotypic plasticity. Here, the effects and the capacity of sand smelt larvae Atherina presbyter to cope and recover (through a treatment combination strategy) from short (15 days) and long-term exposure (45 days) to increasing pCO2 levels (control: ~515 μatm, pH = 8.07; medium: ~940 μatm, pH = 7.84; high: ~1500 μatm, pH = 7.66) were measured, addressing larval development traits, behavioural lateralization, and biochemical biomarkers related with oxidative stress and damage, and energy metabolism and reserves. Although behavioural lateralization was not affected by high pCO2 exposure, morphometric changes, energetic costs, and oxidative stress damage were impacted differently through different exposures periods. Generally, short-time exposures led to different responses to either medium or high pCO2 levels (e.g. development, cellular metabolism, or damage), while on the long-term the response patterns tend to become similar between them, with both acidification scenarios inducing DNA damage and tending to lower growth rates. Additionally, when organisms were transferred to lower acidified condition, they were not able to recover from the mentioned DNA damage impacts.

Overall, results suggest that exposure to future ocean acidification scenarios can induce sublethal effects on early life-stages of fish, but effects are dependent on duration of exposure, and are likely not reversible. Furthermore, to improve our understanding on species sensitivity and adaptation strategies, results reinforce the need to use multiple biological endpoints when assessing the effects of ocean acidification on marine organisms.

Continue reading ‘Sand smelt ability to cope and recover from ocean’s elevated CO2 levels’

Warming and pCO2 effects on Florida stone crab larvae


• Elevated pCO2 reduced larval survivorship by 37%, but elevated temperature   had a greater effect reducing larval survival by 71%.
• Combined stressors reduced larval survivorship to megalopae by 80%.
• Larval morphology and ash free dry weight were not different among treatments.
•  Variability among broods suggests there is potential for adaptation within the species.


Greenhouse gas emissions are increasing ocean temperatures and the partial pressure of pCO2, resulting in more acidic waters. It is presently unknown how elevated temperature and pCO2 will influence the early life history stages of the majority of marine coastal species. We investigated the combined effect of elevated temperature (30 °C control and 32 °C treatment) and elevated pCO2 (450 μatm control and 1100 μatm treatment) on the (i) growth, (ii) survival, (iii) condition, and (iv) morphology of larvae of the commercially important Florida stone crab, Menippe mercenaria. At elevated temperature, larvae exhibited a significantly shorter molt stage, and elevated pCO2 caused stage-V larvae to delay metamorphosis to post-larvae. On average, elevated pCO2 resulted in a 37% decrease in survivorship relative to the control; however the effect of elevated temperature reduced larval survivorship by 71%. Exposure to both elevated temperature and pCO2 reduced larval survivorship by 80% relative to the control. Despite this, no significant differences were detected in the condition or morphology of stone crab larvae when subjected to elevated temperature and pCO2 treatments. Although elevated pCO2 could result in a reduction in larval supply, future increases in seawater temperatures are even more likely to threaten the future sustainability of the stone-crab fishery.

Continue reading ‘Warming and pCO2 effects on Florida stone crab larvae’

A niche comparison of Emiliania huxleyi and Gephyrocapsa oceanica and potential effects of climate change

Coccolithophore responses to changes in carbonate chemistry speciation such as CO2 and H+ are highly modulated by light intensity and temperature. Here we fit an analytical equation, accounting for simultaneous changes in carbonate chemistry speciation, light and temperature, to published and original data for Emiliania huxleyi, and compare the projections with those for Gephyrocapsa oceanica. Based on our analysis, the two most abundant coccolithophores in today’s oceans appear to be adapted for a similar fundamental light niche but slightly different ones for temperature and CO2, with E. huxleyi having a tolerance to lower temperatures and higher CO2 levels than G. oceanica. Based on growth rates, a dominance of E. huxleyi over G. oceanica is projected below temperatures of 22 °C at current atmospheric CO2 levels. This is similar to a global surface sediment compilation of E. huxleyi and G. oceanica coccolith abundances suggesting temperature dependent dominance shifts. For a future RCP 8.5 climate change scenario (1000 μatm fCO2 and +4.8 °C) we project a niche contraction for G. oceanica then being restricted to regions of even higher temperatures. Finally, we compare satellite derived particulate inorganic carbon estimates in the surface ocean with a recently proposed metric for potential coccolithophore success on the community level i.e. the temperature, light and carbonate chemistry dependent CaCO3 production potential (CCPP). Excluding the Antarctic province from the analysis we found a good correlation between CCPP and satellite derived PIC in the other regions with an R2 of 0.73 for Austral winter/Boreal summer and 0.85 for Austral summer/Boreal winter.

Continue reading ‘A niche comparison of Emiliania huxleyi and Gephyrocapsa oceanica and potential effects of climate change’

Ecological responses to ocean acidification by developing marine fouling communities

Increasing levels of CO2 in the atmosphere are rapidly affecting ocean chemistry, leading to increased acidification (i.e., decreased pH) and reductions in calcium carbonate saturation state. This phenomenon, known as ocean acidification, poses a serious imminent threat to marine species, especially those that use calcium carbonate. In this dissertation, I use a variety of methods (field-based experiments, surveys, meta-analysis) to understand how marine communities respond to both natural and experimental CO2 enrichment and how responses could be shaped by species interactions or food availability. I found that ocean acidification influenced community assembly, recruitment, and succession to create homogenized, low diversity communities. I found broadly that soft-bodied, weedy taxa (e.g., algae and ascidians) had an advantage in acidified conditions and outcompeted heavily calcified taxa (e.g., mussels, serpulids) that were more vulnerable to the effects of acidification, although calcified bryozoans and barnacles exhibited mixed responses. Next, I examined an important hypothesis of context dependency in ocean acidification research: that negative responses by calcifiers to high CO2 could be reduced by higher energy input. I found little support for this hypothesis for species growth and abundance, and in fact found that, for some species, additional food supply exacerbated or brought out the negative effects of CO2. Further, I found that acidification stress can tip the balance of community composition towards invasion, under resource conditions that enabled the native community to resist invasions. Overall, it is clear that acidification is a strong driving force in marine communities but understanding the underlying energetic and competitive context is essential to predicting climate change responses.

Continue reading ‘Ecological responses to ocean acidification by developing marine fouling communities’

Population-specific responses in physiological rates of Emiliania huxleyi to a broad CO2 range

Although coccolithophore physiological responses to CO2-induced changes in seawater carbonate chemistry have been widely studied in the past, there is limited knowledge on the variability of physiological responses between populations. In the present study, we investigated the population-specific responses of growth, particulate organic (POC) and inorganic carbon (PIC) production rates of 17 strains of the coccolithophore Emiliania huxleyi from three regions in the North Atlantic Ocean (Azores, Canary Islands, and Norwegian coast near Bergen) to a CO2 partial pressure (pCO2) range from 120 µatm to 2630 µatm. Physiological rates of each population and individual strain displayed the expected optimum curve responses to the pCO2 gradient. Optimal pCO2 for growth and POC production rates and tolerance to low pH (i.e. high proton concentration) was significantly higher in an E. huxleyi population isolated from a Norwegian fjord than in those isolated near the Azores and Canary Islands. This may be due to the large pCO2 and pH variability in coastal waters off Bergen compared to the rather stable oceanic conditions at the other two sites. Maximum growth and POC production rates of the Azores and Bergen populations were similar and significantly higher than of the Canary Islands population. One of the reasons may be that the chosen incubation temperature (16 °C) is slightly below what strains isolated near the Canary Islands normally experience. Our results indicate adaptation of E. huxleyi to their local environmental conditions. Within each population, different growth, POC and PIC production rates at different pCO2 levels indicated strain-specific phenotypic plasticity. The existence of distinct carbonate chemistry responses between and within populations will likely benefit E. huxleyi to acclimate to rising CO2 levels in the oceans.

Continue reading ‘Population-specific responses in physiological rates of Emiliania huxleyi to a broad CO2 range’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,066,623 hits


Ocean acidification in the IPCC AR5 WG II

OUP book