Posts Tagged 'otherprocess'

Changes in fish communities due to benthic habitat shifts under ocean acidification conditions

Highlights

• Ocean acidification-mediated habitat shifts and decreased complexity affect associated fish communities.

• Altered fish traits and reduced diversity occurred under near-future ocean acidification levels.

• Ocean acidification may oppose the poleward-shift of tropical fish species under warming.

Abstract

Ocean acidification will likely change the structure and function of coastal marine ecosystems over coming decades. Volcanic carbon dioxide seeps generate dissolved CO2 and pH gradients that provide realistic insights into the direction and magnitude of these changes. Here, we used fish and benthic community surveys to assess the spatio-temporal dynamics of fish community properties off CO2 seeps in Japan. Adding to previous evidence from ocean acidification ecosystem studies conducted elsewhere, our findings documented shifts from calcified to non-calcified habitats with reduced benthic complexity. In addition, we found that such habitat transition led to decreased diversity of associated fish and to selection of those fish species better adapted to simplified ecosystems dominated by algae. Our data suggest that near-future projected ocean acidification levels will oppose the ongoing range expansion of coral reef-associated fish due to global warming.

Continue reading ‘Changes in fish communities due to benthic habitat shifts under ocean acidification conditions’

Short-term effects of hypoxia are more important than effects of ocean acidification on grazing interactions with juvenile giant kelp (Macrocystis pyrifera)

Species interactions are crucial for the persistence of ecosystems. Within vegetated habitats, early life stages of plants and algae must survive factors such as grazing to recover from disturbances. However, grazing impacts on early stages, especially under the context of a rapidly changing climate, are largely unknown. Here we examine interaction strengths between juvenile giant kelp (Macrocystis pyrifera) and four common grazers under hypoxia and ocean acidification using short-term laboratory experiments and field data of grazer abundances to estimate population-level grazing impacts. We found that grazing is a significant source of mortality for juvenile kelp and, using field abundances, estimate grazers can remove on average 15.4% and a maximum of 73.9% of juveniles per m2 per day. Short-term exposure to low oxygen, not acidification, weakened interaction strengths across the four species and decreased estimated population-level impacts of grazing threefold, from 15.4% to 4.0% of juvenile kelp removed, on average, per m2 per day. This study highlights potentially high juvenile kelp mortality from grazing. We also show that the effects of hypoxia are stronger than the effects of acidification in weakening these grazing interactions over short timescales, with possible future consequences for the persistence of giant kelp and energy flow through these highly productive food webs.

Continue reading ‘Short-term effects of hypoxia are more important than effects of ocean acidification on grazing interactions with juvenile giant kelp (Macrocystis pyrifera)’

Relationship between shell integrity of pelagic gastropods and carbonate chemistry parameters at a Scottish Coastal Observatory monitoring site

Ocean acidification (OA), the anthropogenic carbon dioxide-induced changes in seawater carbonate chemistry, is likely to have a significant impact on calcifying plankton. Most planktonic studies on OA are based on “one-off” cruises focused on offshore areas while observations from inshore waters are scarce. This study presents the first analysis on the shell integrity of pelagic gastropods (holoplanktonic pteropods and planktonic larvae of otherwise benthic species) at the Scottish Coastal Observatory monitoring site at Stonehaven on the east coast of Scotland. The shell integrity of archived pelagic gastropods specimens from 2011 to 2013 was examined using Scanning Electron Microscopy and the relationship with OA (pH and aragonite saturation, Ωarg) and other environmental parameters was investigated. Evidence of shell dissolution was detected in all analysed taxa even though the seawater was supersaturated with respect to aragonite. The shell condition matched the temporal pattern observed in Ωarg, with higher proportion of dissolution associated with decreasing Ωarg, suggesting that the seasonality component of carbonate chemistry might affect the shell integrity of pelagic gastropods. The proportion of shell dissolution differed significantly between larvae and adult stages of pteropods, supporting the hypothesis that early-life stages would be more vulnerable to OA-induced changes. Our data also suggest that sensitivity to OA may differ even between closely related taxonomic groups. The strong interannual variability revealed by the year-to-year shell dissolution and Ωarg illustrates the difficulty in assessing the plankton response to OA in the field and the value of time series studies.

Continue reading ‘Relationship between shell integrity of pelagic gastropods and carbonate chemistry parameters at a Scottish Coastal Observatory monitoring site’

Resistance of seagrass habitats to ocean acidification via altered interactions in a tri-trophic chain

Despite the wide knowledge about prevalent effects of ocean acidification on single species, the consequences on species interactions that may promote or prevent habitat shifts are still poorly understood. Using natural CO2 vents, we investigated changes in a key tri-trophic chain embedded within all its natural complexity in seagrass systems. We found that seagrass habitats remain stable at vents despite the changes in their tri-trophic components. Under high pCO2, the feeding of a key herbivore (sea urchin) on a less palatable seagrass and its associated epiphytes decreased, whereas the feeding on higher-palatable green algae increased. We also observed a doubled density of a predatory wrasse under acidified conditions. Bottom-up CO2 effects interact with top-down control by predators to maintain the abundance of sea urchin populations under ambient and acidified conditions. The weakened urchin herbivory on a seagrass that was subjected to an intense fish herbivory at vents compensates the overall herbivory pressure on the habitat-forming seagrass. Overall plasticity of the studied system components may contribute to prevent habitat loss and to stabilize the system under acidified conditions. Thus, preserving the network of species interactions in seagrass ecosystems may help to minimize the impacts of ocean acidification in near-future oceans.

Continue reading ‘Resistance of seagrass habitats to ocean acidification via altered interactions in a tri-trophic chain’

State and trends of Australia’s ocean report: ocean acidification and calcifying zooplankton

There is no evidence of a decline in calcifying zooplankton at the IMOS National
Reference Stations over the past 10 years, suggesting ocean acidification
over this time span is unlikely to be having a substantial impact on calcifying
zooplankton. However, there is some evidence that calcifying zooplankton
might at Maria Island and Yongala be sensitive to the aragonite saturation state
at the range of values currently observed.

Continue reading ‘State and trends of Australia’s ocean report: ocean acidification and calcifying zooplankton’

The importance of environmental exposure history in forecasting Dungeness crab megalopae occurrence using J-SCOPE, a high-resolution model for the US Pacific Northwest

The Dungeness crab (Metacarcinus magister) fishery is one of the highest value fisheries in the US Pacific Northwest, but its catch size fluctuates widely across years. Although the underlying causes of this wide variability are not well understood, the abundance of M. magister megalopae has been linked to recruitment into the adult fishery 4 years later. These pelagic megalopae are exposed to a range of ocean conditions during their dispersal period, which may drive their occurrence patterns. Environmental exposure history has been found to be important for some pelagic organisms, so we hypothesized that inclusion of recent environmental exposure history would improve our ability to predict inter-annual variability in M. magister megalopae occurrence patterns compared to using “in situ” conditions alone. We combined 8 years of local observations of M. magister megalopae and regional simulations of ocean conditions to model megalopae occurrence using a generalized linear model (GLM) framework. The modeled ocean conditions were extracted from JISAO’s Seasonal Coastal Ocean Prediction of the Ecosystem (J-SCOPE), a high-resolution coupled physical-biogeochemical model. The analysis included variables from J-SCOPE identified in the literature as important for larval crab occurrence: temperature, salinity, dissolved oxygen concentration, nitrate concentration, phytoplankton concentration, pH, aragonite, and calcite saturation state. GLMs were developed with either in situ ocean conditions or environmental exposure histories generated using particle tracking experiments. We found that inclusion of exposure history improved the ability of the GLMs to predict megalopae occurrence 98% of the time. Of the six swimming behaviors used to simulate megalopae dispersal, five behaviors generated GLMs with superior fits to the observations, so a biological ensemble of these models was constructed. When the biological ensemble was used for forecasting, the model showed skill in predicting megalopae occurrence (AUC = 0.94). Our results highlight the importance of including exposure history in larval occurrence modeling and help provide a method for predicting pelagic megalopae occurrence. This work is a step toward developing a forecast product to support management of the fishery.

Continue reading ‘The importance of environmental exposure history in forecasting Dungeness crab megalopae occurrence using J-SCOPE, a high-resolution model for the US Pacific Northwest’

Evaluation of heterotrophic bacteria associated with healthy and bleached corals of Gulf of Kutch, Gujarat, India for siderophore production and their response to climate change factors

Highlights

• Comparison of siderophore production by healthy and bleached coral associated microbes.

• Catecholate type of siderophore is mainly produced by coral associated microbes.

• Adapting ability of healthy and bleached coral isolates in changing climate.

• Significant effect of lowering pH and increasing temperature on growths and siderophore production of coral associated bacteria.

Abstract

Bacteria are known to play a crucial role in coral health but their mechanisms are unclear. Siderophore production could be one of the mechanisms by which they benefit or harm the corals. Bacteria produce siderophore to adapt in harsh conditions, such as nutrient limiting and competing environments such as coral surface. In the present study, siderophore producing ability of microbes associated with healthy and bleached corals is evaluated as both healthy and bleached coral surface provide a different environment concerning nutrients and competitions. Total of 129 siderophore-producing bacteria associated with two healthy (n = 66 isolates) and bleached coral (n = 63) species (Porites spp. and Turbinaria spp.) from the Gulf of Kutch (GoK), Gujarat (India) are screened and compared. No relation between coral health status and siderophore producing ability of microbes is observed (one-way ANOVA, p = 0.67). All the isolates are positive to catecholate type of siderophore which has the strongest affinity for limiting iron. The study also explores the growth and siderophore production behavior of healthy and bleached coral isolates at decreasing pH and temperature rise as they are the important factors that affects the solubility of nutrients and thus, the structure and functioning of the microbes. Isolates from bleached corals showed an increase in growth even at pH 6, whereas the growth of healthy coral isolates reduces at pH 6. Temperature rise is negatively correlated to growth and siderophore production by all isolates except Bacillus sp. PH26. Combined low pH and temperature rise stress, negatively affect growth and siderophore production of coral-associated microbes with Bacillus sp. PH26 as exception. General correlation trend of bacterial growth and siderophore production is positive. The isolates showing exceptional behavior might be possibly beneficial or harmful to the coral health. Thus, growth and siderophore production of microbes under changing climate conditions might be used as preliminary tools to screen beneficial and pathogenic microbes of corals from opportunistic microbes. This screening would reduce the number of possible candidates for in-situ and in-vitro microcosm experiments to understand the role of siderophore producing microbes in coral health. Overall, pH and temperature have a significant impact on coral-associated microbial growth and siderophore production, which ultimately impact the coral health and disease as the microbes form an integral part of coral holobiont. The study laid the foundation for future studies to understand the role of siderophore producing bacteria in coral health in the global climate-changing era.

Continue reading ‘Evaluation of heterotrophic bacteria associated with healthy and bleached corals of Gulf of Kutch, Gujarat, India for siderophore production and their response to climate change factors’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,336,430 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book