Posts Tagged 'otherprocess'

Influence of environmental conditions on the toxicokinetics of cadmium in the marine copepod Acartia tonsa

Marine and estuarine ecosystems are highly productive areas that often act as a final sink for several pollutants, such as cadmium. Environmental conditions in these habitats can affect metal speciation, as well as its uptake and depuration by living organisms. The aim of this study was to assess cadmium uptake and depuration rates in the euryhaline calanoid copepod Acartia tonsa under different pH, salinity and temperature conditions. Cadmium speciation did not vary with changing pH or temperature, but varied with salinity. Free Cd2+ ion activity increased with decreasing salinities resulting in increased cadmium concentrations in A. tonsa. However, uptake rate, derived using free Cd2+ ion activity, showed no significant differences at different salinities indicating a simultaneous combined effect of Cd2+ speciation and metabolic rates for osmoregulation. Cadmium concentration in A. tonsa and uptake rate increased with increasing pH, showing a peak at the intermediate pH of 7.5, while depuration rate fluctuated, thus suggesting that both parameters are mediated by metabolic processes (to maintain homeostasis at pH levels lower than normal) and ion competition at membrane binding sites. Cadmium concentration in A. tonsa, uptake and depuration rates increased with increasing temperature, a trend that can be attributed to an increase in metabolic energy demand at higher temperatures. The present study shows that cadmium uptake and depuration rates in the marine copepod A. tonsa is mostly affected by biological processes, mainly driven by metabolic mechanisms, and to a lesser extent by metal speciation in the exposure medium.

Continue reading ‘Influence of environmental conditions on the toxicokinetics of cadmium in the marine copepod Acartia tonsa’

Effects of elevated CO2 on phytoplankton community biomass and species composition during a spring Phaeocystis spp. bloom in the western English Channel

A 21-year time series of phytoplankton community structure was analysed in relation to Phaeocystis spp. to elucidate its contribution to the annual carbon budget at station L4 in the western English Channel (WEC).

Between 1993–2014 Phaeocystis spp. contributed ∼4.6% of the annual phytoplankton carbon and during the March − May spring bloom, the mean Phaeocystis spp. biomass constituted 17% with a maximal contribution of 47% in 2001. Upper maximal weekly values above the time series mean ranged from 63 to 82% of the total phytoplankton carbon (∼42–137 mg carbon (C) m−3) with significant inter-annual variability in Phaeocystis spp. Maximal biomass usually occurred by the end of April, although in some cases as early as mid-April (2007) and as late as late May (2013).

The effects of elevated pCO2 on the Phaeocystis spp. spring bloom were investigated during a fifteen-day semi-continuous microcosm experiment. The phytoplankton community biomass was estimated at ∼160 mg C m−3 and was dominated by nanophytoplankton (40%, excluding Phaeocystis spp.), Phaeocystis spp. (30%) and cryptophytes (12%). The smaller fraction of the community biomass comprised picophytoplankton (9%), coccolithophores (3%), Synechococcus (3%), dinoflagellates (1.5%), ciliates (1%) and diatoms (0.5%). Over the experimental period, total biomass increased significantly by 90% to ∼305 mg C m−3 in the high CO2 treatment while the ambient pCO2 control showed no net gains. Phaeocystis spp. exhibited the greatest response to the high CO2 treatment, increasing by 330%, from ∼50 mg C m−3 to over 200 mg C m−3 and contributing ∼70% of the total biomass.

Taken together, the results of our microcosm experiment and analysis of the time series suggest that a future high CO2 scenario may favour dominance of Phaeocystis spp. during the spring bloom. This has significant implications for the formation of hypoxic zones and the alteration of food web structure including inhibitory feeding effects and lowered fecundity in many copepod species.

Continue reading ‘Effects of elevated CO2 on phytoplankton community biomass and species composition during a spring Phaeocystis spp. bloom in the western English Channel’

Genome-wide identification, characterization and expression analyses of TLRs in Yesso scallop (Patinopecten yessoensis) provide insight into the disparity of responses to acidifying exposure in bivalves


  • Eighteen TLR superfamily members were identified in the P. yessoensis genome.
  • Phylogenetic analysis confirmed duplication and expansion of TLR genes in mollusk.
  • The 18 PyTLRs showed different immune response patterns to acidifying exposure.
  • Adaptive recruitment of tandem duplication of TLR genes have been arisen to the immune stress.


Toll-like receptors (TLRs) play a crucial role in innate immunity by recognizing specific pathogen-associated molecular patterns, including lipoproteins, lipopeptides, lipopolysaccharide, flagellin, dsRNA, ssRNA and CpG DNA motifs. Although significant effects of TLRs on immunity have been reported in most vertebrates and some invertebrates, the complete TLR superfamily has not been systematically characterized in scallops. In this study, 18 TLR genes were identified from Yesso scallop (Patinopecten yessoensis) using whole-genome scanning. Phylogenetic and protein structural analyses were performed to determine the identities and evolutionary relationships of the 18 genes. Extensive expansion of TLR genes from the Yesso scallop genome indicated gene duplication events. In addition, expression profiling of PyTLRs was performed at different acidifying exposure levels (pH = 6.50, 7.50) with different challenge durations (3, 6, 12 and 24 h) via in silico analysis using transcriptome and genome databases. Our results confirmed the inducible expression patterns of PyTLRs under acidifying exposure, and the responses to immune stress may have arisen through adaptive recruitment of tandem duplications of TLR genes. Collectively, this study provides novel insight into PyTLRs as well as the specific role and response of TLR signaling pathways in host immune responses against acidifying exposure in bivalves.


Continue reading ‘Genome-wide identification, characterization and expression analyses of TLRs in Yesso scallop (Patinopecten yessoensis) provide insight into the disparity of responses to acidifying exposure in bivalves’

Exposure history determines pteropod vulnerability to ocean acidification along the US West Coast

The pteropod Limacina helicina frequently experiences seasonal exposure to corrosive conditions (Ωar  < 1) along the US West Coast and is recognized as one of the species most susceptible to ocean acidification (OA). Yet, little is known about their capacity to acclimatize to such conditions. We collected pteropods in the California Current Ecosystem (CCE) that differed in the severity of exposure to Ωar conditions in the natural environment. Combining field observations, high-CO2 perturbation experiment results, and retrospective ocean transport simulations, we investigated biological responses based on histories of magnitude and duration of exposure to Ωar < 1. Our results suggest that both exposure magnitude and duration affect pteropod responses in the natural environment. However, observed declines in calcification performance and survival probability under high CO2 experimental conditions do not show acclimatization capacity or physiological tolerance related to history of exposure to corrosive conditions. Pteropods from the coastal CCE appear to be at or near the limit of their physiological capacity, and consequently, are already at extinction risk under projected acceleration of OA over the next 30 years. Our results demonstrate that Ωar exposure history largely determines pteropod response to experimental conditions and is essential to the interpretation of biological observations and experimental results.

Continue reading ‘Exposure history determines pteropod vulnerability to ocean acidification along the US West Coast’

Defying dissolution: discovery of deep-sea scleractinian coral reefs in the North Pacific

Deep-sea scleractinian coral reefs are protected ecologically and biologically significant areas that support global fisheries. The absence of observations of deep-sea scleractinian reefs in the Central and Northeast Pacific, combined with the shallow aragonite saturation horizon (ASH) and high carbonate dissolution rates there, fueled the hypothesis that reef formation in the North Pacific was improbable. Despite this, we report the discovery of live scleractinian reefs on six seamounts of the Northwestern Hawaiian Islands and Emperor Seamount Chain at depths of 535–732 m and aragonite saturation state (Ωarag) values of 0.71–1.33. Although the ASH becomes deeper moving northwest along the chains, the depth distribution of the reefs becomes shallower, suggesting the ASH is having little influence on their distribution. Higher chlorophyll moving to the northwest may partially explain the geographic distribution of the reefs. Principle Components Analysis suggests that currents are also an important factor in their distribution, but neither chlorophyll nor the available current data can explain the unexpected depth distribution. Further environmental data is needed to elucidate the reason for the distribution of these reefs. The discovery of reef-forming scleractinians in this region is of concern because a number of the sites occur on seamounts with active trawl fisheries.

Continue reading ‘Defying dissolution: discovery of deep-sea scleractinian coral reefs in the North Pacific’

Species interactions drive fish biodiversity loss in a high-CO2 world


  • Elevated CO2 did not alter competitive hierarchies of fish at volcanic vents
  • Enhanced food and reduced predation boosted density of behaviorally dominant fish
  • Population increases of dominant fish suppressed subordinate species
  • Ocean acidification can reduce local fish diversity and homogenize fish communities


Accelerating climate change is eroding the functioning and stability of ecosystems by weakening the interactions among species that stabilize biological communities against change [1]. A key challenge to forecasting the future of ecosystems centers on how to extrapolate results from short-term, single-species studies to community-level responses that are mediated by key mechanisms such as competition, resource availability (bottom-up control), and predation (top-down control) [2]. We used CO2 vents as potential analogs of ocean acidification combined with in situ experiments to test current predictions of fish biodiversity loss and community change due to elevated CO2 [3] and to elucidate the potential mechanisms that drive such change. We show that high risk-taking behavior and competitive strength, combined with resource enrichment and collapse of predator populations, fostered already common species, enabling them to double their populations under acidified conditions. However, the release of these competitive dominants from predator control led to suppression of less common and subordinate competitors that did not benefit from resource enrichment and reduced predation. As a result, local biodiversity was lost and novel fish community compositions were created under elevated CO2. Our study identifies the species interactions most affected by ocean acidification, revealing potential sources of natural selection. We also reveal how diminished predator abundances can have cascading effects on local species diversity, mediated by complex species interactions. Reduced overfishing of predators could therefore act as a key action to stall diversity loss and ecosystem change in a high-CO2 world.

Continue reading ‘Species interactions drive fish biodiversity loss in a high-CO2 world’

Pteropod shell condition, locomotion, and long-term population trends in the context of ocean acidification and environmental change

Thecosome pteropods are planktonic mollusks that form aragonite shells and that may experience increased dissolution and other adverse effects due to ocean acidification. This thesis focuses on assessing the possible biological effects of ocean acidification on the shells and locomotion of pteropods and examining the response of a local pteropod population to environmental change over time. I analyzed shell condition after exposing pteropods to elevated CO2 as well as in natural populations to investigate the sensitivity of the shells of different species to aragonite saturation state (ΩA). The pteropods (Limacina retroversa) from laboratory experiments showed the clearest pattern of shell dissolution in response to decreased ΩA, while wild populations either had non-significant regional trends in shell condition (Clio pyramidata) or variability in shell condition that did not match expectations due to regional variability in ΩA (Limacina helicina). At locations with intermediate ΩA (1.5-2.5) the variability seen in L. helicina shell condition might be affected by food availability more than ΩA. I examined sinking and swimming behaviors in the laboratory in order to investigate a possible fitness effect of ocean acidification on pteropods. The sinking rates of L. retroversa from elevated CO2 treatments were slower in conjunction with worsened shell condition. These changes could increase their vulnerability to predators in the wild. Swimming ability was mostly unchanged by elevated CO2 after experiments that were up to three weeks in duration. I used a long-term dataset of pteropods in the Gulf of Maine to directly test whether there has been a population effect of environmental change over the past several decades. I did not observe a population decline between 1977 and 2015, and L. retroversa abundance in the fall actually increased over the time series. Analysis of the habitat use of L. retroversa revealed seasonal associations with temperature, salinity, and bottom depths. The combination of laboratory experiments and field surveys helped to address gaps in knowledge about pteropod ecology and improve our understanding of the effects of ocean acidification on pteropods.

Continue reading ‘Pteropod shell condition, locomotion, and long-term population trends in the context of ocean acidification and environmental change’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,013,357 hits


Ocean acidification in the IPCC AR5 WG II

OUP book