Posts Tagged 'crustaceans'

Impact of climate change on direct and indirect species interactions

Recent marine climate change research has largely focused on the response of individual species to environmental changes including warming and acidification. The response of communities, driven by the direct effects of ocean change on individual species as well the cascade of indirect effects, has received far less study. We used several rocky intertidal species including crabs, whelks, juvenile abalone, and mussels to determine how feeding, growth, and interactions between species could be shifted by changing ocean conditions. Our 10 wk experiment revealed many complex outcomes which highlight the unpredictability of community-level responses. Contrary to our predictions, the largest impact of elevated CO2 was reduced crab feeding and survival, with a pH drop of 0.3 units. Surprisingly, whelks showed no response to higher temperatures or CO2 levels, while abalone shells grew 40% less under high CO2 conditions. Massive non-consumptive effects of crabs on whelks showed how important indirect effects can be in determining climate change responses. Predictions of species outcomes that account solely for physiological responses to climate change do not consider the potentially large role of indirect effects due to species interactions. For strongly linked species (e.g. predator-prey or competitor relationships), the indirect effects of climate change are much less known than direct effects, but may be far more powerful in reshaping future marine communities.

Continue reading ‘Impact of climate change on direct and indirect species interactions’

Is the chemical composition of biomass the agent by which ocean acidification influences on zooplankton ecology?

Climate change impacts prevail on marine pelagic systems and food webs, including zooplankton, the key link between primary producers and fish. Several metabolic, physiological, and ecological responses of zooplankton species and communities to global stressors have recently been tested, with an emerging field in assessing effects of combined climate-related factors. Yet, integrative studies are needed to understand how ocean acidification interacts with global warming, mediating zooplankton body chemistry and ecology. Here, we tested the combined effects of global warming and ocean acidification, predicted for the year 2100, on a community of calanoid copepods, a ubiquitously important mesozooplankton compartment. Warming combined with tested pCO2 increase affected metabolism, altered stable isotope composition and fatty acid contents, and reduced zooplankton fitness, leading to lower copepodite abundances and decreased body sizes, and ultimately reduced survival. These interactive effects of temperature and acidification indicate that metabolism-driven chemical responses may be the underlying correlates of ecological effects observed in zooplankton communities, and highlight the importance of testing combined stressors with a regression approach when identifying possible effects on higher trophic levels.

Continue reading ‘Is the chemical composition of biomass the agent by which ocean acidification influences on zooplankton ecology?’

Effects of seawater pH and temperature on foraging behavior of the Japanese stone crab Charybdis japonica

We examined prey selection and foraging behaviors of the crab Charybdis japonica exposed to four combinations of pH (7.3 and 8.1) and temperature (18 °C and 25 °C). The order of prey selection by C. japonica was Potamocorbula laevis, Ruditapes philippinarum, Tegillarca granosa and Mactra veneriformis. Under high pCO2, times for searching, breaking, eating and handling were all significantly longer than those at the normal pCO2, and the prey profitability and predation rate under high pCO2 were significantly lower than normal pCO2. Moreover, temperature significantly influenced the foraging behaviors, but its effects were not as strong as those of pH; times for searching, eating and handling under high temperature were significantly lower than the low temperature, and the prey predation rates under high temperature was significantly higher than low temperature. In conclusion, high pCO2 negatively affected the foraging behavior, but high temperature actively stimulated the foraging behaviors of crabs.

Continue reading ‘Effects of seawater pH and temperature on foraging behavior of the Japanese stone crab Charybdis japonica’

Pontellid copepods, Labidocera spp., affected by ocean acidification: A field study at natural CO2 seeps

CO2 seeps in coral reefs were used as natural laboratories to study the impacts of ocean acidification on the pontellid copepod, Labidocera spp. Pontellid abundances were reduced by ∼70% under high-CO2 conditions. Biological parameters and substratum preferences of the copepods were explored to determine the underlying causes of such reduced abundances. Stage- and sex-specific copepod lengths, feeding ability, and egg development were unaffected by ocean acidification, thus changes in these physiological parameters were not the driving factor for reduced abundances under high-CO2 exposure. Labidocera spp. are demersal copepods, hence they live amongst reef substrata during the day and emerge into the water column at night. Deployments of emergence traps showed that their preferred reef substrata at control sites were coral rubble, macro algae, and turf algae. However, under high-CO2 conditions they no longer had an association with any specific substrata. Results from this study indicate that even though the biology of a copepod might be unaffected by high-CO2, Labidocera spp. are highly vulnerable to ocean acidification.

Continue reading ‘Pontellid copepods, Labidocera spp., affected by ocean acidification: A field study at natural CO2 seeps’

Boosted food web productivity through ocean acidification collapses under warming

Future climate is forecast to drive bottom-up (resource driven) and top-down (consumer driven) change to food web dynamics and community structure. Yet, our predictive understanding of these changes is hampered by an over-reliance on simplified laboratory systems centred on single trophic levels. Using a large mesocosm experiment, we reveal how future ocean acidification and warming modify trophic linkages across a three-level food web: that is, primary (algae), secondary (herbivorous invertebrates) and tertiary (predatory fish) producers. Both elevated CO2 and elevated temperature boosted primary production. Under elevated CO2, the enhanced bottom-up forcing propagated through all trophic levels. Elevated temperature, however, negated the benefits of elevated CO2 by stalling secondary production. This imbalance caused secondary producer populations to decline as elevated temperature drove predators to consume their prey more rapidly in the face of higher metabolic demand. Our findings demonstrate how anthropogenic CO2 can function as a resource that boosts productivity throughout food webs, and how warming can reverse this effect by acting as a stressor to trophic interactions. Understanding the shifting balance between the propagation of resource enrichment and its consumption across trophic levels provides a predictive understanding of future dynamics of stability and collapse in food webs and fisheries production.

Continue reading ‘Boosted food web productivity through ocean acidification collapses under warming’

Global proteome profiling of a marine copepod and the mitigating effect of ocean acidification on mercury toxicity after multigenerational exposure

Previously, we found that ocean acidification (OA) mitigates mercury (Hg) toxicity to marine copepod Tigriopus japonicus under multigenerational exposure (four generations, F0-F3). To determine the response mechanisms of T. japonicus against long-term exposure to OA and Hg pollution, we investigated the proteome of F3 copepods after multigenerational exposure to four conditions: pCO2 400 μatm + control; pCO2 1000 μatm + control; pCO2 400 μatm + 1.0 µg/L Hg; and pCO2 1000 μatm + 1.0 µg/L Hg. Functional enrichment analysis indicated that OA enhanced the copepod’s energy production mainly by increasing protein assimilation and proteolysis as a compensatory strategy, which explained its physiological resilience to reduced pH. Conversely, Hg treatment decreased many critical processes, including ferric iron binding, antioxidant activity, cellular homeostasis, and glutathione metabolism, and these toxic events could translate into higher-level responses, i.e., restrained reproduction in copepods. Importantly, the mediation of Hg toxicity in T. japonicus by OA could be explained by the enhanced lysosome-autophagy pathway proteomes that are responsible for repairing/removing damaged proteins/enzymes under stress. Overall, this study provided molecular insights into the response of T. japonicus to long-term exposure of OA and Hg, with a particular emphasis on the mitigating impact of CO2-driven acidification on Hg toxicity.

Continue reading ‘Global proteome profiling of a marine copepod and the mitigating effect of ocean acidification on mercury toxicity after multigenerational exposure’

Ocean acidification effects on mesozooplankton community development: Results from a long-term mesocosm experiment

Ocean acidification may affect zooplankton directly by decreasing in pH, as well as indirectly via trophic pathways, where changes in carbon availability or pH effects on primary producers may cascade up the food web thereby altering ecosystem functioning and community composition. Here, we present results from a mesocosm experiment carried out during 113 days in the Gullmar Fjord, Skagerrak coast of Sweden, studying plankton responses to predicted end-of-century pCO2 levels. We did not observe any pCO2 effect on the diversity of the mesozooplankton community, but a positive pCO2 effect on the total mesozooplankton abundance. Furthermore, we observed species-specific sensitivities to pCO2 in the two major groups in this experiment, copepods and hydromedusae. Also stage-specific pCO2 sensitivities were detected in copepods, with copepodites being the most responsive stage. Focusing on the most abundant species, Pseudocalanus acuspes, we observed that copepodites were significantly more abundant in the high-pCO2 treatment during most of the experiment, probably fuelled by phytoplankton community responses to high-pCO2 conditions. Physiological and reproductive output was analysed on P. acuspes females through two additional laboratory experiments, showing no pCO2 effect on females’ condition nor on egg hatching. Overall, our results suggest that the Gullmar Fjord mesozooplankton community structure is not expected to change much under realistic end-of-century OA scenarios as used here. However, the positive pCO2 effect detected on mesozooplankton abundance could potentially affect biomass transfer to higher trophic levels in the future.

Continue reading ‘Ocean acidification effects on mesozooplankton community development: Results from a long-term mesocosm experiment’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,001,108 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book