Posts Tagged 'crustaceans'

Adult Antarctic krill proves resilient in a simulated high CO2 ocean

Antarctic krill (Euphausia superba) have a keystone role in the Southern Ocean, as the primary prey of Antarctic predators. Decreases in krill abundance could result in a major ecological regime shift, but there is limited information on how climate change may affect krill. Increasing anthropogenic carbon dioxide (CO2) emissions are causing ocean acidification, as absorption of atmospheric CO2 in seawater alters ocean chemistry. Ocean acidification increases mortality and negatively affects physiological functioning in some marine invertebrates, and is predicted to occur most rapidly at high latitudes. Here we show that, in the laboratory, adult krill are able to survive, grow, store fat, mature, and maintain respiration rates when exposed to near-future ocean acidification (1000–2000 μatm pCO2) for one year. Despite differences in seawater pCO2 incubation conditions, adult krill are able to actively maintain the acid-base balance of their body fluids in near-future pCO2, which enhances their resilience to ocean acidification.

Continue reading ‘Adult Antarctic krill proves resilient in a simulated high CO2 ocean’

Quantifying sensitivity and adaptive capacity of shellfish in the Northern California Current Ecosystem to increasing prevalence of ocean acidification and hypoxia

The severity of carbonate chemistry changes from ocean acidification is predicted to increase greatly in the coming decades, with serious consequences for marine species-­ especially those reliant on calcium carbonate for structure and function (Fabry et al. 2008). The Northern California Current Ecosystem off the coast of US West Coast experiences seasonal variations in upwelling and downwelling patterns creating natural episodes of hypoxia and calcite/aragonite undersaturation, exacerbating global trends of increasing ocean acidification and hypoxia (OAH) (Chan et al. 2008) (Gruber et al. 2012). The goal of these experiments was to identify thresholds of tolerance and attempt to quantify a point at which variance in responses to stress collapses. This study focuses on two species: Cancer magister (Dungeness crab) and Haliotis rufescens (red abalone). These species were selected for this study based on their economic and ecological value, as well as their taxonomic differences. Respirometry was used as a proxy for metabolic activity at four different scenarios mimicking preindustrial, upwelling, contemporary upwelling, and distant future conditions by manipulating dissolved oxygen and inorganic carbon (DIC) concentrations. Both species showed a decrease in mean respiration rate as OAH stressors increase, including an effect in contemporary upwelling conditions. These results suggest that current exposure to ocean acidification (OA) and hypoxia do not confer resilience to these stressors for either taxa. In teasing apart the effects of OAH as multiple stressors, it was found that Dungeness crab response was more strongly driven by concentration of dissolved oxygen, while red abalone data suggested a strong interactive effect between OA and hypoxia. Not only did these two different taxa exhibit different responses to a multiple stressors, but the fact that the Dungeness crab were secondarily impacted by acidification could suggest that current management concerns may need to be focus more strongly on deoxygenation.

Continue reading ‘Quantifying sensitivity and adaptive capacity of shellfish in the Northern California Current Ecosystem to increasing prevalence of ocean acidification and hypoxia’

Sensitivity to near-future CO2 conditions in marine crabs depends on their compensatory capacities for salinity change

Marine crabs inhabit shallow coastal/estuarine habitats particularly sensitive to climate change, and yet we know very little about the diversity of their responses to environmental change. We report the effects of a rarely studied, but increasingly prevalent, combination of environmental factors, that of near-future pCO2 (~1000 µatm) and a physiologically relevant 20% reduction in salinity. We focused on two crab species with differing abilities to cope with natural salinity change, and revealed via physiological and molecular studies that salinity had an overriding effect on ion exchange in the osmoregulating shore crab, Carcinus maenas. This species was unaffected by elevated CO2, and was able to hyper-osmoregulate and maintain haemolymph pH homeostasis for at least one year. By contrast, the commercially important edible crab, Cancer pagurus, an osmoconformer, had limited ion-transporting capacities, which were unresponsive to dilute seawater. Elevated CO2 disrupted haemolymph pH homeostasis, but there was some respite in dilute seawater due to a salinity-induced metabolic alkalosis (increase in HCO3− at constant pCO2). Ultimately, Cancer pagurus was poorly equipped to compensate for change, and exposures were limited to 9 months. Failure to understand the full spectrum of species-related vulnerabilities could lead to erroneous predictions of the impacts of a changing marine climate.

Continue reading ‘Sensitivity to near-future CO2 conditions in marine crabs depends on their compensatory capacities for salinity change’

The absence of the pCO2 effect on dissolved 134Cs uptake in select marine organisms


• Prawns and scallops were exposed to dissolved 134Cs at three increasing pCO2.
• Increasing pCO2 had no effect on the uptake kinetics parameters whatever the species.
• Prawn concentrated ca. 10-fold more efficiently 134Cs than scallop at equilibrium.


Ocean acidification have been shown to not affect the capacity of bivalves to bioaccumulation 134Cs in their tissue; but as this was studied on only one species to date. There is therefore a need to verify if this holds true for other bivalve species or other marine invertebrates. The present short communication confirms that in the scallop Mimachlamys varia and the prawn Penaeus japonicus, two species that supposedly have a record to preferentially concentrates this radionuclide, that bioconcentration of 134Cs was shown not to be influenced by a decreasing pH (and thereby increasing seawater pCO2). Although the dissolved 134Cs was taken up in a similar manner under different pH values (8.1, 7.8, and 7.5) in both species, being described by a saturation state equilibrium model, the species displayed different bioconcentration capacities of 134Cs: CFss in the prawns was approximately 10-fold higher than in scallops. Such results suggest that the Cs bioconcentration capacity are mainly dependent of the taxa and that uptake processes are independent the physiological ones involved in the biological responses of prawns and scallops to ocean acidification.

Continue reading ‘The absence of the pCO2 effect on dissolved 134Cs uptake in select marine organisms’

Energy metabolism and survival of the juvenile recruits of the American lobster (Homarus americanus) exposed to a gradient of elevated seawater pCO2


• Responses were largely linear, traits being predictable across the pCO2 gradient.
• Oxygen consumption rates was not affected by elevated pCO2 levels.
• Exposure to elevated pCO2 increased mortality and intermoult period.
• Reduced aerobic capacity at high pCO2 suggested energy metabolism reorganisation.


The transition from the last pelagic larval stage to the first benthic juvenile stage in the complex life cycle of marine invertebrates, such as the American lobster Homarus americanus, a species of high economic importance, represents a delicate phase in these species development. Under future elevated pCO2 conditions, ocean acidification and other elevated pCO2 events can negatively affect crustaceans. This said their effects on the benthic settlement phase are virtually unknown. This study aimed to identify the effects of elevated seawater pCO2 on stage V American lobsters exposed to seven pCO2 levels. The survival, development time, metabolic and feeding rates, carapace composition, and mitochondrial function were investigated. Results suggested an increase in mortality, slower development and a reduction in aerobic capacity with increasing pCO2. Our study points to potential reduction in juvenile recruitment success as seawater pCO2 increases, thus foreshadowing important socio-economic repercussions for the lobster fisheries and industry.

Continue reading ‘Energy metabolism and survival of the juvenile recruits of the American lobster (Homarus americanus) exposed to a gradient of elevated seawater pCO2’

Vulnerability of juvenile hermit crabs to reduced seawater pH and shading


• Local impacts may potentially increase effects of global environmental changes.
• We assessed combined effects of reduced pH and shading caused by harbor structures.
• Reduced seawater pH and shading affected behavioral responses of hermit crabs.
• Multiple stressors induced high mortality and reduced growth.
• Maintenance of local populations may be impaired by the impact of both stressors.


Multiple simultaneous stressors induced by anthropogenic activities may amplify their impacts on marine organisms. The effects of ocean acidification, in combination with other anthropogenic impacts (apart from temperature) are poorly understood, especially in coastal regions. In these areas, shading caused by infrastructure development, such as harbor construction, may potentially interact with CO2-induced pH reduction and affect invertebrate populations. Here, we evaluated the effects of reduced pH (7.6) and shading (24h in darkness) on mortality, growth, calcification and displacement behavior to live predator (danger signal) and dead gastropod (resource availability signal) odors using juveniles of the hermit crab Pagurus criniticornis collected in Araçá Bay (São Paulo state, Southeastern Brazil). After a 98 day experimental period, both stressors had a significant interaction effect on mortality, and an additive effect on total growth. No difference in calcification was recorded among treatments, indicating that individuals were able to maintain calcification under reduced pH conditions. When exposed to odor of live predators, crab responses were only affected by shading. However, an interactive effect between both stressors was observed in response to gastropod odor, leading to reduced displacement behavior. This study shows how local disturbance impacts may enhance the effects of global environmental change on intertidal crustacean populations.

Continue reading ‘Vulnerability of juvenile hermit crabs to reduced seawater pH and shading’

Rapid bioerosion in a tropical upwelling coral reef

Coral reefs persist in an accretion-erosion balance, which is critical for understanding the natural variability of sediment production, reef accretion, and their effects on the carbonate budget. Bioerosion (i.e. biodegradation of substrate) and encrustation (i.e. calcified overgrowth on substrate) influence the carbonate budget and the ecological functions of coral reefs, by substrate formation/consolidation/erosion, food availability and nutrient cycling. This study investigates settlement succession and carbonate budget change by bioeroding and encrusting calcifying organisms on experimentally deployed coral substrates (skeletal fragments of Stylophora pistillata branches). The substrates were deployed in a marginal coral reef located in the Gulf of Papagayo (Costa Rica, Eastern Tropical Pacific) for four months during the northern winter upwelling period (December 2013 to March 2014), and consecutively sampled after each month. Due to the upwelling environmental conditions within the Eastern Tropical Pacific, this region serves as a natural laboratory to study ecological processes such as bioerosion, which may reflect climate change scenarios. Time-series analyses showed a rapid settlement of bioeroders, particularly of lithophagine bivalves of the genus Lithophaga/Leiosolenus (Dillwyn, 1817), within the first two months of exposure. The observed enhanced calcium carbonate loss of coral substrate (>30%) may influence seawater carbon chemistry. This is evident by measurements of an elevated seawater pH (>8.2) and aragonite saturation state (Ωarag >3) at Matapalo Reef during the upwelling period, when compared to a previous upwelling event observed at a nearby site in distance to a coral reef (Marina Papagayo). Due to the resulting local carbonate buffer effect of the seawater, an influx of atmospheric CO2 into reef waters was observed. Substrates showed no secondary cements in thin-section analyses, despite constant seawater carbonate oversaturation (Ωarag >2.8) during the field experiment. Micro Computerized Tomography (μCT) scans and microcast-embeddings of the substrates revealed that the carbonate loss was primarily due to internal macrobioerosion and an increase in microbioerosion. This study emphasizes the interconnected effects of upwelling and carbonate bioerosion on the reef carbonate budget and the ecological turnovers of carbonate producers in tropical coral reefs under environmental change.

Continue reading ‘Rapid bioerosion in a tropical upwelling coral reef’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,123,905 hits


Ocean acidification in the IPCC AR5 WG II

OUP book