Posts Tagged 'BRcommunity'

The potential of kelp Saccharina japonica in shielding Pacific oyster Crassostrea gigas from elevated seawater pCO2 stress

Ocean acidification (OA) caused by elevated atmospheric CO2 concentration is predicted to have negative impacts on marine bivalves in aquaculture. However, to date, most of our knowledge is derived from short-term laboratory-based experiments, which are difficult to scale to real-world production. Therefore, field experiments, such as this study, are critical for improving ecological relevance. Due to the ability of seaweed to absorb dissolved carbon dioxide from the surrounding seawater through photosynthesis, seaweed has gained theoretical attention as a potential partner of bivalves in integrated aquaculture to help mitigate the adverse effects of OA. Consequently, this study investigates the impact of elevated pCO2 on the physiological responses of the Pacific oyster Crassostrea gigas in the presence and absence of kelp (Saccharina japonica) using in situ mesocosms. For 30 days, mesocosms were exposed to six treatments, consisting of two pCO2 treatments (500 and 900 μatm) combined with three biotic treatments (oyster alone, kelp alone, and integrated kelp and oyster aquaculture). Results showed that the clearance rate (CR) and scope for growth (SfG) of C. gigas were significantly reduced by elevated pCO2, whereas respiration rates (MO2) and ammonium excretion rates (ER) were significantly increased. However, food absorption efficiency (AE) was not significantly affected by elevated pCO2. The presence of S. japonica changed the daytime pHNBS of experimental units by ~0.16 units in the elevated pCO2 treatment. As a consequence, CR and SfG significantly increased and MO2 and ER decreased compared to C. gigas exposed to elevated pCO2 without S. japonica. These findings indicate that the presence of S. japonica in integrated aquaculture may help shield C. gigas from the negative effects of elevated seawater pCO2.

Continue reading ‘The potential of kelp Saccharina japonica in shielding Pacific oyster Crassostrea gigas from elevated seawater pCO2 stress’

Multiscale mechanical consequences of ocean acidification for cold-water corals

Ocean acidification is a threat to deep-sea corals and could lead to dramatic and rapid loss of the reef framework habitat they build. Weakening of structurally critical parts of the coral reef framework can lead to physical habitat collapse on an ecosystem scale, reducing the potential for biodiversity support. The mechanism underpinning crumbling and collapse of corals can be described via a combination of laboratory-scale experiments and mathematical and computational models. We synthesise data from electron back-scatter diffraction, micro-computed tomography, and micromechanical experiments, supplemented by molecular dynamics and continuum micromechanics simulations to predict failure of coral structures under increasing porosity and dissolution. Results reveal remarkable mechanical properties of the building material of cold-water coral skeletons of 462 MPa compressive strength and 45–67 GPa stiffness. This is 10 times stronger than concrete, twice as strong as ultrahigh performance fibre reinforced concrete, or nacre. Contrary to what would be expected, CWCs retain the strength of their skeletal building material despite a loss of its stiffness even when synthesised under future oceanic conditions. As this is on the material length-scale, it is independent of increasing porosity from exposure to corrosive water or bioerosion. Our models then illustrate how small increases in porosity lead to significantly increased risk of crumbling coral habitat. This new understanding, combined with projections of how seawater chemistry will change over the coming decades, will help support future conservation and management efforts of these vulnerable marine ecosystems by identifying which ecosystems are at risk and when they will be at risk, allowing assessment of the impact upon associated biodiversity.

Continue reading ‘Multiscale mechanical consequences of ocean acidification for cold-water corals’

Natural analogues in pH variability and predictability across the coastal Pacific estuaries: extrapolation of the increased oyster dissolution under increased pH amplitude and low predictability related to ocean acidification

Coastal-estuarine habitats are rapidly changing due to global climate change, with impacts influenced by the variability of carbonate chemistry conditions. However, our understanding of the responses of ecologically and economically important calcifiers to pH variability and temporal variation is limited, particularly with respect to shell-building processes. We investigated the mechanisms driving biomineralogical and physiological responses in juveniles of introduced (Pacific; Crassostrea gigas) and native (Olympia; Ostrea lurida) oysters under flow-through experimental conditions over a six-week period that simulate current and future conditions: static control and low pH (8.0 and 7.7); low pH with fluctuating (24-h) amplitude (7.7 ± 0.2 and 7.7 ± 0.5); and high-frequency (12-h) fluctuating (8.0 ± 0.2) treatment. The oysters showed physiological tolerance in vital processes, including calcification, respiration, clearance, and survival. However, shell dissolution significantly increased with larger amplitudes of pH variability compared to static pH conditions, attributable to the longer cumulative exposure to lower pH conditions, with the dissolution threshold of pH 7.7 with 0.2 amplitude. Moreover, the high-frequency treatment triggered significantly greater dissolution, likely because of the oyster’s inability to respond to the unpredictable frequency of variations. The experimental findings were extrapolated to provide context for conditions existing in several Pacific coastal estuaries, with time series analyses demonstrating unique signatures of pH predictability and variability in these habitats, indicating potentially benefiting effects on fitness in these habitats. These implications are crucial for evaluating the suitability of coastal habitats for aquaculture, adaptation, and carbon dioxide removal strategies.

Continue reading ‘Natural analogues in pH variability and predictability across the coastal Pacific estuaries: extrapolation of the increased oyster dissolution under increased pH amplitude and low predictability related to ocean acidification’

Understanding the impacts of environment and parasitism on Eastern oyster (Crassostrea virginica) vulnerability to ocean acidification

The global process of ocean acidification caused by the absorption of increased atmospheric carbon dioxide decreases the concentration of carbonate ions and reduces the associated seawater saturation state (ΩCaCO3) – making it more energetically costly for marine calcifying organisms to build their shells or skeletons. Bivalves are particularly vulnerable to the adverse effects of ocean acidification on calcification, and they inhabit estuaries and coastal zones – regions most susceptible to ocean acidification. However, the response of an individual to elevated pCO2 can depend on the carbonate chemistry dynamics of its current environment and the environment of its parents. Additionally, an organism’s response to ocean acidification can depend on its ability to control the chemistry at the site of calcification. Biotic and abiotic stressors can modify bivalves’ control of calcifying fluid chemistry – known as extrapallial fluid (EPF). Understanding the responses of bivalves – which are foundation species – to ocean acidification is essential for predicting the impacts of oceanic change on marine communities. This dissertation uses a culturally, ecologically, and economically important bivalve in the northwest Atlantic – the Eastern oyster (Crassostrea virginica) – to explore the effects of environment and species interactions on responses to elevated pCO2.

Chapter 2 describes a field study that characterized diurnal and seasonal carbonate chemistry dynamics of two estuaries in the Gulf of Maine that support Eastern oyster populations. The estuaries were monitored at high temporal resolution (half-hourly) over four years (2018-2021) using pH and conductivity loggers. Measured pH, salinity, and temperature were used to calculate carbonate chemistry parameters. Both estuaries exhibited strong seasonal and diurnal fluctuations in carbonate chemistry. They also experienced pCO2 values that greatly exceeded current atmospheric carbon dioxide levels and those projected for the year 2100.

Chapter 3 describes a laboratory experiment that examined the capacity of intergenerational exposure to mitigate the adverse effects of ocean acidification on larval growth, shell morphology, and survival. Adult oysters were cultured in control or elevated pCO2 conditions for 30 days then crossed using a North Carolina II cross design. Larvae were grown for three days under control and elevated pCO2 conditions. Intergenerational exposure to elevated pCO2 conditions benefited early larval growth and shell morphology, but not survival. However, parental exposure was insufficient to completely counteract the adverse effects of the elevated pCO2 treatment on shell formation and survival.

Chapter 4 describes a laboratory experiment that examined the interplay between ocean acidification and parasite-host dynamics. Eastern oysters infested and not infested with bioeroding sponge (Cliona sp.) were cultured under three pCO2 conditions (539, 1040, 3294 ppm) and two temperatures (23, 27˚C) for 70 days to assess oyster control of EPF chemistry, growth, and survival. Bioeroding sponge infestation and elevated pCO2 reduced oyster net calcification and EPF pH but did not affect condition or survival. Infested oyster EPF pH was consistently lower than seawater pH, while EPF dissolved inorganic carbon was consistently elevated relative to seawater. These findings suggested that infested oysters effectively precipitated repair shell to prevent seawater intrusion into extrapallial fluid through bore holes across all treatments.

Chapter 5 characterizes the concentration of a suite of 56 elements normalized to calcium in EPF and shell of Crassostrea virginica grown under three pCO2 conditions (570, 990, 2912 ppm) and sampled at four timepoints (days 2, 9, 79, 101) to assess effects of pCO2 on organismal control of EPF and shell elemental composition and EPF-to-shell elemental partitioning. Elevated pCO2 significantly influenced the relative abundance of elements in the EPF (29) and shell (13) and altered EPF-to-shell elemental partitioning for 45 elements. Importantly, elevated pCO2 significantly influenced the concentration of several elements in C. virginica shell that are used in other biogenic carbonates as paleo-proxies for other environmental parameters. This result suggests that elevated pCO2 could influence the accuracy of paleo reconstructions.

Overall, this dissertation provides insights that can help improve our understanding of past, present, and future ocean environments. Understanding current local carbonate chemistry dynamics and the capacity for C. virginica to acclimate intergenerationally to elevated pCO2 can inform site and stock selection for aquaculture and restoration efforts. Studying parasite-host environment interactions provides critical insights into the potential for parasitism to alter responses to future ocean acidification. Finally, exploring the impact of elevated pCO2 on elemental composition of EPF and shell allowed us to understand better biomineralization processes, identify potential proxies for seawater pCO2 in bivalves, and offer insights that could help improve the accuracy of paleo reconstructions.

Continue reading ‘Understanding the impacts of environment and parasitism on Eastern oyster (Crassostrea virginica) vulnerability to ocean acidification’

Effects of seawater pCO2 on the skeletal morphology of massive Porites spp. corals

Ocean acidification alters the dissolved inorganic carbon chemistry of seawater and can reduce the calcification rates of tropical corals. Here we explore the effect of altering seawater pCO2 on the skeletal morphology of 4 genotypes of massive Porites spp. which display widely different calcification rates. Increasing seawater pCO2 causes significant changes in in the skeletal morphology of all Porites spp. studied regardless of whether or not calcification was significantly affected by seawater pCO2. Both the median calyx size and the proportion of skeletal surface occupied by the calices decreased significantly at 750 µatm compared to 400 µatm indicating that polyp size shrinks in this genus in response to ocean acidification. The coenosteum, connecting calices, expands to occupy a larger proportion of the coral surface to compensate for this decrease in calyx area. At high seawater pCO2 the spines deposited at the skeletal surface became more numerous and the trabeculae (vertical skeletal pillars) became significantly thinner in 2 of the 4 genotypes. The effect of high seawater pCO2 is most pronounced in the fastest growing coral and the regular placement of trabeculae and synapticulae is disturbed in this genotype resulting in a skeleton that is more randomly organised. The study demonstrates that ocean acidification decreases the polyp size and fundamentally alters the architecture of the skeleton in this major reef building species from the Indo-Pacific Ocean.

Continue reading ‘Effects of seawater pCO2 on the skeletal morphology of massive Porites spp. corals’

Adaptive potential of coastal invertebrates to environmental stressors and climate change

Climate change presents multiple stressors that are impacting marine life. As carbon dioxide emissions continue to increase in the atmosphere, atmospheric and sea water temperatures increase. In addition, more carbon dioxide is absorbed into the oceans, reducing pH and aragonite saturation state, resulting in ocean acidification (OA). Tightly coupled with OA is hypoxia due to deep stratified sea water becoming increasingly acidified and deoxygenated. The effects of these climate stressors have been studied in detail for only a few marine animal models. However, there are still many taxa and developmental stages in which we know very little about the impacts. Using genomic techniques, we examine the adaptive potential of three local marine invertebrates under three different climate stressors: marine disease exacerbated by thermal stress, OA, and combined stressors OA with hypoxia (OAH). As sea water temperatures rise, the prevalence of marine diseases increases, as seen in the sea star wasting syndrome (SSWS). The causation of SSWS is still widely debated; however reduced susceptibility to SSWS could aid in understanding disease progression. By examining genetic variation in Pisaster ochraceous collected during the SSWS outbreak, we observed weak separation between symptomatic and asymptomatic individuals. OA has been widely studied in many marine organisms, including Crassostrea gigas. However, limited studies have parsed the effects of OA during settlement, with no studies assessing the functionality of settlement and how it is impacted by OA. We investigated the effects of OA on settlement and gene expression during the transition from larval to juvenile stages in Pacific oysters. While OA and hypoxia are common climate stressors examined, the combined effects have scarcely examined. Further, the impacts of OAH have been narrowly focused on a select few species, with many economically important organisms having no baseline information on how they will persist as OAH severity increases. To address these gaps in our knowledge, we measured genetic variation in metabolic rates during OA for the species Haliotis rufescens to assess their adaptive potential through heritability measurements. We discuss caveats and considerations when utilizing similar heritability estimate methods for other understudied organisms. Together, these studies will provide novel information on the biological responses and susceptibility of difference coastal species to stressors associated with global climate change. These experiments provide information on both the vulnerability of current populations and their genetic potential for adaptation to changing ocean conditions.

Continue reading ‘Adaptive potential of coastal invertebrates to environmental stressors and climate change’

Effect of temperature and pH on the Millepora alcicornis and Mussismilia harttii corals in light of a spectral reflectance response

The increase in carbon dioxide (CO2) atmospheric levels contributes to the rise in temperature and ocean acidification; consequently, it directly impacts coral reefs. The increase in seawater temperature is the primary factor that causes the collapse of coral-algal symbiosis, which can be followed by coral death and, generally, ocean acidification impairs biogenic calcification and promotes dissolution of carbonate substrata. These harmful effects on corals associated with the continuous increase in CO2 atmospheric levels raise widespread concerns about the coral reef decline, intensifying the efforts to understand/monitor their effects on these organisms. The objective of this study was to evaluate the physiological effect of temperature increase, water acidification (i.e. decrease in pH), and their effects combined (temperature increase with water acidification), through the reflectance analyses and maximum photosynthetic capacity of zooxanthellae (Fv/Fm) in two coral species: Millepora alcicornis and Mussismilia harttii. Fragments of four large colonies of each specie were collected, fragmented, and submitted to four different treatments for 15 days: (i) control treatment (under identical temperature and pH conditions observed in the sampling seawater site), (ii) temperature treatment (with an increase temperature of around ≅2ºC); (iii) water acidification treatment (with a decrease of nearly 0.3 in pH); and (iv) a treatment of combined effects from water temperature rising and acidification. Spectral reflectance and Fv/Fm were measured from samples of these species in a marine mesocosm. Data of reflectance, first and second-order derivative, area under the curve, full width at half maximum (FWHM), depth values and the Fv/Fm were used to classify the coral species and treatments through the linear discriminant analysis (LDA). Coral samples were exposed to the increased temperature bleached, whilst decreased pH caused a slight reduction in reflectance albedo with minimal effects on Fv/Fm. The combined factors (treatment iv) triggered a bleaching response, presenting spectral reflectance and colouring patterns similar to those observed in bleached corals, especially for M. alcicornis. The two-way ANOVA indicated statistically meaningful spectral differences between treatments for the second-order derivatives at 634 nm and for Fv/Fm values. However, there was no statistically meaningful interaction effect due to the treatment type and coral species response for the second-order derivative at 670 nm and to the Fv/Fm values. LDA classified the corals’ species and the corals in different treatment, using their spectral responses and Fv/Fm results, with high accuracy (96.7% and 73.3%, respectively), reinforcing its application for coral physiology evaluation and species classification. The control and combined groups achieved the best classification scores, with only one misclassification.

Continue reading ‘Effect of temperature and pH on the Millepora alcicornis and Mussismilia harttii corals in light of a spectral reflectance response’

Multigenerational life-history responses to pH in distinct populations of the copepod Tigriopus californicus

Intertidal zones are highly dynamic and harsh habitats: organisms that persist there must face many stressors, including drastic changes in seawater pH, which can be strongly influenced by biological processes. Coastal ecosystems are heterogeneous in space and time, and populations can be exposed to distinct selective pressures and evolve different capacities for acclimation to changes in pH. Tigriopus californicus is a harpacticoid copepod found in high-shore rock pools on the west coast of North America. It is a model system for studying population dynamics in diverse environments, but little is known about its responses to changes in seawater pH. I quantified the effects of pH on the survivorship, fecundity, and development of four T. californicus populations from San Juan Island, Washington, across three generations. For all populations and generations, copepod cultures had lower survivorship and delayed development under extended exposure to higher pH treatments (pH 7.5 and pH 8.0), whereas cultures maintained in lower pH (7.0) displayed stable population growth over time. Reciprocal transplants between treatments demonstrated that these pH effects were reversible. Life histories were distinct between populations, and there were differences in the magnitudes of pH effects on development and culture growth that persisted through multiple generations. These results suggest that T. californicus might not have the generalist physiology that might be expected of an intertidal species, and it could be adapted to lower average pH conditions than those that occur in adjacent open waters.

Continue reading ‘Multigenerational life-history responses to pH in distinct populations of the copepod Tigriopus californicus’

Mangrove macroalgae increase their growth under ocean acidification: a study with Bostrychia (Rhodophyta) haplotypes from different biogeographic provinces

Increasing oceanic CO2 has caused a decrease in oceanic pH, a process termed ocean acidification (OA). OA may benefit fleshy macroalgae due to the increased availability of inorganic carbon sources for photosynthesis since they are tolerant of decreases in pH. In this study, we analyzed multiple physiological responses of Bostrychia montagnei and Bostrychia calliptera from two biogeographic provinces of Brazil (Tropical Southwestern Atlantic [TSA] and Warm Temperate Southwestern Atlantic [WTSA]) after culturing them at a set of bioreactors in three pH levels (7.2, 7.6, and 8.0). Two pH were decreased by CO2 enrichment into the culture medium. Molecular analyses using plastidial (rbcL-3P) and mitochondrial (COI-5P) DNA markers were also performed to identify genetic divergences between macroalgae from TSA and WTSA. Molecular evidence of COI-5P marker demonstrated that the specimens of both B. montagnei and B. calliptera from TSA and WTSA constitute different haplotypes, with a strong segregation between them. Macroalgae from both localities increased their growth in treatments of decreased pH with increased CO2 availability. Overall, physiological responses of the algae were not negatively affected by decreased pH. B. montagnei from TSA increased its polysaccharide and allophycocyanin content at pH 7.2, and B. montagnei from WTSA increased its low molecular weight carbohydrate content at pH 7.2 as well. Antioxidant activity — a proxy for physiological stress — was not affected by decreased pH. Our study indicates that haplotypes of B. montagnei and B. calliptera from TSA and WTSA can be relevant to CO2 sequestration in mangroves once they are tolerant of decreased pH and increase their growth under increased CO2 availability.

Continue reading ‘Mangrove macroalgae increase their growth under ocean acidification: a study with Bostrychia (Rhodophyta) haplotypes from different biogeographic provinces’

Potential resilience to ocean acidification of benthic foraminifers living in Posidonia oceanica meadows: the case of the shallow venting site of Panarea

This research shows the results regarding the response to acidic condition of the sediment and Posidonia foraminiferal assemblages collected around the Panarea Island. The Aeolian Archipelago represents a natural laboratory and a much-promising study site for multidisciplinary marine research (carbon capture and storage, geochemistry of hydrothermal fluids and ocean acidification vs. benthic and pelagic organisms). The variability and the complexity of the interaction of the ecological factors characterizing extreme environments such as shallow hydrothermal vents did not allow us to carry out a real pattern of biota responses in situ, differently from those observed under controlled laboratory conditions. However, the study provides new insights into foraminiferal response to increasing ocean acidification (OA) in terms of biodiversity, faunal density, specific composition of the assemblages and morphological variations of the shells. The study highlights how the foraminiferal response to different pH conditions can change depending on different environmental conditions and microhabitats (sediments, Posidonia leaves and rhizomes). Indeed, mineral sediments were more impacted by acidification, whereas Posidonia microhabitats, thanks to their buffer effect, can offer “refugia” and more mitigated acidic environment. At species level, rosalinids and agglutinated group represent the most abundant taxa showing the most specific resilience and capability to face acidic conditions.

Continue reading ‘Potential resilience to ocean acidification of benthic foraminifers living in Posidonia oceanica meadows: the case of the shallow venting site of Panarea’

Differential responses of dominant and rare epiphytic bacteria from a submerged macrophyte to elevated CO2

Epiphytic bacteria develop complex interactions with their host macrophytes and play an important role in the ecological processes in freshwater habitats. However, how dominant and rare taxa respond to elevated atmospheric CO2 remains unclear. A manipulated experiment was carried out to explore the effects of elevated CO2 on the diversity or functional characteristics of leaf epiphytic dominant and rare bacteria from a submerged macrophyte. Three levels (high, medium, normal) of dissolved inorganic carbon (DIC) were applied to the overlying water. The physicochemical properties of the overlying water were measured. Elevated atmospheric CO2 significantly decreased the pH and dissolved oxygen (DO) of overlying water. Proteobacteria, Cyanobacteria, Bacteroidetes, Planctomycetes, and Actinobacteria are the dominant phyla of leaf epiphytic bacteria from Myriophyllum spicatum, occupying over 90% of the accumulated relative abundances. The aquatic DIC level and further pH significantly drove the epiphytic community composition differences among the three DIC levels. For dominant epiphytic bacteria, the functional potential of nutrient processes and mutualistic relationships were strongly affected by a high DIC level, while responses of rare epiphytic bacteria were more related to trace element processes, pathogens, and defense strategies under a high DIC level. Our results showed the responses of epiphytic bacteria to elevated CO2 varied across dominant and rare taxa.

Continue reading ‘Differential responses of dominant and rare epiphytic bacteria from a submerged macrophyte to elevated CO2’

Effects of ocean acidification on Lythrypnus dalli reproductive output and behavior

Reproduction in fishes is an energetically costly but vital process that is important to nearshore fisheries and proper ecosystem functioning. Successful fish reproduction is generally limited to a narrow breadth of specific environmental conditions, and variation in these conditions may affect the ability of fish to allocate energy towards reproduction. In particular, ocean acidification (OA) is generally assumed to be a major threat to fish reproduction, but past studies on the effects of OA have produced variable results. To examine how OA affects bluebanded goby (Lythrypnus dalli) reproduction, female reproductive output and male reproductive behaviors were quantified under two experimental treatments that represent differences between present-day (ambient) and future OA (decreased by 0.2 pH units) conditions. To do this, sexually mature bluebanded gobies were placed in laboratory mesocosms for continuous seven-day trials and allowed to reproduce in artificial nests. Four artificial nests were placed in each of the four mesocosms to provide fish with similar nesting habitats to encourage reproduction. Each mesocosm included similar fish size structures and numbers of female gobies to control for any size- or sex-dependent responses. Male reproductive behavior was quantified daily through visual assessment of their movement patterns within each mesocosm. Female reproductive output was quantified by checking the nests for the presence of eggs, which were photographed to evaluate egg quantity, size, and development. Results indicate that future OA conditions did not significantly affect any of the reproducti on metrics examined in this study. These results suggest that future changes in environmental factors such as seawater pH may not have dramatic effects on the reproductive output and behavior of bluebanded gobies.

Continue reading ‘Effects of ocean acidification on Lythrypnus dalli reproductive output and behavior’

Is the relative thickness of ammonoid septa influenced by ocean acidification, phylogenetic relationships and palaeogeographic position?

The impact of increasing atmospheric CO2 and the resulting decreasing pH of seawater are in the focus of current environmental research. These factors cause problems for marine calcifiers such as reduced calcification rates and the dissolution of calcareous skeletons. While the impact on recent organisms is well established, little is known about long-term evolutionary consequences. Here, we assessed whether ammonoids reacted to environmental change by changing septal thickness. We measured the septal thickness of ammonoid phragmocones through ontogeny in order to test the hypothesis that atmospheric pCO2, seawater pH and other factors affected aragonite biomineralisation in ammonoids. Particularly, we studied septal thickness of ammonoids before and after the ocean acidification event in the latest Triassic until the Early Cretaceous. Early Jurassic ammonoid lineages had thinner septa relative to diameter than their Late Triassic relatives, which we tentatively interpret as consequence of a positive selection for reduced shell material as an evolutionary response to this ocean acidification event. This response was preserved within several lineages among the Early Jurassic descendants of these ammonoids. By contrast, we did not find a significant correlation between septal thickness and long-term atmospheric pCO2 or seawater pH, but we discovered a correlation with palaeolatitude.

Continue reading ‘Is the relative thickness of ammonoid septa influenced by ocean acidification, phylogenetic relationships and palaeogeographic position?’

CO2 induced seawater acidification impacts survival and development of European eel embryos

Fish embryos may be vulnerable to seawater acidification resulting from anthropogenic carbon dioxide (CO2) emissions or from excessive biological CO2 production in aquaculture systems. This study investigated CO2 effects on embryos of the European eel (Anguilla anguilla), a catadromous fish that is considered at risk from climate change and that is targeted for hatchery production to sustain aquaculture of the species. Eel embryos were reared in three independent recirculation systems with different pH/CO2 levels representing “control” (pH 8.1, 300 μatm CO2), end-of-century climate change (“intermediate”, pH 7.6, 900 μatm CO2) and “extreme” aquaculture conditions (pH 7.1, 3000 μatm CO2). Sensitivity analyses were conducted at 4, 24, and 48 hours post-fertilization (hpf) by focusing on development, survival, and expression of genes related to acute stress response (crhr1crfr2), stress/repair response (hsp70hsp90), water and solute transport (aqp1aqp3), acid-base regulation (nkcc1ancccar15), and inhibitory neurotransmission (GABAAα6bGabra1). Results revealed that embryos developing at intermediate pH showed similar survival rates to the control, but egg swelling was impaired, resulting in a reduction in egg size with decreasing pH. Embryos exposed to extreme pH had 0.6-fold decrease in survival at 24 hpf and a 0.3-fold change at 48 compared to the control. These observed effects of acidification were not reflected by changes in expression of any of the here studied genes. On the contrary, differential expression was observed along embryonic development independent of treatment, indicating that the underlying regulating systems are under development and that embryos are limited in their ability to regulate molecular responses to acidification. In conclusion, exposure to predicted end-of-century ocean pCO2 conditions may affect normal development of this species in nature during sensitive early life history stages with limited physiological response capacities, while extreme acidification will negatively influence embryonic survival and development under hatchery conditions.

Continue reading ‘CO2 induced seawater acidification impacts survival and development of European eel embryos’

Kelp (Saccharina latissima) mitigates coastal ocean acidification and increases the growth of North Atlantic bivalves in lab experiments and on an oyster farm

Coastal zones can be focal points of acidification where the influx of atmospheric CO2 can be compounded by additional sources of acidity that may collectively impair calcifying organisms. While the photosynthetic action of macrophytes may buffer against coastal ocean acidification, such activity has not been well-studied, particularly among aquacultured seaweeds. Here, we report on field and laboratory experiments performed with North Atlantic populations of juvenile hard clams (Mercenaria mercenaria), eastern oysters (Crassostrea virginica), and blue mussels (Mytilus edulis) grown with and without increased CO2 and with and without North Atlantic kelp (Saccharina latissima) over a range of aquaculture densities (0.3 – 2 g L-1). In all laboratory experiments, exposure to elevated pCO2 (>1,800 µatm) resulted in significantly reduced shell- and/or tissue-based growth rates of bivalves relative to control conditions. This impairment was fully mitigated when bivalves were exposed to the same acidification source but also co-cultured with kelp. Saturation states of aragonite were transformed from undersaturated to saturated in the acidification treatments with kelp present, while the acidification treatments remained undersaturated. In a field experiment, oysters grown near aquacultured kelp were exposed to higher pH waters and experienced significantly faster shell and tissue based growth rates compared to individuals grown at sites away from kelp. Collectively, these results suggest that photosynthesis by S. latissima grown at densities associated with aquaculture increased pH and decreased pCO2, fostering a carbonate chemistry regime that maximized the growth of juvenile bivalves. As S. latissima has been shown to benefit from increased CO2, growing bivalves and kelp together under current or future acidification scenarios may be a synergistically beneficial integrated, multi-trophic aquaculture approach.

Continue reading ‘Kelp (Saccharina latissima) mitigates coastal ocean acidification and increases the growth of North Atlantic bivalves in lab experiments and on an oyster farm’

The coral reef-dwelling Peneroplis spp. shows calcification recovery to ocean acidification conditions

Large Benthic Foraminifera are a crucial component of coral-reef ecosystems, which are currently threatened by ocean acidification. We conducted culture experiments to evaluate the impact of low pH on survival and test dissolution of the symbiont-bearing species Peneroplis spp., and to observe potential calcification recovery when specimens are placed back under reference pH value (7.9). We found that Peneroplis spp. displayed living activity up to 3 days at pH 6.9 (Ωcal < 1) or up to 1 month at pH 7.4 (Ωcal > 1), despite the dark and unfed conditions. Dissolution features were observed under low Ωcal values, such as changes in test density, peeled extrados layers, and decalcified tests with exposed organic linings. A new calcification phase started when specimens were placed back at reference pH. This calcification’s resumption was an addition of new chambers without reparation of the dissolved parts, which is consistent with the porcelaneous calcification pathway of Peneroplis spp. The most decalcified specimens displayed a strong survival response by adding up to 8 new chambers, and the contribution of food supply in this process was highlighted. These results suggest that porcelaneous LBF species have some recovery abilities to short exposure (e.g., 3 days to 1 month) to acidified conditions. However, the geochemical signature of trace elements in the new calcite was impacted, and the majority of the new chambers were distorted and resulted in abnormal tests, which might hinder the specimens’ reproduction and thus their survival on the long term.

Continue reading ‘The coral reef-dwelling Peneroplis spp. shows calcification recovery to ocean acidification conditions’

Characterization factors for ocean acidification impacts on marine biodiversity

Rising greenhouse gas emissions do not only accelerate climate change but also make the ocean more acidic. This applies above all to carbon dioxide (CO2). Lower ocean pH levels threaten marine ecosystems and especially strongly calcifying species. Impacts on marine ecosystem quality are currently underrepresented in life cycle assessments (LCAs). Here, we developed characterization factors for the life cycle impact assessment of ocean acidification. Our main contribution was developing new species sensitivity distributions (SSDs), from which we derived effect factors for different impact perspectives: Marginal, linear, and average changes for both the past and four future emission scenarios (RCP2.6, RCP4.5, RCP6.0, and RCP8.5). Based on a dataset that covered five taxa (corals, crustaceans, echinoderms, fishes, molluscs) and three climate zones, we showed significantly higher sensitivities for strongly calcifying than slightly calcifying taxa and in polar regions compared to tropical and temperate regions. Experimental duration, leading to acute, subchronic, or chronic toxicological endpoints, did not significantly affect the species sensitivities. With ocean acidification impacts still accelerating, the future-oriented average effects are higher than the marginal or past-oriented average effects. While our characterization factors are ready for use in LCA, we also point to opportunities for improvement in future developments.

Continue reading ‘Characterization factors for ocean acidification impacts on marine biodiversity’

Acidification impacts and acclimation potential of foraminifera

Ocean acidification is expected to negatively affect many ecologically important organisms. Here we explored the response of Caribbean benthic foraminiferal communities to naturally discharging low-pH waters similar to expected future projections for the end of the 21st century. At low-pH (~ 7.7 pH units), low calcite saturation, agglutinated and symbiont-bearing species were relatively more abundant, indicating higher resistance to potential carbonate chemistry changes. Diversity and other taxonomical metrics declined steeply with decreasing pH despite exposure of this ecosystem for millennia to low pH conditions, suggesting that tropical foraminifera communities will be negatively impacted under acidification scenarios SSP3-7.0 and SSP5-8.5. The species Archaias angulatus, a major contributor to sediment production in the Caribbean was able to calcify at conditions more extreme than those projected for the late 21st century (7.1 pH units), but the calcified tests were of lower density than those exposed to high-pH ambient conditions (7.96 pH units), indicating that reef foraminiferal carbonate budget might decrease. Smaller foraminifera were highly sensitive to decreasing pH and our results demonstrate their potential as indicators to monitor increasing OA conditions.

Continue reading ‘Acidification impacts and acclimation potential of foraminifera’

Assessment of paracetamol toxic effects under varying seawater pH conditions on the marine polychaete Hediste diversicolor using biochemical endpoints

Simple Summary

Context of climate change is being widely studied, nevertheless its effects in the toxicity of other contaminants have been poorly study. Particularly, the effects of ocean acidification on the modulation of pharmaceutical absorption and consequent effects, have not been extensively addressed before. In this study, we aimed to assess the effects of ocean acidification (specifically pH values of 8.2, 7.9, and 7.6) combined with paracetamol exposure (0, 30, 60, and 120 µg/L) on the polychaeta Hediste diversicolor. To do so, specific biomarkers were measured namely (CAT), glutathione S-transferases (GSTs), acetylcholinesterase (AChE), and cyclooxygenase (COX) activities, as well as thiobarbituric acid reactive substance (TBARS), were quantified to serve as ecotoxicological endpoints. Alterations of CAT, and GSTs activities, and TBARS levels indicate an alteration in redox balances. Differences in exposed pH levels indicate the possible modulation of the absorption of this pharmaceutical in ocean acidifications scenarios. Alterations in AChE were only observed following paracetamol exposure, not being altered by media pH. Hereby obtained results suggest that seawater acidification is detrimental to marine wildlife, since it may enhance toxic effects caused by environmental realistic concentrations of pharmaceuticals. This work is crucial to understand the potential effects of pharmaceuticals in a climate change scenario.

Abstract

Increasing atmospheric carbon dioxide (CO2) levels are likely to lower ocean pH values, after its dissolution in seawater. Additionally, pharmaceuticals drugs are environmental stressors due to their intrinsic properties and worldwide occurrence. It is thus of the utmost importance to assess the combined effects of pH decreases and pharmaceutical contamination, considering that their absorption (and effects) are likely to be strongly affected by changes in oceanic pH. To attain this goal, individuals of the marine polychaete Hediste diversicolor were exposed to distinct pH levels (8.2, 7.9, and 7.6) and environmentally relevant concentrations of the acidic drug paracetamol (PAR: 0, 30, 60, and 120 µg/L). Biomarkers such as catalase (CAT), glutathione S-transferases (GSTs), acetylcholinesterase (AChE), and cyclooxygenase (COX) activities, as well as peroxidative damage (through thiobarbituric acid reactive substance (TBARS) quantification), were quantified to serve as ecotoxicological endpoints. Data showed a general increase in CAT and a decrease in GST activities (with significant fluctuations according to the tested conditions of PAR and pH). These changes are likely to be associated with alterations of the redox cycle driven by PAR exposure. In addition, pH levels seemed to condition the toxicity caused by PAR, suggesting that the toxic effects of this drug were in some cases enhanced by more acidic conditions. An inhibition of AChE was observed in animals exposed to the highest concentration of PAR, regardless of the pH value. Moreover, no lipid peroxidation was observed in most individuals, although a significant increase in TBARS levels was observed for polychaetes exposed to the lowest pH. Finally, no alterations of COX activities were recorded on polychaetes exposed to PAR, regardless of the pH level. The obtained results suggest that seawater acidification is detrimental to marine wildlife, since it may enhance toxic effects caused by environmental realistic concentrations of acidic drugs, such as PAR. This work was crucial to evidence that ocean acidification, in the context of a global change scenario of increased levels of both atmospheric and oceanic CO2, is a key factor in understanding the putative enhanced toxicity of most pharmaceutical drugs that are of an acidic nature.

Continue reading ‘Assessment of paracetamol toxic effects under varying seawater pH conditions on the marine polychaete Hediste diversicolor using biochemical endpoints’

No evidence of altered relationship between diet and consumer fatty acid composition in a natural plankton community under combined climate drivers

Fatty acids (FA), especially polyunsaturated fatty acids (PUFA), are key biomolecules involved in immune responses, reproduction, and membrane fluidity. PUFA in marine environments are synthesized exclusively by primary producers. Therefore the FA composition of these organisms at the base of the food web (i.e., phytoplankton) and their primary consumers (i.e., zooplankton) are important determinants of the health and productivity of entire ecosystems as they are transferred to higher trophic levels. However, environmental conditions such as seawater pH and temperature, which are already changing in response to climate change and predicted to continue to change in the future, can affect the FA composition of phytoplankton and zooplankton at both the organismal and community level. During a 20 day mesocosm experiment, we tested the effect of ocean acidification alone and in combination with ocean warming on 1) the fatty acid composition of a natural prey community for zooplankton (i.e. phytoplankton and microzooplankton), 2) the fatty acid composition of zooplankton, and 3) the relationship between prey and consumer fatty acid compositions in coastal waters. Significant effects of the climate stressors were not detected in the fatty acid composition of the prey or the relationship between diet and consumer fatty acids. A significant decrease in C18:4n-3 (stearidonic acid) was observed in the zooplankton but not their diet, but understanding the mechanism behind this decrease and its potential biological implications requires further investigation. These results highlight the importance of multi-stressor investigations on dynamics and variability contained within natural coastal plankton communities.

Continue reading ‘No evidence of altered relationship between diet and consumer fatty acid composition in a natural plankton community under combined climate drivers’

  • Reset

Subscribe

OA-ICC Highlights


%d bloggers like this: