Posts Tagged 'BRcommunity'

Community context and pCO2 impact the transcriptome of the “helper” bacterium Alteromonas in co-culture with picocyanobacteria

Many microbial photoautotrophs depend on heterotrophic bacteria for accomplishing essential functions. Environmental changes, however, could alter or eliminate such interactions. We investigated the effects of changing pCO2 on gene transcription in co-cultures of 3 strains of picocyanobacteria (Synechococcus strains CC9311 and WH8102 and Prochlorococcus strain MIT9312) paired with the ‘helper’ bacterium Alteromonas macleodii EZ55. Co-culture with cyanobacteria resulted in a much higher number of up- and down-regulated genes in EZ55 than pCO2 by itself. Pathway analysis revealed significantly different transcription of genes involved in carbohydrate metabolism, stress response, and chemotaxis, with different patterns of up- or down-regulation in co-culture with different cyanobacterial strains. Gene transcription patterns of organic and inorganic nutrient transporter and catabolism genes in EZ55 suggested resources available in the culture media were altered under elevated (800 ppm) pCO2 conditions. Altogether, changing transcription patterns were consistent with the possibility that the composition of cyanobacterial excretions changed under the two pCO2 regimes, causing extensive ecophysiological changes in both members of the co-cultures. Additionally, significant downregulation of oxidative stress genes in MIT9312/EZ55 cocultures at 800 ppm pCO2 were consistent with a link between the predicted reduced availability of photorespiratory byproducts (i.e., glycolate/2PG) under this condition and observed reductions in internal oxidative stress loads for EZ55, providing a possible explanation for the previously observed lack of “help” provided by EZ55 to MIT9312 under elevated pCO2. If similar broad alterations in microbial ecophysiology occur in the ocean as atmospheric pCO2 increases, they could lead to substantially altered ecosystem functioning and community composition.

Continue reading ‘Community context and pCO2 impact the transcriptome of the “helper” bacterium Alteromonas in co-culture with picocyanobacteria’

Sea surface carbonate dynamics at reefs of Bolinao, Philippines: seasonal variation and fish mariculture-induced forcing

Coral reefs are vulnerable to global ocean acidification (OA) and local human activities will continue to exacerbate coastal OA. In Bolinao, Philippines, intense unregulated fish mariculture has resulted in regional eutrophication. In order to examine the coastal acidification associated with this activity and the impact on nearby coral reefs, water quality and carbonate chemistry parameters were measured at three reef sites, a mariculture site and an offshore, minimally impacted control site during both the wet and dry season. Additionally, benthic community composition was characterized at reef sites, and both autonomous carbonate chemistry sampling and high-frequency pH measurements were used to characterize fine-scale (diel) temporal variability. Water quality was found to be poorer at all reefs during the wet season, when there was stronger outflow of waters from the mariculture area. Carbonate chemistry parameters differed significantly across the reef flat and between seasons, with more acidic conditions occurring during the dry season and increased primary production suppressing further acidification during the wet season. Significant relationships of both total alkalinity (TA) and dissolved inorganic carbon (DIC) with salinity across all stations may imply outflow of acidified water originating from the mariculture area where pH values as low as 7.78 were measured. This apparent mariculture-induced coastal acidification was likely due to organic matter respiration as sustained mariculture will continue to deliver organic matter. While TA-DIC vector diagrams indicate greater contribution of net primary production, net calcification potential in the nearest reef to mariculture area may already be diminished. The two farther reefs, characterized by higher coral cover, indicates healthier ecosystem functioning. Here we show that unregulated fish mariculture activities can lead to localized acidification and impact reef health. As these conditions at times approximate those projected to occur globally due to OA, our results may provide insight into reef persistence potential worldwide. These results also underscore the importance of coastal acidification and indicate that actions taken to mitigate OA on coral reefs should address not only global CO2 emissions but also local perturbations, in this case fish mariculture-induced eutrophication.

Continue reading ‘Sea surface carbonate dynamics at reefs of Bolinao, Philippines: seasonal variation and fish mariculture-induced forcing’

Cascading effects augment the direct impact of CO2 on phytoplankton growth in a biogeochemical model

Atmospheric and oceanic CO2 concentrations are rising at an unprecedented rate. Laboratory studies indicate a positive effect of rising CO2 on phytoplankton growth until an optimum is reached, after which the negative impact of accompanying acidification dominates. Here, we implemented carbonate system sensitivities of phytoplankton growth into our global biogeochemical model FESOM-REcoM and accounted explicitly for coccolithophores as the group most sensitive to CO2. In idealized simulations in which solely the atmospheric CO2 mixing ratio was modified, changes in competitive fitness and biomass are not only caused by the direct effects of CO2, but also by indirect effects via nutrient and light limitation as well as grazing. These cascading effects can both amplify or dampen phytoplankton responses to changing ocean pCO2 levels. For example, coccolithophore growth is negatively affected both directly by future pCO2 and indirectly by changes in light limitation, but these effects are compensated by a weakened nutrient limitation resulting from the decrease in small-phytoplankton biomass. In the Southern Ocean, future pCO2 decreases small-phytoplankton biomass and hereby the preferred prey of zooplankton, which reduces the grazing pressure on diatoms and allows them to proliferate more strongly. In simulations that encompass CO2-driven warming and acidification, our model reveals that recent observed changes in North Atlantic coccolithophore biomass are driven primarily by warming and not by CO2. Our results highlight that CO2 can change the effects of other environmental drivers on phytoplankton growth, and that cascading effects may play an important role in projections of future net primary production.

Continue reading ‘Cascading effects augment the direct impact of CO2 on phytoplankton growth in a biogeochemical model’

High sclerobiont calcification in marginal reefs of the eastern tropical Pacific

Graphical abstract.

A sclerobiont is any organism capable of fouling hard substrates. Sclerobionts have recently received attention due to their notable calcium carbonate contributions to reef structures and potential to offset drops in carbonate budgets in degraded reefs. However, due to their encrusting nature, it is difficult to quantify net calcium carbonate production at the level of individual taxonomic groups, and knowledge regarding the main environmental factors that regulate their spatial distributions is limited. In addition, the material types used to create experimental substrates, their orientations, and their overall deployment times can influence settlement and the composition of the resulting communities. Thus, comparative evaluations of these variables are necessary to improve future research efforts. In this study, we used calcification accretion units (CAUs) to quantify the calcium carbonate contributions of sclerobionts at the taxonomic group level and evaluated the effects of two frequently used materials [i.e., polyvinyl chloride (PVC) and terracotta (TCT) tiles] on the recruitment and calcification of the sclerobiont community in the tropical Mexican Pacific and the Midriff Island Region of the Gulf of California over 6 and 15 months [n = 40; 5 CAUs x site (2) x deployment time (2) x material type (2)]. The net sclerobiont calcification rate (mean ± SD) reached maximum values at six months and was higher in the Mexican Pacific (2.15 ± 0.99 kg m−2 y−1) than in the Gulf of California (1.70 ± 0.67 kg m−2 y−1). Moreover, the calcification rate was slightly higher on the PVC-CAUs compared to that of the TCT-CAUs, although these differences were not consistent at the group level. In addition, cryptic microhabitats showed low calcification rates when compared to those of exposed microhabitatsCrustosecoralline algae and barnacles dominated the exposed experimental surfaces, while bryozoans, mollusks, and serpulid polychaetes dominated cryptic surfaces. Regardless of the site, deployment time, or material type, barnacles made the greatest contributions to calcimass production (between 41 and 88%). Our results demonstrate that the orientation of the experimental substrate, and the material to a lesser extent, influence the sclerobiont community and the associated calcification rate. Upwelling-induced surface nutrient levels, low pH levels, and the aragonite saturation state (ΩAr) limit the early cementation of reef-building organisms in the tropical Mexican Pacific and promote high bioerosion rates in corals of the Gulf of California. Our findings demonstrate that sclerobionts significantly contribute to calcium carbonate production even under conditions of high environmental variability.

Continue reading ‘High sclerobiont calcification in marginal reefs of the eastern tropical Pacific’

Cell wall organic matrix composition and biomineralization across reef-building coralline algae under global change

Crustose coralline algae (CCA) are one of the most important benthic substrate consolidators on coral reefs through their ability to deposit calcium carbonate on an organic matrix in their cell walls. Discrete polysaccharides have been recognized for their role in biomineralization, yet little is known about the carbohydrate composition of organic matrices across CCA taxa and whether they have the capacity to modulate their organic matrix constituents amidst environmental change, particularly the threats of ocean acidification (OA) and warming. We simulated elevated pCO2 and temperature (IPCC RCP 8.5) and subjected four mid-shelf Great Barrier Reef species of CCA to two months of experimentation. To assess the variability in surficial monosaccharide composition and biomineralization across species and treatments, we determined the monosaccharide composition of the polysaccharides present in the cell walls of surficial algal tissue and quantified calcification. Our results revealed dissimilarity among species’ monosaccharide constituents, which suggests that organic matrices are composed of different polysaccharides across CCA taxa. We also found that species differentially modulate composition in response to ocean acidification and warming. Our findings suggest that both variability in composition and ability to modulate monosaccharide abundance may play a crucial role in surficial biomineralization dynamics under the stress of OA and global warming.

Continue reading ‘Cell wall organic matrix composition and biomineralization across reef-building coralline algae under global change’

Intraspecific variation reshapes coral assemblages under elevated temperature and acidity

Insights into assemblages that can persist in extreme environments are still emerging. Ocean warming and acidification select against species with low physiological tolerance (trait-based ‘filtering’). However, intraspecific trait variation can promote species adaptation and persistence, with potentially large effects on assemblage structure. By sampling nine coral traits (four morphological, four tissue and one skeletal) along an offshore–inshore gradient in temperature and pH, we show that distantly related coral species undergo consistent intraspecific changes as they cross into warm, acidic environment. Intraspecific variation and species turnover each favoured colonies with greater tissue biomass, higher symbiont densities and reduced skeletal investments, indicating strong filtering on colony physiology within and across species. Physiological tissue traits were highly variable within species and were independent of morphology, enabling morphologically diverse species to cross into sites of elevated temperature and acidity. Widespread intraspecific change can therefore counter the loss of biodiversity and morphological structure across a steep environmental gradient.

Continue reading ‘Intraspecific variation reshapes coral assemblages under elevated temperature and acidity’

Ocean acidification drives global reshuffling of ecological communities

The paradigm that climate change will alter global marine biodiversity is one of the most widely accepted. Yet, its predictions remain difficult to test because laboratory systems are inadequate at incorporating ecological complexity, and common biodiversity metrics have varying sensitivity to detect change. Here, we test for the prevalence of global responses in biodiversity and community-level change to future climate (acidification and warming) from studies at volcanic CO2 vents across four major global coastal ecosystems and studies in laboratory mesocosms. We detected globally replicable patterns of species replacements and community reshuffling under ocean acidification in major natural ecosystems, yet species diversity and other common biodiversity metrics were often insensitive to detect such community change, even under significant habitat loss. Where there was a lack of consistent patterns of biodiversity change, these were a function of similar numbers of studies observing negative versus positive species responses to climate stress. Laboratory studies showed weaker sensitivity to detect species replacements and community reshuffling in general. We conclude that common biodiversity metrics can be insensitive in revealing the anticipated effects of climate stress on biodiversity—even under significant biogenic habitat loss—and can mask widespread reshuffling of ecological communities in a future ocean. Although the influence of ocean acidification on community restructuring can be less evident than species loss, such changes can drive the dynamics of ecosystem stability or their functional change. Importantly, species identity matters, representing a substantial influence of future oceans.

Continue reading ‘Ocean acidification drives global reshuffling of ecological communities’

Exposure to global change and microplastics elicits an immune response in an endangered coral

Global change is increasing seawater temperatures and decreasing oceanic pH, driving declines of coral reefs globally. Coral ecosystems are also impacted by local stressors, including microplastics, which are ubiquitous on reefs. While the independent effects of these global and local stressors are well-documented, their interactions remain less explored. Here, we examine the independent and combined effects of global change (ocean warming and acidification) and microplastics exposures on gene expression (GE) and microbial community composition in the endangered coral Acropora cervicornis. Nine genotypes were fragmented and maintained in one of four experimental treatments: 1) ambient conditions (ambient seawater, no microplastics; AMB); 2) microplastics treatment (ambient seawater, microplastics; MP); 3) global change conditions (warm and acidic conditions, no microplastics; OAW); and 4) multistressor treatment (warm and acidic conditions with microplastics; OAW+MP) for 22 days, after which corals were sampled for genome-wide GE profiling and ITS and 16S metabarcoding. Overall A. cervicornis GE responses to all treatments were subtle; however, corals in the multistressor treatment exhibited the strongest GE responses, and genes associated with innate immunity were overrepresented in this treatment, according to gene ontology enrichment analyses. 16S analyses revealed stable microbiomes dominated by the bacterial associate Aquarickettsia, suggesting that these A. cervicornis fragments exhibited remarkably low variability in bacterial community composition. Future work should focus on functional differences across microbiomes, especially Aquarickettsia and viruses, in these responses. Overall, results suggest that local stressors present a unique challenge to endangered coral species under global change.

Continue reading ‘Exposure to global change and microplastics elicits an immune response in an endangered coral’

Global change differentially modulates Caribbean coral physiology

Global change driven by anthropogenic carbon emissions is altering ecosystems at unprecedented rates, especially coral reefs, whose symbiosis with algal symbionts is particularly vulnerable to increasing ocean temperatures and altered carbonate chemistry. Here, we assess the physiological responses of three Caribbean coral (animal host + algal symbiont) species from an inshore and offshore reef environment after exposure to simulated ocean warming (28, 31°C), acidification (300–3290 μatm), and the combination of stressors for 93 days. We used multidimensional analyses to assess how a variety of coral physiological parameters respond to ocean acidification and warming. Our results demonstrate reductions in coral health in Siderastrea siderea and Porites astreoides in response to projected ocean acidification, while future warming elicited severe declines in Pseudodiploria strigosa. Offshore Ssiderea fragments exhibited higher physiological plasticity than inshore counterparts, suggesting that this offshore population was more susceptible to changing conditions. There were no plasticity differences in Pstrigosa and Pastreoides between natal reef environments, however, temperature evoked stronger responses in both species. Interestingly, while each species exhibited unique physiological responses to ocean acidification and warming, when data from all three species are modelled together, convergent stress responses to these conditions are observed, highlighting the overall sensitivities of tropical corals to these stressors. Our results demonstrate that while ocean warming is a severe acute stressor that will have dire consequences for coral reefs globally, chronic exposure to acidification may also impact coral physiology to a greater extent in some species than previously assumed. Further, our study identifies Ssiderea and Pastreoides as potential ‘winners’ on future Caribbean coral reefs due to their resilience under projected global change stressors, while Pstrigosa will likely be a ‘loser’ due to their sensitivity to thermal stress events. Together, these species-specific responses to global change we observe will likely manifest in altered Caribbean reef assemblages in the future.

Continue reading ‘Global change differentially modulates Caribbean coral physiology’

Effects of the ocean acidification on the functional structure of coral reef nematodes

A mesocosm experiment was designed to study the effects of acidification on the phytal nematofauna of a coral reef. We hypothesized that phytal nematodes are responsive to different seawater acidification levels and that their assemblage structure and functional indicators (combination of maturity index and trophic diversity index) are useful to evaluate the effects of acidification. Artificial substrate units (ASU) were first colonized in a coral reef zone (Recife de Fora Municipal Marine Park, Porto Seguro, Bahia, Brazil) to obtain standardized assemblage samples. ASUs were transferred to laboratory and exposed to control and three levels of seawater acidification (pH reduced by 0.3, 0.6 and 0.9 units below field levels) and collected after 15 and 30 d. Contrary to our expectations that acidification may change the taxonomic structure of nematodes, while the functional structure may deviate from the expected under high levels of acidification, we found that univariate functional indicators of the community (index of trophic diversity and maturity index) did not show significant differences between the control and experimental treatments throughout the exposure period. It is probably because the frequent exposure of shallow-water nematodes to rather large environmental variations leads the faunal response to acidification to be complex and subtle. On the other hand, the density of the life-history strategy groups 3 and 4 and the structure of nematode assemblages were significantly affected by different pH levels throughout the exposure period. Both history strategy groups include all kinds of feeding groups. These results suggest that the impact of pH changes predicted by the years 2100 and 2300 may be strong enough to provide different traits or life-history strategies of nematodes to take advantage under changing conditions.

Continue reading ‘Effects of the ocean acidification on the functional structure of coral reef nematodes’

Impacts of warming and acidification on coral calcification linked to photosymbiont loss and deregulation of calcifying fluid pH

Corals are globally important calcifiers that exhibit complex responses to anthropogenic warming and acidification. Although coral calcification is supported by high seawater pH, photosynthesis by the algal symbionts of zooxanthellate corals can be promoted by elevated pCO2. To investigate the mechanisms underlying corals’ complex responses to global change, three species of tropical zooxanthellate corals (Stylophora pistillataPocillopora damicornis, and Seriatopora hystrix) and one species of asymbiotic cold-water coral (Desmophyllum pertusum, syn. Lophelia pertusa) were cultured under a range of ocean acidification and warming scenarios. Under control temperatures, all tropical species exhibited increased calcification rates in response to increasing pCO2. However, the tropical species’ response to increasing pCO2 flattened when they lost symbionts (i.e., bleached) under the high-temperature treatments—suggesting that the loss of symbionts neutralized the benefit of increased pCO2 on calcification rate. Notably, the cold-water species that lacks symbionts exhibited a negative calcification response to increasing pCO2, although this negative response was partially ameliorated under elevated temperature. All four species elevated their calcifying fluid pH relative to seawater pH under all pCO2 treatments, and the magnitude of this offset (Δ[H+]) increased with increasing pCO2. Furthermore, calcifying fluid pH decreased along with symbiont abundance under thermal stress for the one species in which calcifying fluid pH was measured under both temperature treatments. This observation suggests a mechanistic link between photosymbiont loss (‘bleaching’) and impairment of zooxanthellate corals’ ability to elevate calcifying fluid pH in support of calcification under heat stress. This study supports the assertion that thermally induced loss of photosymbionts impairs tropical zooxanthellate corals’ ability to cope with CO2-induced ocean acidification.

Continue reading ‘Impacts of warming and acidification on coral calcification linked to photosymbiont loss and deregulation of calcifying fluid pH’

Acidification of seawater attenuates the allelopathic effects of Ulva pertusa on Karenia mikimotoi

Acidification of seawater resulting from absorption of excessive carbon dioxide from the atmosphere is posing a serious threat to marine ecosystem. In this study, we hypothesized that acidified seawater attenuates allelopathic effects of macroalgae on red tide algae because the increase of dissolved carbon dioxide benefits algal growth, and investigated the allelopathic effects of Ulva pertusa on Karenia mikimotoi in response to seawater acidification by determining cell density, photosynthetic pigment content, chlorophyll fluorescence parameters, and chloroplast structure of K. mikimotoi under U. pertusa stress in original (pH=8.2) and acidified (pH=7.8) seawater. U. pertusa inhibited the growth of K. mikimotoi in the original and acidizing seawater, and the inhibition rate was positively correlated with treatment time and concentration of U. pertusa. However, acidizing condition significantly weakened the inhibition degree of U. pertusa on K. mikimotoi (P < 0.05), with the inhibition rates decreased from 51.85 to 43.16% at 10 gFW/L U. pertusa for 96 h. U. pertusa reduced contents of chlorophyll a, chlorophyll c, and carotenoid, maximum photochemical quantum yield (Fv/Fm), actual quantum yield, maximum relative electron transfer efficiency (rETRmax) of PSII, real-time fluorescence value (F), and maximum fluorescence value (Fm′) of PSII of K. mikimotoi under original and acidified conditions. And, the inhibition degree of U. pertusa under acidizing condition was significantly lower than that of original seawater group. Furthermore, the damage degree of chloroplast structure of K. mikimotoi under U. pertusa stress was more serious under original seawater condition. These results indicate that acidification of seawater attenuates the allelopathic effects of U. pertusa on K. mikimotoi.

Continue reading ‘Acidification of seawater attenuates the allelopathic effects of Ulva pertusa on Karenia mikimotoi

Phytoplankton community shift in response to experimental Cu addition at the elevated CO2 levels (Arabian Sea, winter monsoon)

Understanding phytoplankton community shifts under multiple stressors is becoming increasingly important. Among other combinations of stressors, the impact of trace metal toxicity on marine phytoplankton under the ocean acidification scenario is an important aspect to address. Such multiple stressor studies are rare from the Arabian Sea, one of the highest productive oceanic provinces within the North Indian Ocean. We studied the interactive impacts of copper (Cu) and CO2 enrichment on two natural phytoplankton communities from the eastern and central Arabian Sea. Low dissolved silicate (DSi < 2 µM) favoured smaller diatoms (e.g. Nitzschia sp.) and non-diatom (Phaeocystis). CO2 enrichment caused both positive (Nitzschia sp. and Phaeocystis sp.) and negative (Cylindrotheca closterium, Navicula sp., Pseudo-nitzschia sp., Alexandrium sp., and Gymnodinium sp.) growth impacts. The addition of Cu under the ambient CO2 level (A-CO2) hindered cell division in most of the species, whereas Chla contents were nearly unaffected. Interestingly, CO2 enrichment seemed to alleviate Cu toxicity in some species (Nitzschia sp., Cylindrotheca closterium, Guinardia flaccida, and Phaeocystis) and increased their growth rates. This could be related to the cellular Cu demand and energy budget at elevated CO2 levels. Dinoflagellates were more sensitive to Cu supply compared to diatoms and prymnesiophytes and could be related to the unavailability of prey. Such community shifts in response to the projected ocean acidification, oligotrophy, and Cu pollution may impact trophic transfer and carbon cycling in this region.

Continue reading ‘Phytoplankton community shift in response to experimental Cu addition at the elevated CO2 levels (Arabian Sea, winter monsoon)’

Offshore extinctions: ocean acidification impacting interstitial fauna

As problematic as global warming, ocean acidification is a widespread problem, but the consequences of the interstitial fauna are still underrated. The biodiversity within sandy beaches is out of measurement, and its loss will be significantly felt. Estimations of the number of species are still vague. Acting as a key role in the trophic net, the interstitial organisms are threatened by pH value changes. Changing the pH values is already linked with less species richness and weakness of the sea community. The sediments may not be a sufficient buffer. Beyond this, there is another environmental problem aggravating the scenario. The decreasing complexity in the sand structure generated by the destruction of biological-generated sediments will impact the local biodiversity. Other environmental situations such as lack of sufficient O2 levels may be an aggravating combination. Here, I propose a protocol to observe if occur offshore extinctions, the veiled extinctions of interstitial fauna.

Continue reading ‘Offshore extinctions: ocean acidification impacting interstitial fauna’

Physicochemical control of Caribbean coral calcification linked to host and symbiont responses to varying pCO2 and temperature

It is thought that the active physiological regulation of the chemistry of a parent fluid is an important process in the biomineralization of scleractinian corals. Biological regulation of calcification fluid pH (pHCF) and other carbonate chemistry parameters ([CO32−]CF, DICCF, and ΩCF) may be challenged by CO2 driven acidification and temperature. Here, we examine the combined influence of changing temperature and CO2 on calcifying fluid regulation in four common Caribbean coral species—Porites astreoides, Pseudodiploria strigosa, Undaria tenuifolia, and Siderastrea siderea. We utilize skeletal boron geochemistry (B/Ca and δ11B) to probe the pHCF, [CO32−]CF, and DICCF regulation in these corals, and δ13C to track changes in the sources of carbon for calcification. Temperature was found to not influence pHCF regulation across all pCO2 treatments in these corals, in contrast to recent studies on Indo-Pacific pocilloporid corals. We find that [DIC]CF is significantly lower at higher temperatures in all the corals, and that the higher temperature was associated with depletion of host energy reserves, suggesting [DIC]CF reductions may result from reduced input of respired CO2 to the DIC pool for calcification. In addition, δ13C data suggest that under high temperature and CO2 conditions, algal symbiont photosynthesis continues to influence the calcification pool and is associated with low [DIC]CF in P. strigosa and P. astreoides. In P. astreoides this effect is also associated with an increase in chlorophyll a concentration in coral tissues at higher temperatures. These observations collectively support the assertion that physicochemical control over coral calcifying fluid chemistry is coupled to host and symbiont physiological responses to environmental change, and reveals interspecific differences in the extent and nature of this coupling.

Continue reading ‘Physicochemical control of Caribbean coral calcification linked to host and symbiont responses to varying pCO2 and temperature’

Is ocean acidification really a threat to marine calcifiers? A systematic review and meta-analysis of 980+ studies spanning two decades

Ocean acidification is considered detrimental to marine calcifiers, but mounting contradictory evidence suggests a need to revisit this concept. This systematic review and meta-analysis aim to critically re-evaluate the prevailing paradigm of negative effects of ocean acidification on calcifiers. Based on 5153 observations from 985 studies, many calcifiers (e.g., echinoderms, crustaceans, and cephalopods) are found to be tolerant to near-future ocean acidification (pH ≈ 7.8 by the year 2100), but coccolithophores, calcifying algae, and corals appear to be sensitive. Calcifiers are generally more sensitive at the larval stage than adult stage. Over 70% of the observations in growth and calcification are non-negative, implying the acclimation capacity of many calcifiers to ocean acidification. This capacity can be mediated by phenotypic plasticity (e.g., physiological, mineralogical, structural, and molecular adjustments), transgenerational plasticity, increased food availability, or species interactions. The results suggest that the impacts of ocean acidification on calcifiers are less deleterious than initially thought as their adaptability has been underestimated. Therefore, in the forthcoming era of ocean acidification research, it is advocated that studying how marine organisms persist is as important as studying how they perish, and that future hypotheses and experimental designs are not constrained within the paradigm of negative effects.

Continue reading ‘Is ocean acidification really a threat to marine calcifiers? A systematic review and meta-analysis of 980+ studies spanning two decades’

Impacts of ocean warming and acidification on the energy budget of three commercially important fish species

Using experimental data of three commercially important marine fish species (Diplodus sargus, Diplodus cervinus and Solea senegalensis), a model based on Dynamic Energy Budget theory was parametrized. The model was used to produce projections of growth and reproduction for these species, under different scenarios of ocean warming and acidification.

A mechanistic model based on Dynamic Energy Budget (DEB) theory was developed to predict the combined effects of ocean warming, acidification and decreased food availability on growth and reproduction of three commercially important marine fish species: white seabream (Diplodus sargus), zebra seabream (Diplodus cervinus) and Senegalese sole (Solea senegalensis). Model simulations used a parameter set for each species, estimated by the Add-my-Pet method using data from laboratory experiments complemented with bibliographic sources. An acidification stress factor was added as a modifier of the somatic maintenance costs and estimated for each species to quantify the effect of a decrease in pH from 8.0 to 7.4 (white seabream) or 7.7 (zebra seabream and Senegalese sole). The model was used to project total length of individuals along their usual lifespan and number of eggs produced by an adult individual within one year, under different climate change scenarios for the end of the 21st century. For the Intergovernmental Panel on Climate Change SSP5-8.5, ocean warming led to higher growth rates during the first years of development, as well as an increase of 32-34% in egg production, for the three species. Ocean acidification contributed to reduced growth for white seabream and Senegalese sole and a small increase for zebra seabream, as well as a decrease in egg production of 48-52% and 14-33% for white seabream and Senegalese sole, respectively, and an increase of 4-5% for zebra seabream. The combined effect of ocean warming and acidification is strongly dependent on the decrease of food availability, which leads to significant reduction in growth and egg production. This is the first study to assess the combined effects of ocean warming and acidification using DEB models on fish, therefore, further research is needed for a better understanding of these climate change-related effects among different taxonomic groups and species.

Continue reading ‘Impacts of ocean warming and acidification on the energy budget of three commercially important fish species’

Shallow water records of the PETM: novel insights From NE India (eastern Tethys)


The Paleocene-Eocene Thermal Maximum (PETM) is associated with major extinctions in the deep ocean, and significant paleogeographic and ecological changes in surface ocean and terrestrial environments. However, the impact of the associated environmental change on shelf biota is less well understood. Here, we present a new PETM record of a low paleolatitude shallow-marine carbonate platform from Meghalaya, NE India (eastern Tethys). The biotic assemblage was distinctly different to other Tethyan PETM records dominated by larger benthic foraminifera and calcareous algae both in the Paleocene and Eocene. A change in taxa and forms indicating deeper waters with a concurrent decrease in abundance of shallow water algae suggests a sea-level rise during the onset of the PETM. The record is lacking the ecological change from corals to larger foraminiferal assemblages and the Lockhartia dominance, characteristic of several other sections in the Tethys. Comparison with a global circulation model (GCM) indicates high regional temperatures in the Thanetian which may have excluded corals from the region. Furthermore, the regional circulation pattern is isolating the site from the wider Paratethys. Our study highlights the need for a diverse global perspective on shallow-marine response to the PETM and the strength of coupling data to global climate models for interpretation.

Key Points

  • Shallow-marine Paleocene-Eocene Thermal Maximum (PETM) successions are rare; here, we presented from the low paleolatitude NE India (eastern Tethys)
  • The absence of coral reefs in NE India, in contrast to other Tethyan records, was driven by very high temperatures
  • Linking biotic records of this section with climate modeling allow to interpret the biotic differences across the Tethyan region
Continue reading ‘Shallow water records of the PETM: novel insights From NE India (eastern Tethys)’

Ramifications of climate change induced by anthropogenic factors on global fish population scenario

One of the important consequences of climate change is its effect on the global fish population. Though not very highly pronounced each year, the effect of climate change is of cumulative nature. Global aquaculture is being affected by temperature changes of both water and air. Fluctuations in the ocean surface temperatures, ocean current patterns, wind speeds, and wave directions, all have its impact on aquaculture. Each year we see more and more incidences of extreme weather conditions in different parts of the world, be it in the form of hurricanes, heavy floods, etc. Fishes are subjected to various stress factors which in turn take a toll on its growth and development. This can lead to lower weight gain and increased mortality due to higher susceptibility to diseases. This, coupled with direct unsustainable anthropogenic activities in the oceans and rivers may lead to collapse of the marine and freshwater ecosystem. Recent studies have identified specific regions where marine aquaculture production will be positively and negatively affected. One of the sustainable ways of developing aquaculture in the coming decades would be by developing region-wise strategies to maintain or increase fish population levels and thus meet the global seafood demands even in 2050. The current review is an attempt to assess the effects of ocean warming, ocean acidification, and ocean deoxygenation on the growth, survival, and diversity of marine lifeforms and suggest ways to stop a complete collapse of marine fish population by 2050, the year for which the complete collapse is predicted based on projections.

Continue reading ‘Ramifications of climate change induced by anthropogenic factors on global fish population scenario’

Context-dependent effects of ocean acidification on the interaction between a crab predator and its oyster prey

Ocean acidification affects the fitness of species in coastal and estuarine systems, although interactions among species may alleviate or elevate the responses. Acidification effects on predator-prey interactions were evaluated between the blue crab Callinectes sapidus and eastern oyster Crassostrea virginica. Animals were exposed to 5 pH treatments: (1) control (pH ~8.00), constant pH at (2) 7.10 and (3) 6.75, and cycling pH from (4) 7.10 and (5) 6.75 to ~8.00, respectively. Crab foraging behavior, oyster size, and their defensive response against crabs (i.e. shell thickening) were compared among pH treatments. Results showed that predation rates of crabs tended to decrease with pH and from cycling to constant conditions, though statistical differences were only found at the lowest pH value and when consuming the larger oysters offered. Also, crab interest in oysters decreased with decreasing pH. In contrast, prey handling times and foraging motivation triggered by an odor stimulus were not affected by pH. In oysters, size metrics decreased with pH and also from cycling to constant conditions. Additionally, shells were thicker in the presence of predators, although the defensive strategy of oysters was weakened at the lowest pH level examined. Results indicate that although impaired foraging behavior of blue crabs may compensate for the negative effects on oysters under extreme acidification conditions, net effects are difficult to predict depending on the conditions to which animals are exposed and the size and behavioral variables considered.

Continue reading ‘Context-dependent effects of ocean acidification on the interaction between a crab predator and its oyster prey’

  • Reset


OA-ICC Highlights

%d bloggers like this: