Posts Tagged 'phytoplankton'

Abiotic drivers of interannual phytoplankton variability and a 1999–2000 regime shift in the North Sea examined by multivariate statistics

The Dutch coastal zone is a region of the North Sea with a marked interannual and long‐term abiotic and phytoplankton variability. To investigate the relationship between abiotic variability and phytoplankton composition, two routine water monitoring data sets (1991–2005) were examined. Multivariate statistics revealed two significant partitions in the data. The first consisted of interannual abiotic fluctuations that were correlated to Rhine discharge that affected the abundance of summer and autumn diatom species. The second partition was caused by a shift in the abiotic data from 1998 to 1999 that was followed by a shift in phytoplankton composition from 1999 to 2000. Important factors in the abiotic shift were decreases in suspended matter (SPM) and phosphate (DIP) concentrations, as well as in pH. The decrease in SPM was caused by a reduction in wind speed. The increase in water column daily irradiance from the decrease in SPM led to increases in the abundance of winter–spring species, notably the prymnesiophyte Phaeocystis globosa. Because wind speed is related to the North Atlantic Oscillation (NAO) index it was possible to correlate NAO index and P. globosa abundance. Only five abiotic variables representing interannual and long‐term variability, including Rhine discharge and NAO index, were needed to model the observed partitions in phytoplankton composition. It was concluded that interannual variability in the coastal phytoplankton composition was related to year‐to‐year changes in river discharge while the long‐term shift was caused by an alternating large‐scale meteorological phenomenon.

Continue reading ‘Abiotic drivers of interannual phytoplankton variability and a 1999–2000 regime shift in the North Sea examined by multivariate statistics’

The Arctic picoeukaryote Micromonas pusilla benefits from ocean acidification under constant and dynamic light

Compared to the rest of the globe, the Arctic Ocean is affected disproportionately by climate change. Despite these fast environmental changes, we currently know little about the effects of ocean acidification (OA) on marine key species in this area. Moreover, the existing studies typically test the effects of OA under constant, hence artificial light fields. In this study, the abundant Arctic picoeukaryote Micromonas pusilla was acclimated to current (400 μatm) and future (1000 μatm) pCO2 levels under a constant as well as dynamic light, simulating natural light fields as experienced in the upper mixed layer. To describe and understand the responses to these drivers, growth, particulate organic carbon (POC) production, elemental composition, photophysiology and reactive oxygen species (ROS) production were analysed. M. pusilla was able to benefit from OA on various scales, ranging from an increase in growth rates to enhanced photosynthetic capacity, irrespective of the light regime. These beneficial effects were, however, not reflected in the POC production rates, which can be explained by energy partitioning towards cell division rather than biomass build-up. In the dynamic light regime, M. pusilla was able to optimise its photophysiology for effective light usage during both low and high light periods. This effective photoacclimation, which was achieved by modifications to photosystem II (PSII), imposed high metabolic costs leading to a reduction in growth and POC production rates when compared to constant light. There were no significant interactions observed between dynamic light and OA, indicating that M. pusilla was able maintain effective photoacclimation without increased photoinactivation under high pCO2. Based on these findings, physiologically plastic M. pusilla may exhibit a robust positive response to future Arctic Ocean conditions.

Continue reading ‘The Arctic picoeukaryote Micromonas pusilla benefits from ocean acidification under constant and dynamic light’

CO2 effects on diatoms: a synthesis of more than a decade of ocean acidification experiments with natural communities (update)

Diatoms account for up to 50 % of marine primary production and are considered to be key players in the biological carbon pump. Ocean acidification (OA) is expected to affect diatoms primarily by changing the availability of CO2 as a substrate for photosynthesis or through altered ecological interactions within the marine food web. Yet, there is little consensus how entire diatom communities will respond to increasing CO2. To address this question, we synthesized the literature from over a decade of OA-experiments with natural diatom communities to uncover the following: (1) if and how bulk diatom communities respond to elevated CO2 with respect to abundance or biomass and (2) if shifts within the diatom communities could be expected and how they are expressed with respect to taxonomic affiliation and size structure. We found that bulk diatom communities responded to high CO2 in ∼60 % of the experiments and in this case more often positively (56 %) than negatively (32 %) (12 % did not report the direction of change). Shifts among different diatom species were observed in 65 % of the experiments. Our synthesis supports the hypothesis that high CO2 particularly favours larger species as 12 out of 13 experiments which investigated cell size found a shift towards larger species. Unravelling winners and losers with respect to taxonomic affiliation was difficult due to a limited database. The OA-induced changes in diatom competitiveness and assemblage structure may alter key ecosystem services due to the pivotal role diatoms play in trophic transfer and biogeochemical cycles.

Continue reading ‘CO2 effects on diatoms: a synthesis of more than a decade of ocean acidification experiments with natural communities (update)’

Scientists’ warning to humanity: microorganisms and climate change

In the Anthropocene, in which we now live, climate change is impacting most life on Earth. Microorganisms support the existence of all higher trophic life forms. To understand how humans and other life forms on Earth (including those we are yet to discover) can withstand anthropogenic climate change, it is vital to incorporate knowledge of the microbial ‘unseen majority’. We must learn not just how microorganisms affect climate change (including production and consumption of greenhouse gases) but also how they will be affected by climate change and other human activities. This Consensus Statement documents the central role and global importance of microorganisms in climate change biology. It also puts humanity on notice that the impact of climate change will depend heavily on responses of microorganisms, which are essential for achieving an environmentally sustainable future.

Continue reading ‘Scientists’ warning to humanity: microorganisms and climate change’

Acidification diminishes diatom silica production in the Southern Ocean

Diatoms, large bloom-forming marine microorganisms, build frustules out of silicate, which ballasts the cells and aids their export to the deep ocean. This unique physiology forges an important link between the marine silicon and carbon cycles. However, the effect of ocean acidification on the silicification of diatoms is unclear. Here we show that diatom silicification strongly diminishes with increased acidity in a natural Antarctic community. Analyses of single cells from within the community reveal that the effect of reduced pH on silicification differs among taxa, with several species having significantly reduced silica incorporation at CO2 levels equivalent to those projected for 2100. These findings suggest that, before the end of this century, ocean acidification may influence the carbon and silicon cycle by both altering the composition of the diatom assemblages and reducing cell ballasting, which will probably alter vertical flux of these elements to the deep ocean.

Continue reading ‘Acidification diminishes diatom silica production in the Southern Ocean’

Effects of spectral light quality and carbon dioxide on the physiology of Micractinium inermum: growth, photosynthesis, and biochemical composition

Growth, photosynthetic parameters, and biochemical composition of the chlorophyte Micractinium inermum were determined under conditions of different light-emitting diode (LED) wavelength distributions and carbon dioxide (CO2) levels of 1, 5, and 10% v/v. Increasing the inflowing CO2 concentration from 1 to 5 to 10% had negative effects on maximum growth rate (μmax), relative growth rate (RGR), biomass production, and CO2 fixation rate. Cultures subjected to a spectral distribution containing a blue wavelength peak were less negatively affected than red as CO2 stress increased, and evidently there was a quantitative effect depending on the peak area percentage. Under non-stressful conditions (1% CO2), there were no significant differences in μmax or RGR among light treatments; however, blue light resulted in decreased lag phases (0.75 less days than red). Biomass production was significantly higher in red wavelength peak treatments at 1% CO2 (i.e., monochromatic red treatment = 0.772 ± 0.07 g L−1) which demonstrates that although blue light allows for an early growth advantage, cultures grown with red light are able to catch up and result in more biomass. At a 10% CO2 level, RGR was higher in treatments with blue peaks; red peak treatments were no longer able to overcome the stress and demonstrated lag phases 4.87 days longer than blue peak treatments. Inhibition of photosystem II function was evident as CO2 concentrations increased. Evaluation of biochemical composition revealed that protein content was significantly greater in blue peak treatments at 10% CO2, pigment content was up to 2× greater than red at all CO2 levels, and total FAME and fatty acid profiles did not exhibit major changes.

Continue reading ‘Effects of spectral light quality and carbon dioxide on the physiology of Micractinium inermum: growth, photosynthesis, and biochemical composition’

Does seawater acidification affect zooxanthellae density and health in the invasive upside‐down jellyfish, Cassiopea spp.?

Ocean acidification is the decline in seawater pH that results from the absorption of atmospheric carbon dioxide (CO2). Decreased pH has negative effects on survivability, growth, and development in many marine calcifiers, potentially resulting in reduced coral species richness. This reduction in richness could open new niche space, allowing the spread of invasive species, such as the upside‐down jellyfish (Cassiopea spp.). Like corals, this jellyfish forms symbiotic relationships with zooxanthellae, photosynthetic dinoflagellates. This study focused on the effect of seawater acidification in Cassiopea spp. We monitored zooxanthellae density and two measures of health (bell diameter and volume) in individuals of Cassiopea sp. at three pH levels chosen to mimic different open‐ocean average conditions: 8.2, representing pre‐industrial revolution conditions; and 7.9 and 7.6, representing predicted declines in pH in the next century. Zooxanthellae density and health of the jellyfish were measured twice—prior to experimental manipulations and after four weeks of exposure to experimental pHs—in three consecutive trials. The effects of pH and Trial on proportional change in jellyfish attributes were analyzed using generalized linear mixed models. We found no significant effects of either factor. These results indicate that decreasing seawater pH has no apparent negative effect on zooxanthellae density or health in Cassiopea, which suggests that these jellyfish may be relatively insensitive to the impacts of ocean acidification, heightening its potential as an invasive species.

Continue reading ‘Does seawater acidification affect zooxanthellae density and health in the invasive upside‐down jellyfish, Cassiopea spp.?’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,284,645 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book