Posts Tagged 'phytoplankton'

Impacts of shifts in phytoplankton community on clouds and climate via the sulfur cycle

Dimethyl sulfide (DMS), primarily produced by marine organisms, contributes significantly to sulfate aerosol loading over the ocean after being oxidized in the atmosphere. In addition to exerting a direct radiative effect, the resulting aerosol particles act as cloud condensation nuclei, modulating cloud properties and extent, with impacts on atmospheric radiative transfer and climate. Thus, changes in pelagic ecosystems, such as phytoplankton physiology and community structure, may influence organosulfur production, and subsequently affect climate via the sulfur cycle. A fully coupled Earth system model, including explicit marine ecosystems and the sulfur cycle, is used here to investigate the impacts of changes associated with individual phytoplankton groups on DMS emissions and climate. Simulations show that changes in phytoplankton community structure, DMS production efficiency, and interactions of multielement biogeochemical cycles can all lead to significant differences in DMS transfer to the atmosphere. Subsequent changes in sulfate aerosol burden, cloud condensation nuclei number, and radiative effect are examined. We find the global annual mean cloud radiative effect shifts up to 0.21 W/m2, and the mean surface temperature increases up to 0.1 °C due to DMS production changes associated with individual phytoplankton group in simulations with radiative effects at the 2,100 levels under an 8.5 scenario. However, changes in DMS emissions, radiative effect, and surface temperature are more intensive on regional scales. Hence, we speculate that major uncertainties associated with future marine sulfur cycling will involve strong region‐to‐region climate shifts. Further understanding of marine ecosystems and the relevant phytoplankton‐aerosol‐climate linkage are needed for improving climate projections.

Continue reading ‘Impacts of shifts in phytoplankton community on clouds and climate via the sulfur cycle’

The Arctic picoeukaryote Micromonas pusilla benefits synergistically from warming and ocean acidification (update)

In the Arctic Ocean, climate change effects such as warming and ocean acidification (OA) are manifesting faster than in other regions. Yet, we are lacking a mechanistic understanding of the interactive effects of these drivers on Arctic primary producers. In the current study, one of the most abundant species of the Arctic Ocean, the prasinophyte Micromonas pusilla, was exposed to a range of different pCO2 levels at two temperatures representing realistic current and future scenarios for nutrient-replete conditions. We observed that warming and OA synergistically increased growth rates at intermediate to high pCO2 levels. Furthermore, elevated temperatures shifted the pCO2 optimum of biomass production to higher levels. Based on changes in cellular composition and photophysiology, we hypothesise that the observed synergies can be explained by beneficial effects of warming on carbon fixation in combination with facilitated carbon acquisition under OA. Our findings help to understand the higher abundances of picoeukaryotes such as M. pusilla under OA, as has been observed in many mesocosm studies.

Continue reading ‘The Arctic picoeukaryote Micromonas pusilla benefits synergistically from warming and ocean acidification (update)’

The response of the diatom Asterionllopsis glacialis to variations in CO2 and nitrate availability

Atmospheric CO2 levels have been rapidly increasing since the 280 ppm (ppm-parts per million) found previous to the industrial revolution (IPCC 2014). In 2010 the atmospheric CO2 was ~380 ppm (IPCC 2014). In May 2018 the Mauna Loa Observatory in Hawaii reported 411.21 ppm of CO2 at the surface ocean (Mooney 2018). These rapid changes in the atmosphere also affect ocean chemistry. Surface ocean pH has been rather stable before industrialization over the last 800 000 years, averaging 8.2 at the surface water. Since the industrial revolution, the pH has dropped ~0.1 units, so the present day value is ~8.1 (Gattuso, Hansson 2011; Riebesell et al. 2010). Based on business as-usual scenario, atmospheric CO2 levels are expected to approach 800 ppm by the end of the century, which means that pH would drop further 0.3 to 0.5 units and reach 7.8 pH units (Feely et al. 2009, IPCC report 2014). Finally, the changes in ocean chemistry are not happening everywhere at the same pace. For example, in areas where the water temperature is lower, like the Arctic Ocean, CO2 levels and concomitant acidification is increasing more rapidly (CO2 dissolves better in colder water). This makes the Arctic one of the most efficient areas for the sink of anthropogenic CO2 in the global ocean (Slagstad et al. 2011).

Continue reading ‘The response of the diatom Asterionllopsis glacialis to variations in CO2 and nitrate availability’

Coccolithophore community response along a natural CO2 gradient off Methana (SW Saronikos Gulf, Greece, NE Mediterranean)

A natural pH gradient caused by marine CO2 seeps off the Methana peninsula (Saronikos Gulf, eastern Peloponnese peninsula) was used as a natural laboratory to assess potential effects of ocean acidification on coccolithophores. Coccolithophore communities were therefore investigated in plankton samples collected during September 2011, September 2016 and March 2017. The recorded cell concentrations were up to ~50 x103 cells/l, with a high Shannon index of up to 2.8, along a pH gradient from 7.61 to 8.18, with values being occasionally <7. Numerous holococcolithophore species represented 60–90% of the surface water assemblages in most samples during September samplings. Emiliania huxleyi was present only in low relative abundances in September samples, but it dominated in March assemblages. Neither malformed nor corroded coccolithophores were documented. Changes in the community structure can possibly be related to increased temperatures, while the overall trend associates low pH values with high cell densities. Our preliminary results indicate that in long-termed acidified, warm and stratified conditions, the study of the total coccolithophore assemblage may prove useful to recognize the intercommunity variability, which favors the increment of lightly calcified species such as holococcolithophores.

Continue reading ‘Coccolithophore community response along a natural CO2 gradient off Methana (SW Saronikos Gulf, Greece, NE Mediterranean)’

Geographical CO2 sensitivity of phytoplankton correlates with ocean buffer capacity

Accumulation of anthropogenic CO2 is significantly altering ocean chemistry. A range of biological impacts resulting from this oceanic CO2 accumulation are emerging, however, the mechanisms responsible for observed differential susceptibility between organisms and across environmental settings remain obscure. A primary consequence of increased oceanic CO2 uptake is a decrease in the carbonate system buffer capacity, which characterizes the system’s chemical resilience to changes in CO2, generating the potential for enhanced variability in pCO2 and the concentration of carbonate [urn:x-wiley:13541013:media:gcb14324:gcb14324-math-0001], bicarbonate [urn:x-wiley:13541013:media:gcb14324:gcb14324-math-0002], and protons [H+] in the future ocean. We conducted a meta‐analysis of 17 shipboard manipulation experiments performed across three distinct geographical regions that encompassed a wide range of environmental conditions from European temperate seas to Arctic and Southern oceans. These data demonstrated a correlation between the magnitude of natural phytoplankton community biological responses to short‐term CO2 changes and variability in the local buffer capacity across ocean basin scales. Specifically, short‐term suppression of small phytoplankton (<10 μm) net growth rates were consistently observed under enhanced pCO2within experiments performed in regions with higher ambient buffer capacity. The results further highlight the relevance of phytoplankton cell size for the impacts of enhanced pCO2 in both the modern and future ocean. Specifically, cell size‐related acclimation and adaptation to regional environmental variability, as characterized by buffer capacity, likely influences interactions between primary producers and carbonate chemistry over a range of spatio‐temporal scales.

Continue reading ‘Geographical CO2 sensitivity of phytoplankton correlates with ocean buffer capacity’

High CO2 under nutrient fertilization increases primary production and biomass in subtropical phytoplankton communities: a mesocosm approach

The subtropical oceans are home to one of the largest ecosystems on Earth, contributing to nearly one third of global oceanic primary production. Ocean warming leads to enhanced stratification in the oligotrophic ocean but also intensification in cross-shore wind gradients and thus in eddy kinetic energy across eastern boundary regions of the subtropical gyres. Phytoplankton thriving in a future warmer oligotrophic subtropical ocean with enhanced COlevels could therefore be patchily fertilized by increased mesoscale and submesoscale variability inducing nutrient pumping into the surface ocean. Under this premise, we have tested the response of three size classes (0.2–2, 2–20, and >20 μm) of subtropical phytoplankton communities in terms of primary production, chlorophyll and cell biomass, to increasing COconcentrations and nutrient fertilization during an in situ mesocosm experiment in oligotrophic waters off of the island of Gran Canaria. We found no significant CO2-related effect on primary production and biomass under oligotrophic conditions (phase I). In contrast, primary production, chlorophyll and biomass displayed a significant and pronounced increase under elevated CO2 conditions in all groups after nutrient fertilization, both during the bloom (phase II) and post-bloom (phase III) conditions. Although the relative increase of primary production in picophytoplankton (250%) was 2.5 higher than in microphytoplankton (100%) after nutrient fertilization, comparing the high and low CO2 treatments, microphytoplankton dominated in terms of biomass, contributing >57% to the total. These results contrast with similar studies conducted in temperate and cold waters, where consistently small phytoplankton benefitted after nutrient additions at high CO2, pointing to different CO2-sensitivities across plankton communities and ecosystem types in the ocean.

Continue reading ‘High CO2 under nutrient fertilization increases primary production and biomass in subtropical phytoplankton communities: a mesocosm approach’

Population-specific responses in physiological rates of Emiliania huxleyi to a broad CO2 range

Although coccolithophore physiological responses to CO2-induced changes in seawater carbonate chemistry have been widely studied in the past, there is limited knowledge on the variability of physiological responses between populations from different areas. In the present study, we investigated the specific responses of growth, particulate organic (POC) and inorganic carbon (PIC) production rates of three populations of the coccolithophore Emiliania huxleyi from three regions in the North Atlantic Ocean (Azores: six strains, Canary Islands: five strains, and Norwegian coast near Bergen: six strains) to a CO2 partial pressure (pCO2) range from 120 to 2630 µatm. Physiological rates of each population and individual strain increased with rising pCO2 levels, reached a maximum and declined thereafter. Optimal pCO2 for growth, POC production rates, and tolerance to low pH (i.e., high proton concentration) was significantly higher in an E. huxleyi population isolated from the Norwegian coast than in those isolated near the Azores and Canary Islands. This may be due to the large environmental variability including large pCO2 and pH fluctuations in coastal waters off Bergen compared to the rather stable oceanic conditions at the other two sites. Maximum growth and POC production rates of the Azores and Bergen populations were similar and significantly higher than that of the Canary Islands population. This pattern could be driven by temperature–CO2 interactions where the chosen incubation temperature (16 °C) was slightly below what strains isolated near the Canary Islands normally experience. Our results indicate adaptation of E. huxleyi to their local environmental conditions and the existence of distinct E. huxleyi populations. Within each population, different growth, POC, and PIC production rates at different pCO2 levels indicated strain-specific phenotypic plasticity. Accounting for this variability is important to understand how or whether E. huxleyi might adapt to rising CO2 levels.

Continue reading ‘Population-specific responses in physiological rates of Emiliania huxleyi to a broad CO2 range’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,096,382 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book