Posts Tagged 'phytoplankton'

Ocean acidification interacts with variable light to decrease growth but increase particulate organic nitrogen production in a diatom


• Variable light decreased growth rate and pigmentation contents in both LC and HC.

• Cells grown under variable light appeared more tolerant of high light.

• HC and varying light decreased carbon fixation rate but increased POC and PON.

• HC and varying light lead to less primary productivity but more PON per biomass.


Phytoplankton in the upper oceans are exposed to changing light levels due to mixing, diurnal solar cycles and weather conditions. Consequently, effects of ocean acidification are superimposed upon responses to variable light levels. We therefore grew a model diatom Thalassiosira pseudonana under either constant or variable light but at the same daily photon dose, with current low (400 μatm, LC) and future high CO2 (1000 μatm, HC) treatments. Variable light, compared with the constant light regime, decreased the growth rate, Chl a, Chl c, and carotenoid contents under both LC and HC conditions. Cells grown under variable light appeared more tolerant of high light as indicated by higher maximum relative electron transport rate and saturation light. Light variation interacted with high CO2/lowered pH to decrease the carbon fixation rate, but increased particulate organic carbon (POC) and particularly nitrogen (PON) per cell, which drove a decrease in C/N ratio, reflecting changes in the efficiency of energy transfer from photo-chemistry to net biomass production. Our results imply that elevated pCO2 under varying light conditions can lead to less primary productivity but more PON per biomass of the diatom, which might improve the food quality of diatoms and thereby influence biogeochemical nitrogen cycles.

Continue reading ‘Ocean acidification interacts with variable light to decrease growth but increase particulate organic nitrogen production in a diatom’

Multiple global change stressor effects on phytoplankton nutrient acquisition in a future ocean

Predicting the effects of multiple global change stressors on microbial communities remains a challenge because of the complex interactions among those factors. Here, we explore the combined effects of major global change stressors on nutrient acquisition traits in marine phytoplankton. Nutrient limitation constrains phytoplankton production in large parts of the present-day oceans, and is expected to increase owing to climate change, potentially favouring small phytoplankton that are better adapted to oligotrophic conditions. However, other stressors, such as elevated pCO2, rising temperatures and higher light levels, may reduce general metabolic and photosynthetic costs, allowing the reallocation of energy to the acquisition of increasingly limiting nutrients. We propose that this energy reallocation in response to major global change stressors may be more effective in large-celled phytoplankton species and, thus, could indirectly benefit large-more than small-celled phytoplankton, offsetting, at least partially, competitive disadvantages of large cells in a future ocean. Thus, considering the size-dependent responses to multiple stressors may provide a more nuanced understanding of how different microbial groups would fare in the future climate and what effects that would have on ecosystem functioning.

Continue reading ‘Multiple global change stressor effects on phytoplankton nutrient acquisition in a future ocean’

Future HAB science: directions and challenges in a changing climate


• HABs develop through the integration of physical, chemical, and temporal drivers.

• We need a mechanistic understanding that reveals how climate affects these drivers.

• Accelerating climate change in coastal regions signals the urgency for action.

• New strategies, tools, and observatories for HABs will improve our forecast skill.

• Focused research on subsets of HAB species would greatly accelerate advances.


There is increasing concern that accelerating environmental change attributed to human-induced warming of the planet may substantially alter the patterns, distribution and intensity of Harmful Algal Blooms (HABs). Changes in temperature, ocean acidification, precipitation, nutrient stress or availability, and the physical structure of the water column all influence the productivity, composition, and global range of phytoplankton assemblages, but large uncertainty remains about how integration of these climate drivers might shape future HABs. Presented here are the collective deliberations from a symposium on HABs and climate change where the research challenges to understanding potential linkages between HABs and climate were considered, along with new research directions to better define these linkages. In addition to the likely effects of physical (temperature, salinity, stratification, light, changing storm intensity), chemical (nutrients, ocean acidification), and biological (grazer) drivers on microalgae (senso lato), symposium participants explored more broadly the subjects of cyanobacterial HABs, benthic HABs, HAB effects on fisheries, HAB modelling challenges, and the contributions that molecular approaches can bring to HAB studies. There was consensus that alongside traditional research, HAB scientists must set new courses of research and practices to deliver the conceptual and quantitative advances required to forecast future HAB trends. These different practices encompass laboratory and field studies, long-term observational programs, retrospectives, as well as the study of socioeconomic drivers and linkages with aquaculture and fisheries. In anticipation of growing HAB problems, research on potential mitigation strategies should be a priority. It is recommended that a substantial portion of HAB research among laboratories be directed collectively at a small sub-set of HAB species and questions in order to fast-track advances in our understanding. Climate-driven changes in coastal oceanographic and ecological systems are becoming substantial, in some cases exacerbated by localized human activities. That, combined with the slow pace of decreasing global carbon emissions, signals the urgency for HAB scientists to accelerate efforts across disciplines to provide society with the necessary insights regarding future HAB trends.

Continue reading ‘Future HAB science: directions and challenges in a changing climate’

Ocean acidification: calcifying marine organisms

This document is one in a series on ocean acidification (OA). The series Introduction, Ocean Acidification: An Introduction, contains a general overview and information on the causes and chemistry of OA. Because OA is very large-scale and complex, each document in the series addresses a specific aspect of this issue. Florida, with an extensive coastline and deep cultural and economic ties to marine resources, will be directly affected by changes in seawater chemistry. Thus, each topic in the series also highlights information of specific relevance for Florida.

Continue reading ‘Ocean acidification: calcifying marine organisms’

Elevated pCO2 level affects the extracellular polymer metabolism of Phaeodactylum tricornutum

Extracellular polymeric substances (EPS) play an important role in diatom physiology and carbon biogeochemical cycling in marine ecosystems. Both the composition and yield of EPS in diatom cells can vary with environmental changes. However, information on intracellular pathways and controls of both biochemical and genetic of EPS is limited. Further, how such changes would affect their critical ecological roles in marine systems is also unclear. Here, we evaluated the physiological characteristics, EPS yields, EPS compositions, and gene expression levels of Phaeodactylum tricornutum under elevated pCO2 levels. Genes and pathways related to EPS metabolism in P. tricornutum were identified. Carbohydrate yields in different EPS fractions increased with elevated pCO2 exposure. Although the proportions of monosaccharide sugars among total sugars did not change, higher abundances of uronic acid were observed under high pCO2 conditions, suggesting the alterations of EPS composition. Elevated pCO2 increased PSII light energy conversion efficiency and carbon sequestration efficiency. The up-regulation of most genes involved in carbon fixation pathways led to increased growth and EPS release. RNA-Seq analysis revealed a number of genes and divergent alleles related to EPS production that were up-regulated by elevated pCO2 levels. Nucleotide diphosphate (NDP)-sugar activation and accelerated glycosylation could be responsible for more EPS responding to environmental signals. Further, NDP-sugar transporters exhibited increased expression levels, suggesting roles in EPS over-production. Overall, these results provide critical data for understanding the mechanisms of EPS production in diatoms and evaluating the metabolic plasticity of these organisms in response to environmental changes.

Continue reading ‘Elevated pCO2 level affects the extracellular polymer metabolism of Phaeodactylum tricornutum’

Model simulation of seasonal growth of Fucus vesiculosus in its benthic community

Numerical models are a suitable tool to quantify impacts of predicted climate change on complex ecosystems but are rarely used to study effects on benthic macroalgal communities. Fucus vesiculosus L. is a habitat‐forming macroalga in the Baltic Sea and alarming shifts from the perennial Fucus community to annual filamentous algae are reported. We developed a box model able to simulate the seasonal growth of the Baltic Fucus–grazer–epiphyte system. This required the implementation of two state variables for Fucus biomass in units of carbon (C) and nitrogen (N). Model equations describe relevant physiological and ecological processes, such as storage of C and N assimilates by Fucus, shading effects of epiphytes or grazing by herbivores on both Fucus and epiphytes, but with species‐specific rates and preferences. Parametrizations of the model equations and required initial conditions were based on measured parameters and process rates in the near‐natural Kiel Outdoor Benthocosm (KOB) experiments during the Biological Impacts of Ocean Acidification project. To validate the model, we compared simulation results with observations in the KOB experiment that lasted from April 2013 until March 2014 under ambient and climate‐change scenarios, that is, increased atmospheric temperature and partial pressure of carbon dioxide. The model reproduced the magnitude and seasonal cycles of Fucus growth and other processes in the KOBs over 1 yr under different scenarios. Now having established the Fucus model, it will be possible to better highlight the actual threat of climate change to the Fucus community in the shallow nearshore waters of the Baltic Sea.

Continue reading ‘Model simulation of seasonal growth of Fucus vesiculosus in its benthic community’

Simulation of factors affecting Emiliania huxleyi blooms in Arctic and sub-Arctic seas by CMIP5 climate models: model validation and selection

The observed warming in the Arctic is more than double the global average, and this enhanced Arctic warming is projected to continue throughout the 21st century. This rapid warming has a wide range of impacts on polar and sub-polar marine ecosystems. One of the examples of such an impact on ecosystems is that of coccolithophores, particularly Emiliania huxleyi, which have expanded their range poleward during recent decades. The coccolithophore E. huxleyi plays an essential role in the global carbon cycle. Therefore, the assessment of future changes in coccolithophore blooms is very important.

Currently, there are a large number of climate models that give projections for various oceanographic, meteorological, and biochemical variables in the Arctic. However, individual climate models can have large biases when compared to historical observations. The main goal of this research was to select an ensemble of climate models that most accurately reproduces the state of environmental variables that influence the coccolithophore E. huxleyi bloom over the historical period when compared to reanalysis data. We developed a novel approach for model selection to include a diverse set of measures of model skill including the spatial pattern of some variables, which had not previously been included in a model selection procedure. We applied this method to each of the Arctic and sub-Arctic seas in which E. huxleyi blooms have been observed. Once we have selected an optimal combination of climate models that most skilfully reproduce the factors which affect E. huxleyi, the projections of the future conditions in the Arctic from these models can be used to predict how E. huxleyi blooms will change in the future.

Here, we present the validation of 34 CMIP5 (fifth phase of the Coupled Model Intercomparison Project) atmosphere–ocean general circulation models (GCMs) over the historical period 1979–2005. Furthermore, we propose a procedure of ranking and selecting these models based on the model’s skill in reproducing 10 important oceanographic, meteorological, and biochemical variables in the Arctic and sub-Arctic seas. These factors include the concentration of nutrients (NO3, PO4, and SI), dissolved CO2 partial pressure (pCO2), pH, sea surface temperature (SST), salinity averaged over the top 30 m (SS30 m), 10 m wind speed (WS), ocean surface current speed (OCS), and surface downwelling shortwave radiation (SDSR). The validation of the GCMs’ outputs against reanalysis data includes analysis of the interannual variability, seasonal cycle, spatial biases, and temporal trends of the simulated variables. In total, 60 combinations of models were selected for 10 variables over six study regions using the selection procedure we present here. The results show that there is neither a combination of models nor one model that has high skill in reproducing the regional climatic-relevant features of all combinations of the considered variables in target seas. Thereby, an individual subset of models was selected according to our model selection procedure for each combination of variable and Arctic or sub-Arctic sea. Following our selection procedure, the number of selected models in the individual subsets varied from 3 to 11.

The paper presents a comparison of the selected model subsets and the full-model ensemble of all available CMIP5 models to reanalysis data. The selected subsets of models generally show a better performance than the full-model ensemble. Therefore, we conclude that within the task addressed in this study it is preferable to employ the model subsets determined through application of our procedure than the full-model ensemble.

Continue reading ‘Simulation of factors affecting Emiliania huxleyi blooms in Arctic and sub-Arctic seas by CMIP5 climate models: model validation and selection’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,336,413 hits


Ocean acidification in the IPCC AR5 WG II

OUP book