Posts Tagged 'phytoplankton'

DNA damage and oxidative stress responses of mussels Mytilus galloprovincialis to paralytic shellfish toxins under warming and acidification conditions – elucidation on the organ-specificity

Commonly affected by changes in climate and environmental conditions, coastal areas are very dynamic environments where shellfish play an important ecological role. In this study, the oxidative stress and genotoxic responses of mussels (Mytilus galloprovincialis) exposed to paralytic shellfish toxin (PST) – producing dinoflagellates Gymnodinium catenatum were evaluated under i) current conditions (CC: 19 °C; pH 8.0), ii) warming (W: 24 °C; pH 8.0), iii) acidification (A:19 °C; pH 7.6) and iv) combined effect of warming and acidification (WA: 24 °C; pH 7.6). Mussels were fed with G. catenatum for 5 days, and to a non-toxic diet during the following 10 days. A battery of oxidative stress biomarkers and comet assay was performed at the peak of toxin accumulation and at the end of the post-exposure phase. Under CC, gills and hepatopancreas displayed different responses/vulnerabilities and mechanisms to cope with PST. While gills presented a tendency for lipid peroxidation (LPO) and genetic damage (expressed by the Genetic Damage Indicator – GDI), hepatopancreas seems to better cope with the toxins, as no LPO was observed. However, the mechanisms involved in hepatopancreas protection were not enough to maintain DNA integrity. The absence of LPO, and the antioxidant system low responsiveness, suggests DNA damage was not oxidative. When exposed to toxic algae under W, toxin-modulated antioxidant responses were observed in both gills and hepatopancreas. Simultaneous exposure to the stressors highlighted gills susceptibility with a synergistic interaction increasing DNA damage. Exposure to toxic algae under A led to genotoxicity potentiation in both organs. The combined effect of WA did not cause relevant interactions in gills antioxidant responses, but stressors interactions impacted LPO and GDI. Antioxidant responses and LPO pointed out to be modulated by the environmental conditions in hepatopancreas, while GDI results support the dominance of toxin-triggered process. Overall, these results reveal that simultaneous exposure to warming, acidification and PSTs impairs mussel DNA integrity, compromising the genetic information due to the synergetic effects. Finally, this study highlights the increasing ecological risk of harmful algal blooms to Mytilus galloprovinciallis populations.

Continue reading ‘DNA damage and oxidative stress responses of mussels Mytilus galloprovincialis to paralytic shellfish toxins under warming and acidification conditions – elucidation on the organ-specificity’

Predicting potential impacts of ocean acidification on marine calcifiers from the Southern Ocean

Understanding the vulnerability of marine calcifiers to ocean acidification is a critical issue, especially in the Southern Ocean (SO), which is likely to be the one of the first, and most severely affected regions. Since the industrial revolution, ~30% of anthropogenic CO2 has been absorbed by the oceans. Seawater pH levels have already decreased by 0.1 and are predicted to decline by ~ 0.3 by the year 2100. This process, known as ocean acidification (OA), is shallowing the saturation horizon, which is the depth below which calcium carbonate (CaCO3) dissolves, likely increasing the vulnerability of many marine calcifiers to dissolution. The negative impact of OA may be seen first in species depositing more soluble CaCO3 mineral phases such as aragonite and high-Mg calcite (HMC). These negative effects may become even exacerbated by increasing sea temperatures. Here we combine a review and a quantitative meta-analysis to provide an overview of the current state of knowledge about skeletal mineralogy of major taxonomic groups of SO marine calcifiers and to make predictions about how OA might affect different taxa. We consider their geographic range, skeletal mineralogy, biological traits and potential strategies to overcome OA. The meta-analysis of studies investigating the effects of the OA on a range of biological responses such as shell state, development and growth rate shows response variation depending on mineralogical composition. Species-specific responses due to mineralogical composition suggest taxa with calcitic, aragonitic and HMC skeletons may be more vulnerable to the expected carbonate chemistry alterations, and low magnesium calcite (LMC) species may be mostly resilient. Environmental and biological control on the calcification process and/or Mg content in calcite, biological traits and physiological processes are also expected to influence species specific responses.

Continue reading ‘Predicting potential impacts of ocean acidification on marine calcifiers from the Southern Ocean’

Meta-analysis of multiple driver effects on marine phytoplankton highlights modulating role of pCO2

Responses of marine primary production to a changing climate are determined by a concert of multiple environmental changes, for example in temperature, light, pCO2, nutrients, and grazing. To make robust projections of future global marine primary production, it is crucial to understand multiple driver effects on phytoplankton. This meta-analysis quantifies individual and interactive effects of dual driver combinations on marine phytoplankton growth rates. Almost 50% of the single-species laboratory studies were excluded because central data and metadata (growth rates, carbonate system, experimental treatments) were insufficiently reported. The remaining data (42 studies) allowed for the analysis of interactions of pCO2 with temperature, light, and nutrients, respectively. Growth rates mostly respond non-additively, whereby the interaction with increased pCO2 profusely dampens growth-enhancing effects of high temperature and high light. Multiple and single driver effects on coccolithophores differ from other phytoplankton groups, especially in their high sensitivity to increasing pCO2. Polar species decrease their growth rate in response to high pCO2, while temperate and tropical species benefit under these conditions. Based on the observed interactions and projected changes, we anticipate primary productivity to: (a) first increase but eventually decrease in the Arctic Ocean once nutrient limitation outweighs the benefits of higher light availability; (b) decrease in the tropics and mid-latitudes due to intensifying nutrient limitation, possibly amplified by elevated pCO2; and (c) increase in the Southern Ocean in view of higher nutrient availability and synergistic interaction with increasing pCO2. Growth-enhancing effect of high light and warming to coccolithophores, mainly Emiliania huxleyi, might increase their relative abundance as long as not offset by acidification. Dinoflagellates are expected to increase their relative abundance due to their positive growth response to increasing pCO2 and light levels. Our analysis reveals gaps in the knowledge on multiple driver responses and provides recommendations for future work on phytoplankton.

Continue reading ‘Meta-analysis of multiple driver effects on marine phytoplankton highlights modulating role of pCO2’

The effects of ocean acidification and warming on growth of a natural community of coastal phytoplankton

An in situ mesocosm experiment was performed to investigate the combined effects of ocean acidification and warming on the coastal phytoplankton standing stock and species composition of a eutrophic coastal area in the temperate-subtropical region. Experimental treatments of natural seawater included three CO2 and two temperature conditions (present control: ~400 μatm CO2 and ambient temperature, acidification conditions: ~900 μatm CO2 and ambient temperature, and greenhouse conditions: ~900 μatm CO2 and ambient temperature +3 °C). We found that increased CO2 concentration benefited the growth of small autotrophic phytoplankton groups: picophytoplankton (PP), autotrophic nanoflagellates (ANF), and small chain-forming diatoms (DT). However, in the greenhouse conditions, ANF and DT abundances were lower compared with those in the acidification conditions. The proliferation of small autotrophic phytoplankton in future oceanic conditions (acidification and greenhouse) also increased the abundance of heterotrophic dinoflagellates (HDF). These responses suggest that a combination of acidification and warming will not only increase the small autotrophic phytoplankton standing stock but, also, lead to a shift in the diatom and dinoflagellate species composition, with potential biogeochemical element cycling feedback and an increased frequency and intensity of harmful algal blooms.

Continue reading ‘The effects of ocean acidification and warming on growth of a natural community of coastal phytoplankton’

Changing carbon-to-nitrogen ratios of organic-matter export under ocean acidification

Ocean acidification (OA) will affect marine biotas from the organism to the ecosystem level. Yet, the consequences for the biological carbon pump and thereby the oceanic sink for atmospheric CO2 are still unclear. Here we show that OA considerably alters the C/N ratio of organic-matter export (C/Nexport), a key factor determining efficiency of the biological pump. By synthesizing sediment-trap data from in situ mesocosm studies in different marine biomes, we find distinct but highly variable impacts of OA on C/Nexport, reaching up to a 20% increase/decrease under partial pressure of CO2 (pCO2) conditions projected for 2100. These changes are driven by pCO2 effects on a variety of plankton taxa and corresponding shifts in food-web structure. Notably, our findings suggest a pivotal role of heterotrophic processes in controlling the response of C/Nexport to OA, thus contradicting the paradigm of primary producers as the principal driver of biogeochemical responses to ocean change.

Continue reading ‘Changing carbon-to-nitrogen ratios of organic-matter export under ocean acidification’

Phytoplankton dynamics in a changing Arctic Ocean

Changes in the Arctic atmosphere, cryosphere and Ocean are drastically altering the dynamics of phytoplankton, the base of marine ecosystems. This Review addresses four major complementary questions of ongoing Arctic Ocean changes and associated impacts on phytoplankton productivity, phenology and assemblage composition. We highlight trends in primary production over the last two decades while considering how multiple environmental drivers shape Arctic biogeography. Further, we consider changes to Arctic phenology by borealization and hidden under-ice blooms, and how the diversity of phytoplankton assemblages might evolve in a novel Arctic ‘biogeochemical landscape’. It is critical to understand these aspects of changing Arctic phytoplankton dynamics as they exert pressure on marine Arctic ecosystems in addition to direct effects from rapid environmental changes.

Continue reading ‘Phytoplankton dynamics in a changing Arctic Ocean’

Co-culture with Synechococcus facilitates growth of Prochlorococcus under ocean acidification conditions

Anthropogenic CO2 emissions are projected to lower the pH of the ocean 0.3 units by 2100. Previous studies suggested that Prochlorococcus and Synechococcus, the numerically dominant phytoplankton in the oceans, have different responses to elevated CO2 that may result in a dramatic shift in their relative abundances in future oceans. Here we showed that the exponential growth rates of these two genera respond to future CO2 conditions in a manner similar to other cyanobacteria, but Prochlorococcus strains had significantly lower realized growth rates under elevated CO2 regimes due to poor survival after exposure to fresh culture media. Despite this, a Synechococcus strain was unable to outcompete a Prochlorococcus strain in co‐culture at elevated CO2. Under these conditions, Prochlorococcus‘ poor response to elevated CO2 disappeared, and Prochlorococcus’ relative fitness showed negative frequency dependence, with both competitors having significant fitness advantages when initially rare. These experiments suggested that the two strains should be able to co‐exist indefinitely in co‐culture despite sharing nearly identical nutritional requirements. We speculate that negative frequency dependence exists due to reductive Black Queen evolution that has resulted in a passively mutualistic relationship analogous to that connecting Prochlorococcus with the “helper” heterotrophic microbes in its environment.

Continue reading ‘Co-culture with Synechococcus facilitates growth of Prochlorococcus under ocean acidification conditions’

Lower salinity leads to improved physiological performance in the coccolithophorid Emiliania huxleyi, which partly ameliorates the effects of ocean acidification

While seawater acidification induced by elevated CO2 is known to impact coccolithophores, the effects in combination with decreased salinity caused by sea ice melting and/or hydrological events have not been documented. Here we show the combined effects of seawater acidification and reduced salinity on growth, photosynthesis and calcification of Emiliania huxleyi grown at 2 CO2 concentrations (low CO2 LC:400 μatm; high CO2 HC:1000 μatm) and 3 levels of salinity (25, 30, and 35‰). A decrease of salinity from 35 to 25‰ increased growth rate, cell size and photosynthetic performance under both LC and HC. Calcification rates were relatively insensitive to salinity though they were higher in the LC-grown compared to the HC-grown cells at 25‰ salinity, with insignificant differences under 30 and 35‰. Since salinity and OA treatments did not show interactive effects on calcification, changes in calcification: photosynthesis ratios are attributed to the elevated photosynthetic rates at lower salinities, with higher ratios of calcification to photosynthesis in the cells grown under 35‰ compared with those grown at 25‰. In contrast, photosynthetic carbon fixation increased almost linearly with decreasing salinity, regardless of the pCO2 treatments. When subjected to short-term exposure to high light, the low-salinity-grown cells showed the highest photochemical effective quantum yield with the highest repair rate, though the HC treatment enhanced the PSII damage rate. Our results suggest that, irrespective of pCO2, at low salinity Emiliania huxleyi up-regulates its photosynthetic performance which, despite a relatively insensitive calcification response, may help it better adapt to future ocean global environmental changes, including ocean acidification, especially in the coastal areas of high latitudes.

Continue reading ‘Lower salinity leads to improved physiological performance in the coccolithophorid Emiliania huxleyi, which partly ameliorates the effects of ocean acidification’

Transcriptomic reprogramming of the oceanic diatom Skeletonema dohrnii under warming ocean and acidification

Under ocean warming and acidification, diatoms use a unique acclimation and adaptation strategy by saving energy and utilizing it for other cellular processes. However, the molecular mechanisms that underlie this reprogramming of energy utilization are currently unknown. Here, we investigate the metabolic reprogramming of the ecologically important diatom Skeletonema dohrnii grown under two different temperature (21 °C and 25 °C) and pCO2 (400 ppm and 1000 ppm) levels, utilizing global transcriptomic analysis. We find that evolutionary changes in the baseline gene expression, which we termed transcriptional up and downregulation, is the primary mechanism used by diatoms to acclimate to the combined conditions of ocean warming and acidification. This transcriptional regulation shows that under higher temperature and pCO2 conditions, photosynthesis, electron transport, and carboxylation were modified with increasing abundances of genes encoding ATP, NADPH, and carbon gaining for the carbon‐dioxide‐concentrating mechanisms (CCMs). Our results also indicate that changes in the transcriptional regulation of CCMs led to a decrease in the metabolic cost to save energy by promoting amino acid synthesis and nitrogen assimilation for the active protein processing machinery to adapt to warming and ocean acidification. This study generated unique metabolic insights into diatoms and suggests that future climate change conditions will cause evolutionary changes in oceanic diatoms that will facilitate their acclimation strategy.

Continue reading ‘Transcriptomic reprogramming of the oceanic diatom Skeletonema dohrnii under warming ocean and acidification’

Interactive effects of CO2, temperature, irradiance, and nutrient limitation on the growth and physiology of the marine diatom Thalassiosira pseudonana (Coscinodiscophyceae)

The marine diatom Thalassiosira pseudonana was grown in continuous culture systems to study the interactive effects of temperature, irradiance, nutrient limitation, and the partial pressure of CO2 (pCO2) on its growth and physiological characteristics. The cells were able to grow at all combinations of low and high irradiance (50 and 300 μmol photons · m−2 · s−1, respectively, of visible light), low and high pCO2 (400 and 1,000 μatm, respectively), nutrient limitation (nitrate‐limited and nutrient‐replete conditions), and temperatures of 10–32°C. Under nutrient‐replete conditions, there was no adverse effect of high pCO2 on growth rates at temperatures of 10–25°C. The response of the cells to high pCO2 was similar at low and high irradiance. At supraoptimal temperatures of 30°C or higher, high pCO2 depressed growth rates at both low and high irradiance. Under nitrate‐limited conditions, cells were grown at 38 ± 2.4% of their nutrient‐saturated rates at the same temperature, irradiance, and pCO2. Dark respiration rates consistently removed a higher percentage of production under nitrate‐limited versus nutrient‐replete conditions. The percentages of production lost to dark respiration were positively correlated with temperature under nitrate‐limited conditions, but there was no analogous correlation under nutrient‐replete conditions. The results suggest that warmer temperatures and associated more intense thermal stratification of ocean surface waters could lower net photosynthetic rates if the stratification leads to a reduction in the relative growth rates of marine phytoplankton, and at truly supraoptimal temperatures there would likely be a synergistic interaction between the stresses from temperature and high pCO2 (lower pH).

Continue reading ‘Interactive effects of CO2, temperature, irradiance, and nutrient limitation on the growth and physiology of the marine diatom Thalassiosira pseudonana (Coscinodiscophyceae)’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,400,304 hits


Ocean acidification in the IPCC AR5 WG II

OUP book