Posts Tagged 'phytoplankton'

Bioprocess strategies for enhancing the outdoor production of Nannochloropsis gaditana: an evaluation of the effects of pH on culture performance in tubular photobioreactors

A priority of the industrial applications of microalgae is the reduction of production costs while maximizing algae biomass productivity. The purpose of this study was to carry out a comprehensive evaluation of the effects of pH control on the production of Nannochloropsis gaditana in tubular photobioreactors under external conditions while considering the environmental, biological, and operational parameters of the process. Experiments were carried out in 3.0 m3 tubular photobioreactors under outdoor conditions. The pH values evaluated were 6.0, 7.0, 8.0, 9.0, and 10.0, which were controlled by injecting pure CO2 on-demand. The results have shown that the ideal pH for microalgal growth was 8.0, with higher values of biomass productivity (Pb) (0.16 g L−1 d−1), and CO2 use efficiency (ECO2) (74.6% w w−1); RCO2/biomass value obtained at this pH (2.42 gCO2 gbiomass−1) was close to the theoretical value, indicating an adequate CO2 supply. At this pH, the system was more stable and required a lower number of CO2 injections than the other treatments. At pH 6.0, there was a decrease in the Pb and ECO2; cultures at pH 10.0 exhibited a lower Pb and photosynthetic efficiency as well. These results imply that controlling the pH at an optimum value allows higher CO2 conversions in biomass to be achieved and contributes to the reduction in costs of the microalgae production process.

Continue reading ‘Bioprocess strategies for enhancing the outdoor production of Nannochloropsis gaditana: an evaluation of the effects of pH on culture performance in tubular photobioreactors’

Reduced growth with increased quotas of particulate organic and inorganic carbon in the coccolithophore Emiliania huxleyi under future ocean climate change conditions

Effects of ocean acidification and warming on marine primary producers can be modulated by other environmental factors, such as levels of nutrients and light. Here, we investigated the interactive effects of five oceanic environmental drivers (CO2, temperature, light, dissolved inorganic nitrogen and phosphate) on growth rate, particulate organic (POC) and inorganic (PIC) carbon quotas of the cosmopolitan coccolithophore Emiliania huxleyi. Population growth rate increased with increasing temperature (16 to 20 °C) and light intensities (60 to 240 μmol photons m−2  s−1), but decreased with elevated pCO2 concentrations (370 to 960 μatm) and reduced availability of nitrate (24.3 to 7.8 μmol L−1) and phosphate (1.5 to 0.5 μmol L−1). POC quotas were predominantly enhanced by combined effects of increased pCO2 and decreased availability of phosphate. PIC quotas increased with decreased availability of nitrate and phosphate. Our results show that concurrent changes in nutrient concentrations and pCO2 levels predominantly affected growth, photosynthetic carbon fixation and calcification of E. huxleyi, and imply that plastic responses to progressive ocean acidification, warming and decreasing availability of nitrate and phosphate reduce population growth rate while increasing cellular quotas of particulate organic and inorganic carbon of E. huxleyi, ultimately affecting coccolithophore-related ecological and biogeochemical processes.

Continue reading ‘Reduced growth with increased quotas of particulate organic and inorganic carbon in the coccolithophore Emiliania huxleyi under future ocean climate change conditions’

Effects of ocean acidification on Antarctic microbial communities

Antarctic waters are amongst the most vulnerable in the world to ocean acidification due to their cold temperatures, naturally low levels of calcium carbonate and upwelling that brings deep CO2-rich waters to the surface. A meta-analysis demonstrated groups of Antarctic marine biota in waters south of 60!S have a range of tolerances to ocean acidification. Invertebrates and phytoplankton showed negative effects above 500 μatm and 1000 μatm CO2 respectively, while bacteria appear tolerant to elevated CO2. Phytoplankton studied as part of a natural microbial community were found to be more
sensitive than those studied as a single species in culture. This highlights the importance of community and ecosystem level studies, which incorporate the interaction and competition among species and trophic levels, to accurately assess the effects of ocean acidification on the Antarctic ecosystem.

Antarctic marine microbes (comprising phytoplankton, protozoa and bacteria) drive ocean productivity, nutrient cycling and mediate trophodynamics and the biological pump. While they appear vulnerable to changes in ocean chemistry, little is known about the nature and magnitude of their responses to ocean acidification, especially for natural communities. To address this lack of information, a six level, dose-response ocean acidification experiment was conducted in Prydz Bay, East Antarctica, using 650 L incubation tanks (minicosms). The minicosms were filled with Antarctic nearshore water and adjusted to a gradient of carbon dioxide (CO2) from 343 to 1641 μatm. Microscopy
and phylogenetic marker gene sequence analysis found the microbial community
composition altered at CO2 levels above approximately 1000 μatm. The CO2-
induced responses of microeukaryotes (>20 μm) and nanoeukaryotes (2 to 20 μm) were taxon-specific. For diatoms the response of taxa was related to cell size with micro-sized diatoms (>20 μm) increasing in abundance with moderate CO2 (506 to 634 μatm), while above this level their abundance declined. In contrast, nano-size diatoms (<20 μm) tolerated elevated CO2. Like large diatoms, Phaeocystis antarctica increased in abundance between 343 to 634 μatm CO2 but fell at higher levels. 18S and 16S rDNA sequencing showed that picoeukaryotic and prokaryotic composition was unaffected by CO2, despite having higher abundances at CO2 levels !634 μatm. This was likely due to the lower abundance of heterotrophic nanoflagellates at CO2 levels exceeding 953 μatm, which reduced the top-down control of their pico- and nanoplanktonic prey. As a result of the differences in the tolerance of individual taxa/size categories, CO2 caused a
significant change in the microbial community structure to one dominated by nano-sized diatoms, picoeukaryotes and prokaryotes.

Based on the CO2-induced changes in the microbial community, modelling was performed to investigate the future effects of different levels of elevated CO2 on the structure and function of microbial communities in Antarctic coastal systems. These models indicate CO2 levels predicted toward the end of the century under a “business as usual scenario” elicit changes in microbial composition, significantly altering trophodynamic pathways, reducing energy transfer to higher trophic levels and favouring respiration of carbon within the microbial loop. Such responses would alter elemental cycles, jeopardise the productivity that underpins the wealth and diversity of life for which Antarctica is renowned. In addition, it would reduce carbon sequestration in coastal Antarctic waters thereby having a positive feedback on global climate change.

Continue reading ‘Effects of ocean acidification on Antarctic microbial communities’

Response of phytoplankton assemblages from naturally acidic coastal ecosystems to elevated pCO2

The interplay of coastal oceanographic processes usually results in partial pressures of CO2 (pCO2) higher than expected from the equilibrium with the atmosphere and even higher than those expected by the end of the century. Although this is a well-known situation, the natural variability of seawater chemistry at the locations from which tested organisms or communities originate is seldom considered in ocean acidification experiments. In this work, we aimed to evaluate the role of the carbonate chemistry dynamics in shaping the response of coastal phytoplankton communities to increased pCO2 levels. The study was conducted at two coastal ecosystems off Chile, the Valdivia River estuary and the coastal upwelling ecosystem in the Arauco Gulf. We characterized the seasonal variability (winter/summer) of the hydrographic conditions, the carbonate system parameters, and the phytoplankton community structure at both sites. The results showed that carbonate chemistry dynamics in the estuary were mainly related to seasonal changes in freshwater discharges, with acidic and corrosive conditions dominating in winter. In the Arauco Gulf, these conditions were observed in summer, mainly associated with the upwelling of cold and high pCO2 (>1,000 μatm) waters. Diatoms dominated the phytoplankton communities at both sites, yet the one in Valdivia was more diverse. Only certain phytoplankton groups in this latter ecosystem showed a significant correlations with the carbonate system parameters. When the impact of elevated pCO2 levels was investigated by pCO2 manipulation experiments, we did not observe any significant effect on the biomass of either of the two communities. Changes in the phytoplankton species composition and abundance during the incubations were related to other factors, such as competition and growth phases. Our findings highlight the importance of the natural variability of coastal ecosystems and the potential for local adaptation in determining responses of coastal phytoplankton communities to increased pCO2 levels.

Continue reading ‘Response of phytoplankton assemblages from naturally acidic coastal ecosystems to elevated pCO2’

Ocean-related global change alters lipid biomarker production in common marine phytoplankton

Global change concurrently alters multiple environmental factors, with uncertain consequences for marine ecosystems. Lipids, in their function as trophic markers in food webs and organic matter source indicators in water column and sediments, provide a tool for reconstructing the complexity of global change effects. It remains unclear how ongoing changes in multiple environmental drivers affect the production of key lipid biomarkers in marine phytoplankton. Here, we tested the responses of sterols, alkenones and fatty acids (FAs) in the diatom Phaeodactylum tricornutum, the cryptophyte Rhodomonas sp. and the haptophyte Emiliania huxleyi under a full-factorial combination of three temperatures (12, 18 and 24 °C), three N : P supply ratios (molar ratios 10 : 1, 24 : 1 and 63 : 1) and two pCO2 levels (560 and 2400 µatm) in semi-continuous culturing experiments. Overall, N and P deficiency had a stronger effect on per-cell contents of sterols, alkenones and FAs than warming and enhanced pCO2. Specifically, P deficiency caused an overall increase in biomarker production in most cases, while N deficiency, warming and high pCO2 caused non-systematic changes. Under future ocean scenarios, we predict an overall decrease in carbon-normalized contents of sterols and polyunsaturated fatty acids (PUFAs) in E. huxleyi and P. tricornutum, and a decrease in sterols but an increase in PUFAs in Rhodomonas sp. Variable contents of lipid biomarkers indicate a diverse carbon allocation between marine phytoplankton species in response to changing environments. Thus, it is necessary to consider the changes in key lipids and their consequences for food web dynamics and biogeochemical cycles, when predicting the influence of global change on marine ecosystems.

Continue reading ‘Ocean-related global change alters lipid biomarker production in common marine phytoplankton’

Decreased motility of flagellated microalgae long-term acclimated to CO2-induced acidified waters

Motility plays a critical role in algal survival and reproduction, with implications for aquatic ecosystem stability. However, the effect of elevated CO2 on marine, brackish and freshwater algal motility is unclear. Here we show, using laboratory microscale and field mesoscale experiments, that three typical phytoplankton species had decreased motility with increased CO2. Polar marine Microglena sp., euryhaline Dunaliella salina and freshwater Chlamydomonas reinhardtii were grown under different CO2 concentrations for 5 years. Long-term acclimated Microglena sp. showed substantially decreased photo-responses in all treatments, with a photophobic reaction affecting intracellular calcium concentration. Genes regulating flagellar movement were significantly downregulated (P < 0.05), alongside a significant increase in gene expression for flagellar shedding (P < 0.05). D. salina and C. reinhardtii showed similar results, suggesting that motility changes are common across flagellated species. As the flagella structure and bending mechanism are conserved from unicellular organisms to vertebrates, these results suggest that increasing surface water CO2 concentrations may affect flagellated cells from algae to fish.

Continue reading ‘Decreased motility of flagellated microalgae long-term acclimated to CO2-induced acidified waters’

The pH dependency of the boron isotopic composition of diatom opal (Thalassiosira weissflogii) (update)

The high-latitude oceans are key areas of carbon and heat exchange between the atmosphere and the ocean. As such, they are a focus of both modern oceanographic and palaeoclimate research. However, most palaeoclimate proxies that could provide a long-term perspective are based on calcareous organisms, such as foraminifera, that are scarce or entirely absent in deep-sea sediments south of 50 S in the Southern Ocean and north of 40 N in the North Pacific. As a result, proxies need to be developed for the opal-based organisms (e.g. diatoms) found at these high latitudes, which dominate the biogenic sediments recovered from these regions. Here we present a method for the analysis of the boron (B) content and isotopic composition (δ11B) of diatom opal. We apply it for the first time to evaluate the relationship between seawater pH, δ11B and B concentration ([B]) in the frustules of the diatom Thalassiosira weissflogii, cultured across a range of carbon dioxide partial pressure (pCO2) and pH values. In agreement with existing data, we find that the [B] of the cultured diatom frustules increases with increasing pH (Mejía et al., 2013). δ11B shows a relatively well defined negative trend with increasing pH, completely distinct from any other biomineral previously measured. This relationship not only has implications for the magnitude of the isotopic fractionation that occurs during boron incorporation into opal, but also allows us to explore the potential of the boron-based proxies for palaeo-pH and palaeo-CO2 reconstruction in high-latitude marine sediments that have, up until now, eluded study due to the lack of suitable carbonate material.

Continue reading ‘The pH dependency of the boron isotopic composition of diatom opal (Thalassiosira weissflogii) (update)’

Metabolic responses of subtropical microplankton after a simulated deep-water upwelling event suggest a possible dominance of mixotrophy under increasing CO2 levels

In the autumn of 2014, nine large mesocosms were deployed in the oligotrophic subtropical North-Atlantic coastal waters off Gran Canaria (Spain). Their deployment was designed to address the acidification effects of CO2 levels from 400 to 1,400 μatm, on a plankton community experiencing upwelling of nutrient-rich deep water. Among other parameters, chlorophyll a (chl-a), potential respiration (Φ), and biomass in terms of particulate protein (B) were measured in the microplankton community (0.7–50.0 μm) during an oligotrophic phase (Phase I), a phytoplankton-bloom phase (Phase II), and a post-bloom phase (Phase III). Here, we explore the use of the Φ/chl-a ratio in monitoring shifts in the microplankton community composition and its metabolism. Φ/chl-a values below 2.5 μL O2 h−1 (μg chl-a)−1 indicated a community dominated by photoautotrophs. When Φ/chl-a ranged higher, between 2.5 and 7.0 μL O2 h−1 (μg chl-a)−1, it indicated a mixed community of phytoplankton, microzooplankton and heterotrophic prokaryotes. When Φ/chl-a rose above 7.0 μL O2 h−1 (μg chl-a)−1, it indicated a community where microzooplankton proliferated (>10.0 μL O2 h−1 (μg chl-a)−1), because heterotrophic dinoflagellates bloomed. The first derivative of B, as a function of time (dB/dt), indicates the rate of protein build-up when positive and the rate of protein loss, when negative. It revealed that the maximum increase in particulate protein (biomass) occurred between 1 and 2 days before the chl-a peak. A day after this peak, the trough revealed the maximum net biomass loss. This analysis did not detect significant changes in particulate protein, neither in Phase I nor in Phase III. Integral analysis of Φ, chl-a and B, over the duration of each phase, for each mesocosm, reflected a positive relationship between Φ and pCO2 during Phase II [α = 230·10−5 μL O2 h−1 L−1 (μatm CO2)−1 (phase-day)−1, R2 = 0.30] and between chl-a and pCO2 during Phase III [α = 100·10−5 μg chl-a L−1 (μ atmCO2)−1 (phase-day)−1, R2 = 0.84]. At the end of Phase II, a harmful algal species (HAS), Vicicitus globosus, bloomed in the high pCO2 mesocosms. In these mesocosms, microzooplankton did not proliferate, and chl-a retention time in the water column increased. In these V. globosus-disrupted communities, the Φ/chl-a ratio [4.1 ± 1.5 μL O2 h−1 (μg chl-a)−1] was more similar to the Φ/chl-a ratio in a mixed plankton community than to a photoautotroph-dominated one.

Continue reading ‘Metabolic responses of subtropical microplankton after a simulated deep-water upwelling event suggest a possible dominance of mixotrophy under increasing CO2 levels’

Photosynthetic performances of marine microalgae under influences of rising CO2 and solar UV radiation

Marine photosynthesis contributes approximately half of the global primary productivity. Ocean climate changes, such as increasing dissolved CO2 in seawater and consequently declining pH (known as ocean acidification, OA), may alter marine photosynthetic performance. There are numerous studies on the effects of OA on photosynthetic organisms, but controversial findings indicate positive, neutral, and negative influences. Most of the studies so far have been conducted under controlled conditions that ignored the presence of solar UV radiation. Increased CO2 availability may play a fertilizing role, while the concurrent pH drop may exert pressure on microalgal cells, especially during the night period. It is known that elevated CO2 concentrations downregulate CO2-concentrating mechanisms (CCMs), and intracellular concentrations of dissolved inorganic carbon in diatoms grown under elevated CO2 levels can be much lower than that in low CO2-grown ones. Such a reduced CO2 availability within cells in response to increased CO2 in the water can lead to enhanced photorespiration due to an increased O2 to CO2 ratio around the carboxylating and oxygenating enzyme, RuBisCO. Therefore, negative and positive effects of OA may depend on light levels, since the saved energy due to downregulation of CCMs can benefit growth under light-limited conditions but enhance photoinhibition under light-excessive conditions. OA affects metabolic pathways in phytoplankton. It augments ß-oxidation and the citric acid cycle, which accumulates toxic phenolic compounds. In the upper mixed layer, phytoplankton are exposed to excessive PAR and UV radiation (UVR). The calcareous incrustations of calcified microalgae, known to shield the organisms from UVR, are thinned due to OA, exposing the cells to increased solar UV and further inhibiting their calcification and photosynthesis, reflecting a compounded impact. Such UV and OA interactive effects are expected to reduce primary productivity in oligotrophic pelagic surface waters. In this chapter, we review and analyze recent results on effects of OA and UV and their combined effects on marine photosynthesis of microalgae, which falls in the context of marine photosynthesis under changing ocean environments and multiple stressors.

Continue reading ‘Photosynthetic performances of marine microalgae under influences of rising CO2 and solar UV radiation’

High CO2 and warming affect microzooplankton food web dynamics in a Baltic Sea summer plankton community

Aquatic ecosystems face a multitude of environmental stressors, including warming and acidification. While warming is expected to have a pronounced effect on plankton communities, many components of the plankton seem fairly robust towards realistic end-of-century acidification conditions. However, interactions of the two stressors and the inclusion of further factors such as nutrient concentration and trophic interactions are expected to change this outcome. We investigated the effects of warming and high CO2 on a nutrient-deplete late summer plankton community from the Kiel Fjord, Baltic Sea, using a mesocosm setup crossing two temperatures with a gradient of CO2. Phytoplankton and microzooplankton (MZP) growth rates as well as biomass, taxonomic composition, and grazing rates of MZP were analysed. We observed effects of high CO2, warming, and their interactions on all measured parameters. The occurrence and direction of the effects were dependent on the phytoplankton or MZP community composition. In addition, the abundance of small-sized phytoplankton was identified as one of the most important factors in shaping the MZP community composition. Overall, our results indicate that an estuarine MZP community used to strong natural fluctuations in CO2 can still be affected by a moderate increase in CO2 if it occurs in combination with warming and during a nutrient-deplete post-bloom situation. This highlights the importance of including trophic interactions and seasonality aspects when assessing climate change effects on marine zooplankton communities.

Continue reading ‘High CO2 and warming affect microzooplankton food web dynamics in a Baltic Sea summer plankton community’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,356,906 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book