Posts Tagged 'North Pacific'

Adaptive responses and local stressor mitigation drive coral resilience in warmer, more acidic oceans

Coral reefs have great biological and socioeconomic value, but are threatened by ocean acidification, climate change and local human impacts. The capacity for corals to adapt or acclimatize to novel environmental conditions is unknown but fundamental to projected reef futures. The coral reefs of Kāne‘ohe Bay, Hawai‘i were devastated by anthropogenic insults from the 1930s to 1970s. These reefs experience naturally reduced pH and elevated temperature relative to many other Hawaiian reefs which are not expected to face similar conditions for decades. Despite catastrophic loss in coral cover owing to human disturbance, these reefs recovered under low pH and high temperature within 20 years after sewage input was diverted. We compare the pH and temperature tolerances of three dominant Hawaiian coral species from within Kāne‘ohe Bay to conspecifics from a nearby control site and show that corals from Kāne‘ohe are far more resistant to acidification and warming. These results show that corals can have different pH and temperature tolerances among habitats and understanding the mechanisms by which coral cover rebounded within two decades under projected future ocean conditions will be critical to management. Together these results indicate that reducing human stressors offers hope for reef resilience and effective conservation over coming decades.

Continue reading ‘Adaptive responses and local stressor mitigation drive coral resilience in warmer, more acidic oceans’

Seawater acidification affects the immune enzyme activities of the Manila clam Ruditapes philippinarum

Ocean acidification leads to changes in physiological and immune responses of bivalves, but the effect on the immune enzyme activities of the Manila clam, Ruditapes philippinarum, when the pH is lower than the normal value has not been studied in detail. In this study, experiments were conducted to determine how pH (7.4, 7.7, 8.0) affects the immune enzyme activities in the gill and hemocytes of the Manila clam. Membrane stability and phagocytosis increased with decrease of pH from 8.0 to 7.7 and then decreased at pH 7.4. The total protein content in the hemocytes and gills decreased with decreasing pH. Lysozyme content in the hemocytes increased with decreasing pH, and the differences were significant among the different pH groups ( P < 0.05). Adenosine triphosphatase activity at pH 7.4 was significantly higher than in the other two groups, but no significant difference was observed between pH 7.7 and 8.0. Catalase activity decreased from pH 8.0 to 7.7 and then increased at pH 7.4, and the differences were significant among the experimental groups ( P < 0.05). These findings provide valuable information about the immune response of R. philippinarum to reduced water pH and insights for future research investigating exposure of bivalves to elevated CO2 conditions.

Continue reading ‘Seawater acidification affects the immune enzyme activities of the Manila clam Ruditapes philippinarum’

Development of a biogeochemical and carbon model related to ocean acidification indices with an operational ocean model product in the North Western Pacific

We developed a biogeochemical and carbon model (JCOPE_EC) coupled with an operational ocean model for the North Western Pacific. JCOPE_EC represents ocean acidification indices on the background of the risks due to ocean acidification and our model experiences. It is an off-line tracer model driven by a high-resolution regional ocean general circulation model (JCOPE2M). The results showed that the model adequately reproduced the general patterns in the observed data, including the seasonal variability of chlorophyll-a, dissolved inorganic nitrogen/phosphorus, dissolved inorganic carbon, and total alkalinity. We provide an overview of this system and the results of the model validation based on the available observed data. Sensitivity analysis using fixed values for temperature, salinity, dissolved inorganic carbon and total alkalinity helped us identify which variables contributed most to seasonal variations in the ocean acidification indices, pH and Ωarg. The seasonal variation in the pHinsitu was governed mainly by balances of the change in temperature and dissolved inorganic carbon. The seasonal increase in Ωarg from winter to summer was governed mainly by dissolved inorganic carbon levels.

Continue reading ‘Development of a biogeochemical and carbon model related to ocean acidification indices with an operational ocean model product in the North Western Pacific’

Ocean acidification may alter predator-prey relationships and weaken nonlethal interactions between gastropods and crabs

Predator-prey interactions often drive ecological patterns and are governed by factors including predator feeding rates, prey behavioral avoidance, and prey structural defenses. Invasive species can also play a large ecological role by disrupting food webs, driving local extinctions, and influencing evolutionary changes in prey defense mechanisms. This study documents a substantial reduction in the behavioral and morphological responses of multiple gastropod species (Nucella lapillus, N. ostrina, Urosalpinx cinerea) to an invasive predatory crab (green crab Carcinus maenas) under ocean acidification conditions. These results suggest that climate-related changes in ocean chemistry may diminish non-lethal effects of predators on prey responses including behavioral avoidance. While snails with varying shell mineralogies were similarly successful at deterring predation, those with primarily aragonitic shells were more susceptible to dissolution and erosion under high CO2 conditions. The varying susceptibility to predation among species with similar ecological roles could indicate that the impacts of invasive species like green crabs could be modulated by the ability of native and invasive prey to withstand ocean acidification conditions.

Continue reading ‘Ocean acidification may alter predator-prey relationships and weaken nonlethal interactions between gastropods and crabs’

Larval development, juvenile survival, and burrowing rate of geoduck clams (Panopea japonica) under different pH conditions

Changes in seawater pH in the culture environment have numerous effects on marine bivalves. To investigate the effect of pH on larval development, juvenile survival, and burrowing rate of geoduck clams (Panopea japonica), specimens were cultured under different experimental pH conditions (6.8, 7.2, 7.6, 8.0, 8.4, and 9.2). The pH range for optimal growth and development differed among different larval stages. However, significant changes in larval development (p < 0.5) relative to the control (pH 8.0) were detected at very high or low pH. The best hatching rate occurred at pH 7.6–8.8, and it was significantly lower (p < 0.5) at pH 6.8, 7.2, and 9.2. Larval survival was only 4% at pH 6.8. Growth rate of larvae increased with increasing pH and the optimal range was 8.0 to 8.8. This finding suggests that alkaline conditions favor growth and development of larvae and allow them to reach the metamorphic stage promptly. Prolonged metamorphosis was a common feature in larvae in the different experimental pH groups. pH below 7.6 and above 8.8 resulted in a significantly (p < 0.5) lower metamorphosis rate, suggesting that high acidity and alkalinity were deleterious to larval metamorphosis. Thus, the suitable pH range for metamorphosis was 8.0 to 8.8. Lower and higher pH also affected the digging behavior of geoduck clams, and the suitable pH range for burrowing was 7.2 to 8.8. Geoduck clams stopped burrowing in the sand at pH 6.8 and 9.2, possibly due to impairment of biological process caused by acidic and alkaline seawater. These findings provide valuable information about the larval and juvenile responses of P. japonica in variable pH.

Continue reading ‘Larval development, juvenile survival, and burrowing rate of geoduck clams (Panopea japonica) under different pH conditions’

Characterization of Pacific oyster Crassostrea gigas proteomic response to natural environmental differences

Global climate change is rapidly altering coastal marine ecosystems that are important for food production. A comprehensive understanding of how organisms will respond to these complex environmental changes can come only from observing and studying species within their natural environment. To this end, the effects of environmental drivers—pH, dissolved oxygen content, salinity, and temperature—on Pacific oyster Crassostrea gigas physiology were evaluated in an outplant experiment. Sibling juvenile oysters were outplanted to eelgrass and unvegetated habitat at 5 different estuarine sites within the Acidification Nearshore Monitoring Network in Washington State, USA, to evaluate how regional environmental drivers influence molecular physiology. Within each site, we also determined if eelgrass presence, which buffered pH conditions, changed the oysters’ expressed proteome. A novel, 2-step, gel-free proteomic approach was used to identify differences in protein abundance in C. gigas ctenidia tissue after a 29 d outplant by (1) identifying proteins in a data-independent acquisition survey step and (2) comparing relative quantities of targeted environmental response proteins using selected reaction monitoring. While there was no difference in protein abundance detected between habitats or among sites within Puget Sound, C. gigas outplanted at Willapa Bay had significantly higher abundances of antioxidant enzymes and molecular chaperones. Environmental factors at Willapa Bay, such as higher average temperature, may have driven this protein abundance pattern. These findings generate a suite of new hypotheses for lab and field experiments to compare the effects of regional conditions on physiological responses of marine invertebrates.

Continue reading ‘Characterization of Pacific oyster Crassostrea gigas proteomic response to natural environmental differences’

No compromise between metabolism and behavior of decorator crabs in reduced pH conditions

Many marine calcifiers experience metabolic costs when exposed to experimental ocean acidification conditions, potentially limiting the energy available to support regulatory processes and behaviors. Decorator crabs expend energy on decoration camouflage and may face acute trade-offs under environmental stress. We hypothesized that under reduced pH conditions, decorator crabs will be energy limited and allocate energy towards growth and calcification at the expense of decoration behavior. Decorator crabs, Pelia tumida, were exposed to ambient (8.01) and reduced (7.74) pH conditions for five weeks. Half of the animals in each treatment were given sponge to decorate with. Animals were analyzed for changes in body mass, exoskeleton mineral content (Ca and Mg), organic content (a proxy for metabolism), and decoration behavior (sponge mass and percent cover). Overall, decorator crabs showed no signs of energy limitation under reduced pH conditions. Exoskeleton mineral content, body mass, and organic content of crabs remained the same across pH and decoration treatments, with no effect of reduced pH on decoration behavior. Despite being a relatively inactive, osmoconforming species, Pelia tumida is able to maintain multiple regulatory processes and behavior when exposed to environmental pH stress, which underscores the complexity of responses within Crustacea to ocean acidification conditions.

Continue reading ‘No compromise between metabolism and behavior of decorator crabs in reduced pH conditions’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,243,553 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book