Posts Tagged 'North Pacific'

The potential of kelp Saccharina japonica in shielding Pacific oyster Crassostrea gigas from elevated seawater pCO2 stress

Ocean acidification (OA) caused by elevated atmospheric CO2 concentration is predicted to have negative impacts on marine bivalves in aquaculture. However, to date, most of our knowledge is derived from short-term laboratory-based experiments, which are difficult to scale to real-world production. Therefore, field experiments, such as this study, are critical for improving ecological relevance. Due to the ability of seaweed to absorb dissolved carbon dioxide from the surrounding seawater through photosynthesis, seaweed has gained theoretical attention as a potential partner of bivalves in integrated aquaculture to help mitigate the adverse effects of OA. Consequently, this study investigates the impact of elevated pCO2 on the physiological responses of the Pacific oyster Crassostrea gigas in the presence and absence of kelp (Saccharina japonica) using in situ mesocosms. For 30 days, mesocosms were exposed to six treatments, consisting of two pCO2 treatments (500 and 900 μatm) combined with three biotic treatments (oyster alone, kelp alone, and integrated kelp and oyster aquaculture). Results showed that the clearance rate (CR) and scope for growth (SfG) of C. gigas were significantly reduced by elevated pCO2, whereas respiration rates (MO2) and ammonium excretion rates (ER) were significantly increased. However, food absorption efficiency (AE) was not significantly affected by elevated pCO2. The presence of S. japonica changed the daytime pHNBS of experimental units by ~0.16 units in the elevated pCO2 treatment. As a consequence, CR and SfG significantly increased and MO2 and ER decreased compared to C. gigas exposed to elevated pCO2 without S. japonica. These findings indicate that the presence of S. japonica in integrated aquaculture may help shield C. gigas from the negative effects of elevated seawater pCO2.

Continue reading ‘The potential of kelp Saccharina japonica in shielding Pacific oyster Crassostrea gigas from elevated seawater pCO2 stress’

Multiscale mechanical consequences of ocean acidification for cold-water corals

Ocean acidification is a threat to deep-sea corals and could lead to dramatic and rapid loss of the reef framework habitat they build. Weakening of structurally critical parts of the coral reef framework can lead to physical habitat collapse on an ecosystem scale, reducing the potential for biodiversity support. The mechanism underpinning crumbling and collapse of corals can be described via a combination of laboratory-scale experiments and mathematical and computational models. We synthesise data from electron back-scatter diffraction, micro-computed tomography, and micromechanical experiments, supplemented by molecular dynamics and continuum micromechanics simulations to predict failure of coral structures under increasing porosity and dissolution. Results reveal remarkable mechanical properties of the building material of cold-water coral skeletons of 462 MPa compressive strength and 45–67 GPa stiffness. This is 10 times stronger than concrete, twice as strong as ultrahigh performance fibre reinforced concrete, or nacre. Contrary to what would be expected, CWCs retain the strength of their skeletal building material despite a loss of its stiffness even when synthesised under future oceanic conditions. As this is on the material length-scale, it is independent of increasing porosity from exposure to corrosive water or bioerosion. Our models then illustrate how small increases in porosity lead to significantly increased risk of crumbling coral habitat. This new understanding, combined with projections of how seawater chemistry will change over the coming decades, will help support future conservation and management efforts of these vulnerable marine ecosystems by identifying which ecosystems are at risk and when they will be at risk, allowing assessment of the impact upon associated biodiversity.

Continue reading ‘Multiscale mechanical consequences of ocean acidification for cold-water corals’

California shellfish farmers: perceptions of changing ocean conditions and strategies for adaptive capacity

Highlights

  • Shellfish growers were interviewed about their experiences with environmental change.
  • Growers expressed concerns about multiple observed environmental changes.
  • Growers identified seventeen adaptive strategies.
  • Strategies can be categorized as policy/networking, farm management, and science.

Abstract

Coastal communities along the U.S. West Coast experience a myriad of environmental stressors, including exposure to low pH waters exacerbated by ocean acidification (OA). This can result in ecological and social consequences, making necessary the exploration and support for locally relevant strategies to adapt to OA and other environmental changes. The shellfish aquaculture industry along the West Coast is particularly vulnerable to OA, given the negative effects of low pH on shellfish survival and growth. As such, the social-ecological system exemplified by this industry serves as an opportunity to identify and address strategies for local adaptation. Through interviews conducted with West Coast shellfish farm owners and managers (‘growers’), we investigate perceptions of OA and environmental change and identify specific strategies for adaptation. We find that growers are concerned about OA, among many other environmental stressors such as marine pathogens and water temperature. However, growers are often unable to attribute changes in shellfish survival or health to these environmental factors due to a lack of data and the resources and network required to acquire and interpret these data. From these interviews, we identify a list of adaptive strategies growers employ or would like to employ to improve their overall adaptive capacity to multiple stressors (environmental, economic, political), which together, allow farms to weather periods of OA-induced stress more effectively. Very few studies to date have identified specific adaptive strategies derived directly from the communities being impacted. This work therefore fills a gap in the literature on adaptive capacity by amplifying the voices of those on the front lines of climate change and identifying explicit pathways for adaptation.

Continue reading ‘California shellfish farmers: perceptions of changing ocean conditions and strategies for adaptive capacity’

Natural analogues in pH variability and predictability across the coastal Pacific estuaries: extrapolation of the increased oyster dissolution under increased pH amplitude and low predictability related to ocean acidification

Coastal-estuarine habitats are rapidly changing due to global climate change, with impacts influenced by the variability of carbonate chemistry conditions. However, our understanding of the responses of ecologically and economically important calcifiers to pH variability and temporal variation is limited, particularly with respect to shell-building processes. We investigated the mechanisms driving biomineralogical and physiological responses in juveniles of introduced (Pacific; Crassostrea gigas) and native (Olympia; Ostrea lurida) oysters under flow-through experimental conditions over a six-week period that simulate current and future conditions: static control and low pH (8.0 and 7.7); low pH with fluctuating (24-h) amplitude (7.7 ± 0.2 and 7.7 ± 0.5); and high-frequency (12-h) fluctuating (8.0 ± 0.2) treatment. The oysters showed physiological tolerance in vital processes, including calcification, respiration, clearance, and survival. However, shell dissolution significantly increased with larger amplitudes of pH variability compared to static pH conditions, attributable to the longer cumulative exposure to lower pH conditions, with the dissolution threshold of pH 7.7 with 0.2 amplitude. Moreover, the high-frequency treatment triggered significantly greater dissolution, likely because of the oyster’s inability to respond to the unpredictable frequency of variations. The experimental findings were extrapolated to provide context for conditions existing in several Pacific coastal estuaries, with time series analyses demonstrating unique signatures of pH predictability and variability in these habitats, indicating potentially benefiting effects on fitness in these habitats. These implications are crucial for evaluating the suitability of coastal habitats for aquaculture, adaptation, and carbon dioxide removal strategies.

Continue reading ‘Natural analogues in pH variability and predictability across the coastal Pacific estuaries: extrapolation of the increased oyster dissolution under increased pH amplitude and low predictability related to ocean acidification’

CaCO3 dissolution in carbonate-poor shelf sands increases with ocean acidification and porewater residence time

Carbonate-poor sandy sediments comprise much of the shelf area, and—despite their low CaCO3 content—contain a significant pool of CaCO3 base available to neutralize ocean acid. Here, we conducted flow-through column experiments on permeable, carbonate-poor sand obtained from Catalina Island, CA, to quantify CaCO3 dissolution across a range of current and future seawater conditions. Using 13C isotope mass balance, we show that dissolution depends both on the CaCO3 saturation state (Ω) of the inflowing seawater, as well as porewater residence time. At current ocean conditions (Ωaragonite =2.4 and Ωcalcite =3.7 at our field site), dissolution was negligible for porewater residence times <1.8 h, but increased thereafter, following sufficient production of CO2 from aerobic respiration. As Ω of inlet water was lowered, simulating future ocean conditions, dissolution began earlier and rates increased. The response to acidification was similar to previously reported observations in carbonate-rich shelf environments, suggesting that carbonate-poor sediments have the potential to support enhanced dissolution in an acidifying ocean, given sufficient CaCO3 substrate. With continued acidification projected to occur this century, these sediments could transition from a net source of acid to the overlying seawater (production of alkalinity to dissolved inorganic carbon, ΔAlk/ΔDIC<1) to net source of buffering capacity (ΔAlk/ΔDIC>1) when overlying seawater Ωaragonite reaches 0.96 to 0.69 (Ωcalcite = 1.50 and 1.07), depending on porewater residence time. In some areas with naturally acidic water, this threshold has already been reached.

Continue reading ‘CaCO3 dissolution in carbonate-poor shelf sands increases with ocean acidification and porewater residence time’

Influence of climate on seawater quality and green mussel production

This study aimed to investigate the relationships between atmospheric parameters, seawater quality and green mussel production which were cultured in pond, estuary and coastal areas. Seawater and mussel samples were collected from mussel farms in the inner Gulf of Thailand from January to December 2019. Climate data were obtained from the Thai Meteorological Department. The correlations between selected atmospheric and seawater parameters were developed using linear and non-linear models. The influence of seawater quality on mussel production was evaluated using principal component analysis and stepwise multiple linear regression. The effects of atmospheric variation on green mussel productivity were simulated. The results showed that high air temperature and rainfall caused an increase in seawater temperature and a decrease in salinity, respectively. It was observed that the most influential factors affecting mussel production were nutrients and dissolved oxygen in ponds, temperature and salinity in estuaries, and nutrients and pH in coastal areas. The simulation indicated that mussel production can deteriorate when air temperature reaches 34°C and rainfall is higher than 200 mm per month. Our results suggest that under climate change events, locations with less riverine influence can provide higher mussel productivity. These results can be used as a guideline for farmers during a climate change event.

Continue reading ‘Influence of climate on seawater quality and green mussel production’

Impact of microplastics and ocean acidification on critical stages of sea urchin (Paracentrotus lividus) early development

Highlights

  • Ocean acidification and microplastics altered the morphology of P. lividus larvae.
  • Ocean acidification and microplastics reduce growth of P. lividus larvae.
  • Alterations occurred before and after larvae start to feed exogenously.
  • The combined effect of both stressors on P. lividus morphology is non additive.
  • SET is an ideal method to study the impact of ocean acidification at a lab scale.

Abstract

One of the major consequences of increasing atmospheric CO2 is a phenomenon known as ocean acidification. This alteration of water chemistry can modulate the impact on marine organisms of other stressors also present in the environment, such as microplastics (MP). The objective of this work was to determine the combined impact of microplastic pollution and ocean acidification on the early development of Paracentrotus lividus. To study these multi-stressor impacts on development P. lividus the sea urchin embryo test (SET) was used. Newly fertilised embryos of P. lividus were exposed to a control treatment (filtered natural seawater), MP (3000 particles/mL), acidified sea water (pH = 7.6), and a combination of MP and acidification (3000 particles/mL + pH = 7.6). After 48, 72, and 96 h measurements of growth and morphometric parameters were taken. Results showed that ocean acidification and MP cause alterations in growth and larval morphology both before and after the larvae start to feed exogenously. The exposure to MP under conditions of ocean acidification did not produce any additional effect on growth, but differences were observed at the morphological level related to a decrease in the width of larvae at 24 h. Overall, changes in larvae shape observed at three key points of their development could modify their buoyancy affecting their ability to obtain and ingest food. Therefore, ocean acidification and MP pollution might compromise the chances of P. lividus to survive in the environment under future scenarios of global climate change.

Continue reading ‘Impact of microplastics and ocean acidification on critical stages of sea urchin (Paracentrotus lividus) early development’

The diel and seasonal heterogeneity of carbonate chemistry and dissolved oxygen in three types of macroalgal habitats

As concerns about ocean acidification continue to grow, the importance of macroalgal communities in buffering coastal seawater biogeochemistry through their metabolisms is gaining more attention. However, studies on diel and seasonal fluctuations in seawater chemistry within these communities are still rare. Here, we characterized the spatial and temporal heterogeneity in diel and seasonal dynamics of seawater carbonate chemistry and dissolved oxygen (DO) in three types of macroalgal habitats (UAM: ulvoid algal mat dominated, TAM: turf algal mat dominated, and SC: Sargassum horneri and coralline algae dominated). Our results show that diel fluctuations in carbonate parameters and DO varied significantly among habitat types and seasons due to differences in their biological metabolisms (photosynthesis and calcification) and each site’s hydrological characteristics. Specifically, carbonate parameters were most affected by biological metabolisms at the SC site, and by environmental variables at the UAM site. Also, we demonstrate that macroalgal communities reduced ocean acidification conditions when ocean temperatures supported photosynthesis and thereby the absorption of dissolved inorganic carbon. However, once temperatures exceeded the optimum ranges for macroalgae, respiration within these communities exceeded photosynthesis and increased CO2 concentrations, thereby exacerbating ocean acidification conditions. We conclude that the seawater carbonate chemistry is strongly influenced by the metabolisms of the dominant macroalgae within these different habitat types, which may, in turn, alter their buffering capacity against ocean acidification.

Continue reading ‘The diel and seasonal heterogeneity of carbonate chemistry and dissolved oxygen in three types of macroalgal habitats’

Quasi-synchronous accumulation of apparent oxygen utilization and inorganic carbon in the South Yellow Sea cold water mass from spring to autumn: the acidification effect and roles of community metabolic processes, water mixing, and spring thermal state

To better understand seasonal acidification in the South Yellow Sea (SYS), four field surveys conducted in 2019 and the historical data obtained in 2018 were incorporated in this study. The lowest aragonite saturation state (Ωarag) value of 1.15 was observed in the central SYS in late autumn. Despite interannual variations in the rate of net community respiration, the quasi-synchronous accumulation of apparent oxygen utilization and excess dissolved inorganic carbon (DIC) relative to the air equilibrium were revealed in the SYS cold water mass (SYSCWM) from late spring to autumn. Correspondingly, the two acidification indexes (Ωarag and pH) decreased in logarithmic forms in the SYSCWM in warm seasons. To examine the potential influences of hydrological dynamics on seasonal acidification in the SYSCWM, a three-endmember water-mixing model was applied. The results showed that the cumulative effect of various non-conservative processes on DIC was comparable with the excess DIC relative to the air equilibrium. This implied that the summer and autumn carbonate dynamics and the acidification status of the cold water mass were almost free from the potential impacts of the weak water mixing and internal circulation in summer and autumn in a given year. The Yellow Sea Warm Current carries oceanic DIC into the SYS only in winter and early spring. This study also showed that the re-equilibrium with atmospheric CO2 at given temperature in early spring determined the initial Ωarag of the SYS before Ωarag declining in late spring, summer, and autumn. The sensitivity of coastal Ωarag changes to DIC addition is subject to both spatial and temporal variations.

Continue reading ‘Quasi-synchronous accumulation of apparent oxygen utilization and inorganic carbon in the South Yellow Sea cold water mass from spring to autumn: the acidification effect and roles of community metabolic processes, water mixing, and spring thermal state’

Commentary: overstated potential for seagrass meadows to mitigate coastal ocean acidification

A Commentary on
Overstated Potential For Seagrass Meadows To Mitigate Coastal Ocean Acidification

By Van Dam, B., Lopes, C., Zeller, M. A., Ribas-ribas, M., Wang, H., and Thomas, H. (2021). Front. Mar. Sci. 8:729992. doi: 10.3389/fmars.2021.729992

Van Dam et al. (henceforth VD) published an Opinion (Van Dam et al., 2021a) and subsequent Corrigendum (Van Dam et al., 2021b) about our work regarding amelioration of low pH in seagrass ecosystems (Ricart et al., 2021). Below we discuss troubling details in the authors’ approach, an unaddressed error, misrepresentations, and problematic inferences; each contravenes VD’s argument of “overstated potential” for mitigation of low pH.

To start, VD’s original comment was rejected previously by Global Change Biology due to 1425 spurious data points and two invalid graphs. Despite being informed of these mistakes, VD submitted the identical, unchanged critique to Frontiers in Marine Science. The erroneous publication and Corrigendum resulted.

Even following correction, we disagree with VD’s two primary assertions:

1) VD claim that using ΔpH is “mathematically incorrect” because corresponding Δ[H+] values depend on initial pH, a rather strident statement given the relationship is well known (Fassbender et al., 2021; note that in our study, initial pH is that outside seagrass; i.e., Δ=measurement inside minus that outside). VD then confusingly duplicate a single set of measurements in their Figure 1A, plotting it as two separate data clusters. One cluster (their red points) improperly inverts values to show “–ΔpH” instead of “ΔpH” on the y-axis. The other, teal cluster employs within-meadow pH rather than outside-meadow pH as the independent variable, a choice unsuited to assessing whether seagrass ecosystems elevate pH relative to impinging waters, and one that is misleading. The correct relationship (Figure 1A here) demonstrates that although ΔpH and pH indeed covary, the greatest low-pH amelioration (strongest Δ[H+] depression) occurs when outside-meadow pH is low and acidification stress is high. Most importantly, key patterns of Ricart et al. (2021) remain unchanged when Δ[H+] is used instead of ΔpH (Figures 1B–D here). Therefore, our conclusions are robust to either ΔpH or Δ[H+], and pH broadens audience accessibility.

2) VD claim that we overstate the capacity of seagrasses to ameliorate low pH. However, we believe this stance relies too heavily on categorical thinking.

Continue reading ‘Commentary: overstated potential for seagrass meadows to mitigate coastal ocean acidification’

Effects of shellfish and macro-algae IMTA in North China on the environment, inorganic carbon system, organic carbon system, and sea–air CO2 fluxes

Shellfish and macro-algae integrated multi-trophic aquaculture (IMTA) contribute greatly to the sustainability of aquaculture. However, the effects of large-scale shellfish and macro-algae aquaculture on the functions of the ocean carbon sink are not clear. To clarify these effects, we studied the spatial and temporal changes of inorganic and organic carbon systems in seawater under different aquaculture modes (monoculture or polyculture of shellfish and macro-algae) in Sanggou Bay, together with the variation of other environmental factors. The results show that the summertime dissolved oxygen (DO) concentration in the shellfish culture zone was significantly lower than other zones (p < 0.05), with a minimum value of 7.07 ± 0.25 mg/L. The variation of pH and total alkalinity (TA) were large across different culture modes, and the seawater in the shellfish culture zone had the lowest pH and TA than the other zones. Seasonal environment and aquaculture modes significantly affected the variation of dissolved inorganic carbon (DIC), CO2 partial pressure (pCO2), dissolved organic carbon (DOC), and particulate organic carbon (POC) concentrations. The highest values of DIC, pCO2, and POC appeared in summer, and the lowest appeared in winter. For DOC concentration, the lowest value appeared in autumn. Spatially, DIC and pCO2 were highest in the shellfish culture zone and lowest in the macro-algae culture zone, DOC was highest in the macro-algae culture zone and lowest in the shellfish culture zone, and POC was lower in the shellfish culture zone and macro-algae culture zone and higher in the remaining zones. The results of sea–air CO2 fluxes showed that except for the shellfish culture zone during summertime, which released CO2 to the atmosphere, all culture zones were the sinks of atmospheric CO2 during the culture period, with the whole bay being a strong CO2 sink during autumn and winter. In summary, large-scale shellfish–macro-algae IMTA plays an important role in the local carbon cycle and contributes to mitigating ocean acidification and hypoxia.

Continue reading ‘Effects of shellfish and macro-algae IMTA in North China on the environment, inorganic carbon system, organic carbon system, and sea–air CO2 fluxes’

Ocean biogeochemical signatures of the North Pacific Blob

Abstract

The Blob was the early manifestation of the Northeast Pacific marine heat wave from 2013 to 2016. While the upper ocean temperature in the Blob has been well described, the impacts on marine biogeochemistry have not been fully studied. Here, we characterize and develop understanding of Eastern North Pacific upper ocean biogeochemical properties during the Winter of 2013-14 using in situ observations, an observation-based product, and reconstructions from a collection of ocean models. We find that the Blob is associated with significant upper ocean biogeochemical anomalies: a 5% increase in aragonite saturation state (temporary reprieve of ocean acidification) and a 3% decrease in oxygen concentration (enhanced deoxygenation). Anomalous advection and mixing drive the aragonite saturation anomaly, while anomalous heating and air-sea gas exchange drive the oxygen anomaly. Marine heatwaves do not necessarily serve as an analog for future change as they may enhance or mitigate long-term trends.

Plain Language Summary

The global ocean is experiencing major changes due to human-made carbon emissions and climate change, leading to a warming ocean with increasing acidity and declining oxygen. On top of these long-term changes in the ocean are short-term extreme events, such as marine heatwaves. These extreme events quickly change the ocean state and can stress marine ecosystems in multiple ways. The Northeast Pacific marine heat wave (2013-2016) was one such marine heatwave. Here we focus on the early portion of this marine heatwave, called the Blob. While the ocean temperature changes during the event are well understood, the effects on ocean biogeochemistry have not been fully examined. In this study, we use an earth system model that accurately simulates the Blob to examine short-term changes in oxygen and acidity. We find that the warming signal leads to a decline in the effects of ocean acidification, mainly due to changes in the movement of carbon, and lowers the amount of oxygen, due primarily to temperature-driven effects. These results suggest that some effects of climate change may be exacerbated (warming) or mitigated (ocean acidification) by marine heatwaves.

Continue reading ‘Ocean biogeochemical signatures of the North Pacific Blob’

Multigenerational life-history responses to pH in distinct populations of the copepod Tigriopus californicus

Intertidal zones are highly dynamic and harsh habitats: organisms that persist there must face many stressors, including drastic changes in seawater pH, which can be strongly influenced by biological processes. Coastal ecosystems are heterogeneous in space and time, and populations can be exposed to distinct selective pressures and evolve different capacities for acclimation to changes in pH. Tigriopus californicus is a harpacticoid copepod found in high-shore rock pools on the west coast of North America. It is a model system for studying population dynamics in diverse environments, but little is known about its responses to changes in seawater pH. I quantified the effects of pH on the survivorship, fecundity, and development of four T. californicus populations from San Juan Island, Washington, across three generations. For all populations and generations, copepod cultures had lower survivorship and delayed development under extended exposure to higher pH treatments (pH 7.5 and pH 8.0), whereas cultures maintained in lower pH (7.0) displayed stable population growth over time. Reciprocal transplants between treatments demonstrated that these pH effects were reversible. Life histories were distinct between populations, and there were differences in the magnitudes of pH effects on development and culture growth that persisted through multiple generations. These results suggest that T. californicus might not have the generalist physiology that might be expected of an intertidal species, and it could be adapted to lower average pH conditions than those that occur in adjacent open waters.

Continue reading ‘Multigenerational life-history responses to pH in distinct populations of the copepod Tigriopus californicus’

Ocean futures for the world’s largest yellowfin tuna population under the combined effects of ocean warming and acidification

The impacts of climate change are expected to have profound effects on the fisheries of the Pacific Ocean, including its tuna fisheries, the largest globally. This study examined the combined effects of climate change on the yellowfin tuna population using the ecosystem model SEAPODYM. Yellowfin tuna fisheries in the Pacific contribute significantly to the economies and food security of Pacific Island Countries and Territories and Oceania. We use an ensemble of earth climate models to project yellowfin populations under a high greenhouse gas emissions (IPCC RCP8.5) scenario, which includes, the combined effects of a warming ocean, increasing acidification and changing ocean chemistry. Our results suggest that the acidification impact will be smaller in comparison to the ocean warming impact, even in the most extreme ensemble member scenario explored, but will have additional influences on yellowfin tuna population dynamics. An eastward shift in the distribution of yellowfin tuna was observed in the projections in the model ensemble in the absence of explicitly accounting for changes in acidification. The extent of this shift did not substantially differ when the three-acidification induced larval mortality scenarios were included in the ensemble; however, acidification was projected to weaken the magnitude of the increase in abundance in the eastern Pacific. Together with intensive fishing, these potential changes are likely to challenge the global fishing industry as well as the economies and food systems of many small Pacific Island Countries and Territories. The modelling framework applied in this study provides a tool for evaluating such effects and informing policy development.

Continue reading ‘Ocean futures for the world’s largest yellowfin tuna population under the combined effects of ocean warming and acidification’

Tracking the space-time evolution of ocean acidification extremes in the California Current System and Northeast Pacific

Abstract

Ocean acidification is punctuated by episodic extremes of low pH and saturation state with regard to aragonite (ΩA). Here, we use a hindcast simulation from 1984 to 2019 with a high-resolution regional ocean model (ROMS-BEC) to identify and track ocean acidification extremes (OAX) in the Northeast Pacific and the California Current System (CCS). In the first step, we identify all grid cells whose pH and ΩA are simultaneously below their first percentile over the analysis period (1984-2019). In the second step, we aggregate all neighboring cells with extreme conditions into three-dimensional time evolving events, permitting us to track them in a Lagrangian manner over their lifetime. We detect more than twenty-two thousand events that occur at least once in the upper 100 m during their lifetime, with broad distributions in terms of size, duration, volume and intensity, and with 26% of them harboring corrosive conditions (ΩA < 1). By clustering the OAXs, we find three types of extremes in the CCS. Near the coast, intense, shallow, and short-lasting OAXs dominate, caused by strong upwelling. A second type consists of large and long-lasting OAX events that are associated with westward propagating cyclonic eddies. They account for only 3% of all extremes, but are the most severe events. The third type are small extremes at depth arising from pycnocline heave. OAX potentially have deleterious effects on marine life. Marine calcifiers, such as pteropods, might be especially impacted by the long-lasting events with corrosive conditions.

Plain Language Summary

The emission of carbon dioxide by human activities causes ocean acidification, i.e., the decrease of the pH and saturation level of seawater with respect to the carbonate mineral aragonite. Episodic events of unusually low pH and aragonite saturation level punctuate these long-term declines, potentially intensifying stress on marine plankton. Particularly prone to extremes is the California Current System off the U.S. West coast due to its naturally low pH-aragonite waters and its strong variability. We use a high-resolution numerical model to identify and characterize extreme events associated with ocean acidification in this region, and understand their drivers. We find extremes to have a broad range of volumes, durations and strengths, with a quarter of them carrying corrosive conditions for shelled organisms, i.e., aragonite saturation levels below 1. The largest and longest-lived events are associated with cyclonic eddies (whirls of approximately 50 to 100 km in diameter) that trap upwelled low pH-aragonite waters near the coast. Although representing only 3% of the events, they cause most of the total excess of acidity induced by all identified extremes. The vertical extent and duration of extremes with corrosive mean conditions are expected to impact calcifying organisms, such as pteropods.

Continue reading ‘Tracking the space-time evolution of ocean acidification extremes in the California Current System and Northeast Pacific’

A framework for assessing harvest strategy choice when considering multiple interacting fisheries and a changing environment: the example of eastern Bering Sea crab stocks

Ecosystem Based Fisheries Management aims to broaden the set of factors included in assessments and management decision making but progress with implementation remains limited. We developed a framework that examines the consequences of temporal changes in temperature and ocean pH on yield and profit of multiple interacting stocks including eastern Bering Sea (EBS) snow, southern Tanner, and red king crab. Our analyses integrate experimental work on the effects of temperature and ocean pH on growth and survival of larval and juvenile crab and monitoring data from surveys, fishery landings, and at-sea observer programs. The impacts of future changes in temperature and ocean pH on early life history have effects that differ markedly among stocks, being most pessimistic for Bristol Bay red king crab and most optimistic for EBS snow crab. Our results highlight that harvest control rules that aim to maximize yield lead to lower profits than those that aim to maximize profit. Similarly, harvest control rules that aim to maximize profit lead to lower yields than those that aim to maximize yield, but differences are less pronounced. Maximizing profits has conservation benefits, especially when the implemented harvest control rule reduces fishing mortality if population biomass is below a threshold level.

Continue reading ‘A framework for assessing harvest strategy choice when considering multiple interacting fisheries and a changing environment: the example of eastern Bering Sea crab stocks’

Changes of physical and mechanical properties of coral reef limestone under CO2–seawater–rock interaction

Large amounts of anthropogenic CO2 in the atmosphere are taken up when the ocean alters the seawater carbonate system, which could have a significant impact on carbonate-rich sediments. Coral reef limestone is a special biogenic carbonate, which is mainly composed of calcium carbonate. When carbonate-rich rocks are brought into contact with a CO2 weak acid solution, they will be dissolved, which may affect the physical and mechanical properties of the rock. In this paper, the physical and chemical interactions between CO2, seawater and the framework structure reef limestone were studied based on an experiment conducted in a hydrothermal reactor. The solution was analyzed for dissolved Ca2+ concentration during the reaction, and the rock mass, effective volume (except for the volume of open pores), permeability, images from electron microscopy and X-ray microtomography were contrasted before and after immersion. The uniaxial compressive and tensile strength tests were conducted, respectively, to clarify the mechanical response of the rock after the reaction. The results indicate that dissolution occurred during the reaction, and the calcium ions of the solution were increased. The physical properties of the rock were changed, and the permeability significantly increased. Because the rocks were soaked for only 15 days, the total cumulative amount of calcium carbonate dissolved was less, and the mechanical properties were not affected.

Continue reading ‘Changes of physical and mechanical properties of coral reef limestone under CO2–seawater–rock interaction’

Increasing arsenic accumulation as an implication of climate change: a case study using red algae

Climate change due to an increasing concentration of carbon dioxide in the atmosphere is a global issue. It can impact aquatic environments by affecting water flow, pollutant transformation and migration, and other toxicant-related effects. We assessed the interactive effects of temperature warming and pH changes on variations in accumulation of total arsenic (AsT) in the red alga Sarcodia suae at different levels of arsenite (AsIII). Result showed that AsT variations in the alga were moderated by significant joint effects of warming temperature and/or increasing pH levels and their interactions with increasing AsIII concentrations. Our study suggests possible deleterious impacts on macroalgal populations due to toxicological effects associated with prevailing environmental conditions. Therefore, improved pollution management, climate change adaptation, and mitigation strategies are needed to deal with current environmental issues and As aggravation.

Continue reading ‘Increasing arsenic accumulation as an implication of climate change: a case study using red algae’

The coral reef-dwelling Peneroplis spp. shows calcification recovery to ocean acidification conditions

Large Benthic Foraminifera are a crucial component of coral-reef ecosystems, which are currently threatened by ocean acidification. We conducted culture experiments to evaluate the impact of low pH on survival and test dissolution of the symbiont-bearing species Peneroplis spp., and to observe potential calcification recovery when specimens are placed back under reference pH value (7.9). We found that Peneroplis spp. displayed living activity up to 3 days at pH 6.9 (Ωcal < 1) or up to 1 month at pH 7.4 (Ωcal > 1), despite the dark and unfed conditions. Dissolution features were observed under low Ωcal values, such as changes in test density, peeled extrados layers, and decalcified tests with exposed organic linings. A new calcification phase started when specimens were placed back at reference pH. This calcification’s resumption was an addition of new chambers without reparation of the dissolved parts, which is consistent with the porcelaneous calcification pathway of Peneroplis spp. The most decalcified specimens displayed a strong survival response by adding up to 8 new chambers, and the contribution of food supply in this process was highlighted. These results suggest that porcelaneous LBF species have some recovery abilities to short exposure (e.g., 3 days to 1 month) to acidified conditions. However, the geochemical signature of trace elements in the new calcite was impacted, and the majority of the new chambers were distorted and resulted in abnormal tests, which might hinder the specimens’ reproduction and thus their survival on the long term.

Continue reading ‘The coral reef-dwelling Peneroplis spp. shows calcification recovery to ocean acidification conditions’

The biological uptake of dissolved iron in the changing Daya Bay, South China Sea: effect of pH and DO

Highlights

  • Fe bioavailability affected by pH and DO regulates phytoplanktonic Fe uptake.
  • Nano-phytoplankton is more sensitive to the variation of seawater pH and DO.
  • Phytoplankton community tend to be miniaturized in the changing DYB.
  • Fe requirement in DYB goes higher accompanied with the phytoplankton miniaturization.
  • DYB is not an Fe-rich environment derived from the relative low Fe:C ratio.

Abstract

The oceanic acidification and coastal hypoxia have potential to enhance biological uptake of dissolved iron (Fe) by phytoplankton. In this study, the Fe uptake rate (FeUR) in Daya Bay was significantly negatively correlated with pH and dissolved oxygen (DO) (r = −0.81 and −0.73, respectively, p < 0.001). In addition, binary regression (FeUR = −1.45 × pH − 0.10 × DO + 13.64) also indicated that both pH and DO played key roles in FeUR variations. As pH and DO decreased, Fe uptake by phytoplankton was promoted, and the contribution of nano-phytoplankton to Fe uptake increased significantly, while that of pico-FeUR decreased. These will result in the phytoplankton community to be miniaturized and Fe requirement of phytoplankton goes higher, thereby leading changes of phytoplankton composition and coastal ecosystem. This study helps to understand how Fe could affect the coastal ecosystem under the increasing anthropogenic influences.

Continue reading ‘The biological uptake of dissolved iron in the changing Daya Bay, South China Sea: effect of pH and DO’

  • Reset

Subscribe

OA-ICC Highlights


%d bloggers like this: