Posts Tagged 'North Pacific'

Forecasting ocean acidification impacts on kelp forest ecosystems

Ocean acidification is one the biggest threats to marine ecosystems worldwide, but its ecosystem wide responses are still poorly understood. This study integrates field and experimental data into a mass balance food web model of a temperate coastal ecosystem to determine the impacts of specific OA forcing mechanisms as well as how they interact with one another. Specifically, we forced a food web model of a kelp forest ecosystem near its southern distribution limit in the California large marine ecosystem to a 0.5 pH drop over the course of 50 years. This study utilizes a modeling approach to determine the impacts of specific OA forcing mechanisms as well as how they interact. Isolating OA impacts on growth (Production), mortality (Other Mortality), and predation interactions (Vulnerability) or combining all three mechanisms together leads to a variety of ecosystem responses, with some taxa increasing in abundance and other decreasing. Results suggest that carbonate mineralizing groups such as coralline algae, abalone, snails, and lobsters display the largest decreases in biomass while macroalgae, urchins, and some larger fish species display the largest increases. Low trophic level groups such as giant kelp and brown algae increase in biomass by 16% and 71%, respectively. Due to the diverse way in which OA stress manifests at both individual and population levels, ecosystem-level effects can vary and display nonlinear patterns. Combined OA forcing leads to initial increases in ecosystem and commercial biomasses followed by a decrease in commercial biomass below initial values over time, while ecosystem biomass remains high. Both biodiversity and average trophic level decrease over time. These projections indicate that the kelp forest community would maintain high productivity with a 0.5 drop in pH, but with a substantially different community structure characterized by lower biodiversity and relatively greater dominance by lower trophic level organisms.

Continue reading ‘Forecasting ocean acidification impacts on kelp forest ecosystems’

Adaption potential of Crassostrea gigas to ocean acidification and disease caused by Vibrio harveyi

The survival and development of bivalve larvae is adversely impacted by ocean acidification and Vibrio infection, indicating that bivalves need to simultaneously adapt to both stressors associated with anthropogenic climate change. In this study, we use a half-dial breeding design to estimate heritability (h2) for survival to Vibrio harveyi infection and larval shell length to aragonite undersaturated and normal conditions in laboratory-reared Crassostrea gigas. Phenotypic differences were observed between families for these traits with heritability estimated to be moderate for survival to V. harveyi challenge (h2 = 0.25) and low for shell length in corrosive (Ωaragonite = 0.9, h2 = 0.15) and normal conditions (Ωaragonite = 1.6, h2 = 0.15). Predicted breeding values for larval shell length are correlated between aragonite-undersaturated and normal conditions (Spearman r = 0.63, p < 0.05), indicating that larger larvae tend to do better in corrosive seawater. Aquaculture hatcheries routinely cull slow-growing larvae to reduce and synchronize time taken for larvae to metamorphose to spat, thus inadvertently applying size-related selection for larger larvae. This indirect selection in the hatchery populations provides a plausible explanation why domesticated oyster populations are less sensitive to ocean acidification.

Continue reading ‘Adaption potential of Crassostrea gigas to ocean acidification and disease caused by Vibrio harveyi’

Algal density alleviates the elevated CO2‐caused reduction on growth of Porphyra haitanensis (Bangiales, Rhodophyta), a species farmed in China

Growing of Pyropia haitanensis, a commercially farmed macroalga, usually increases their densities greatly during cultivation in natural habitats. To explore how the increased algal densities affect their photosynthetic responses to rising CO2, we compared the growth, cell components and photosynthesis of the thalli of P. haitanensis under a matrix of pCO2 levels (ambient CO2, 400 ppm; elevated CO2, 1,000 ppm) and biomass densities [low, 1.0 g fresh weight (FW) L−1; medium, 2.0 g FW L−1; high, 4.0 g FW L−1]. Under ambient CO2, the relative growth rate (RGR) was 5.87% d−1, 2.32% d−1 and 1.51% d−1 in low, medium and high densities, and elevated CO2 reduced the RGR by 27%, 25% and 12% respectively. Maximal photochemical quantum yield of photosystem II (FV/FM) was higher in low than in high densities, so were the light‐utilized efficiency (α ), saturation irradiance (EK) and maximum relative electron transfer rate (rETRmax). Elevated CO2 enhanced the FV/FM in low density but not in higher densities, as well as the α, EK and rETRmax. In addition, elevated CO2 reduced the content of chlorophyll a and enhanced that of carotenoids, but unaffected phycoerythrin, phycocyanin and soluble proteins. Our results indicate that the increased algal densities reduced both the growth and the photosynthesis of P. haitanensis and alleviated the elevated CO2‐induced negative impact on growth and positive impact on photosynthesis. Moreover, the elevated CO2‐induced reduction on growth and promotion on photosynthesis indicates that rising CO2 may enhance the loss of photosynthetic products of P. haitanensis through releasing organic matters.

Continue reading ‘Algal density alleviates the elevated CO2‐caused reduction on growth of Porphyra haitanensis (Bangiales, Rhodophyta), a species farmed in China’

Implementing a finite-volume coupled physical-biogeochemical model to the coastal East China Sea

Several models for estuarine physical processes and biogeochemistry have been developed over last decades. One of the most comprehensive coupled model systems, Finite Volume Community Coastal Model (FVCOM) coupled with European Regional Seas Ecosystem Model (ERSEM) through the Framework for Aquatic Biogeochemical Models (FABM) has been implemented to a high resolution coastal East China Sea (ECS), which encompassed complex coastal zone and part of continental shelf. Physical model was assessed by traditional univariate comparisons, while a rigorous model skill assessment was conducted for coupled biological model. The model system’s ability to reproduce major characteristics both in physical and biological environments was evaluated. The roles of physical, chemical and environmental parameters on the biogeochemistry of the ECS were extensively studied. This work could form a significant basis for future work, e.g. the response of biogeochemical flux to physical mechanism.

Continue reading ‘Implementing a finite-volume coupled physical-biogeochemical model to the coastal East China Sea’

Organic carbon and carbonate system in the bottom sediments of shallow bights of the Peter the Great Bay (Sea of Japan)

The diagenesis of organic matter (OM) is studied in bottom sediments taken in February, 2018 from therapeutic mud deposits of the Uglovoi Bay and Voevoda and Ekspeditsiya bights (Peter the Great Bay, Sea of Japan). The carbonate system of bottom sediments and pore water were analyzed for the contents of nutrients, dissolved organic carbon, humic substance, and concentrations of sulfates and chlorides. The concentrations of organic carbon, chlorophyll-a, humic and fulvic acids, and mobile sulfide species are measured in a solid phase of sediment. Underwater photographing shows that sampling localities are covered by Zostera marina meadows in the Voevoda and Ekspeditsiya bights and by diatom mats in Uglovoi Bay. The proportions between dissolved inorganic carbon and alkalinity, as well as data on sulfate–chlorine ratios and mobile sulfide species indicate that the OM degradation in bottom sediments is mainly controlled by sulfate reduction. The Uglovoi Bay and Voevoda and Ekspeditsii bights are characterized by different values of bioturbation coefficients: 3.0, 107.6, and 14.5 cm2/day, respectively. The estimated fluxes of organic carbon from water into sediment and of dissolved inorganic carbon from sediment into water significantly differ. The disbalance between organic and inorganic carbons can be caused by the following reasons: (a) ignored CO2 flux released by marine organisms from bottom sediments through their siphonal system; (b) partial OM consumption in food with its subsequent deposition in it.

Continue reading ‘Organic carbon and carbonate system in the bottom sediments of shallow bights of the Peter the Great Bay (Sea of Japan)’

Evaluation of a new carbon dioxide system for autonomous surface vehicles

Current carbon measurement strategies leave spatiotemporal gaps that hinder the scientific understanding of the oceanic carbon biogeochemical cycle. Data products and models are subject to bias because they rely on data that inadequately capture mesoscale spatiotemporal (kilometers and days to weeks) changes. High-resolution measurement strategies need to be implemented to adequately evaluate the global ocean carbon cycle. To augment the spatial and temporal coverage of ocean-atmosphere carbon measurements, an Autonomous Surface Vehicle CO2 (⁠⁠) system was developed. From 2011 to 2018, ASVCO2 systems were deployed on seven Wave Glider and Saildrone missions along the U.S. Pacific and Australia’s Tasmanian coastlines and in the tropical Pacific to evaluate the viability of the sensors and their applicability to carbon cycle research. Here we illustrate that the ASVCO2 systems are capable of long-term oceanic deployment and robust collection of air and seawater pCO2 within ± 2 µatm based on comparisons with established ship-board underway systems, with previously described MAPCO2 systems, and with companion ASVCO2 systems deployed side-by-side.

Continue reading ‘Evaluation of a new carbon dioxide system for autonomous surface vehicles’

Mapping cumulative impacts to coastal ecosystem services in British Columbia

Ecosystem services are impacted through restricting service supply, through limiting people from accessing services, and by affecting the quality of services. We map cumulative impacts to 8 different ecosystem services in coastal British Columbia using InVEST models, spatial data, and expert elicitation to quantify risk to each service from anthropogenic activities. We find that impact to service access and quality as well as impact to service supply results in greater severity of impact and a greater diversity of causal processes of impact than only considering impact to service supply. This suggests that limiting access to services and impacts to service quality may be important and understanding these kinds of impacts may complement our knowledge of impacts to biophysical systems that produce services. Some ecosystem services are at greater risk from climate stressors while others face greater risk from local activities. Prominent causal pathways of impact include limiting access and affecting quality. Mapping cumulative impacts to ecosystem services can yield rich insights, including highlighting areas of high impact and understanding causes of impact, and should be an essential management tool to help maintain the flow of services we benefit from.

Continue reading ‘Mapping cumulative impacts to coastal ecosystem services in British Columbia’

The ability of fragmented kelp forests to mitigate ocean acidification and the effects of seasonal upwelling on kelp-purple sea urchin interactions

Bull kelp (Nereocystis leutkeana) forests along the coast for northern California have decreased dramatically as a result of a ‘perfect storm’ of multiple environmental stressors. The disappearance of a predatory sea star and subsequent increase in purple sea urchins (Strongylocentrotus purpuratus) and the recurrence of marine heat waves have caused these once diverse ecosystems to be rapidly converted into relative species-depauperate urchin barrens. By examining the interactive effects of both a rapidly changing abiotic environment and the increase in urchin grazing pressure that is affecting this vital ecosystem, we can better understand its ultimate fate and make better-informed decisions to manage and protect it. As once large and persistent kelp forests are converted into fragmented landscapes of small kelp patches, kelp’s ability to take up dissolved inorganic carbon and reduce nearby acidity and increase both dissolved oxygen and bio-available calcium carbonate may be reduced, preventing it from serving as an environmental stress-free ‘oasis’ of reduced environmental stresses for local marine organisms and affecting ecosystem dynamics. In my first chapter, I examined whether small, fragmented kelp patches are able to retain their ability to alter local seawater chemistry to the same extent a large persistent kelp forests that have been studied previously. I found that in the canopies of small kelp patches, multiple parameters of carbonate chemistry fluctuated more than in the kelp benthos and in adjacent urchin barrens, consistent with metabolic activity by the kelp. Further, kelp fragments increased pH and aragonite saturation and decreased pCO2 during the day to a similar degree as large, intact kelp forests. These results suggest that small kelp patches could mitigate OA stress during the day and serve as spatial and temporal refugia for canopy-dwelling organisms. I also found that the benthic environment in kelp forests and adjacent urchin barrens is subject to unbuffered decreases in temperature, dissolved oxygen and pH. Thus, in chapter two, I assessed how current-day and future-predicted fluctuations in the duration and magnitude of these upwelling-associated stressors would impact the grazing, growth, and survivorship of purple urchins from kelp forest and urchin barren habitats. With upwelling predicted to increase in both intensity and duration with global climate change, understanding whether urchins from different habitats are differentially affected by upwelling-related stressors will give insight into how current and future stressors may be able to help ‘tip the scales’ and convert the increasing number of urchin barrens back into healthy productive kelp forests. I found condition-dependent susceptibility in urchins to increased magnitude and duration upwelling-related stressors. Grazing and gonadal development in kelp forest urchins was most negatively affected by distant future upwelling conditions, whereas in urchin barren urchins, grazing and survival were sensitive to exposure to upwelling in general, and also to increase in magnitudes of acidity, hypoxia, and temperature across both upwelling and non-upwelling events in the future. These results have important implications for population dynamics of urchins and their interactions with bull kelp, which could strongly affect ecosystem dynamics and transitions between kelp forests and urchin barrens. Taken together, the two chapters my thesis provide valuable insight into the potential resilience of bull kelp, a critical foundation species in northeastern Pacific coastal habitats, in the face of a rapidly changing multi-stressor environment.

Continue reading ‘The ability of fragmented kelp forests to mitigate ocean acidification and the effects of seasonal upwelling on kelp-purple sea urchin interactions’

Changing nutrients, dissolved oxygen and carbonate system in the Bohai and Yellow Seas, China

The Bohai and Yellow Seas in the Northwest Pacific are semi-enclosed shallow marginal seas of ecological and economic significance. By reviewing and synthesizing literature data, basin-wide decadal changes in nutrients and bottom-water dissolved oxygen and carbonate system parameters in the two coastal oceans were investigated. Results showed that both of the two coastal oceans were subject to basin-wide increases in wintertime nitrate during the past 40 years. The present-day seawater N:P ratios are usually within the algae-favorable range of 14–19. Presumably due to these changes, the Bohai Sea exhibits a 33-year decline in summertime bottom-water dissolved oxygen and the associated suppression of pH and CaCO3 saturation states in summer. The historically lowest bottom-water dissolved oxygen in the Bohai Sea was recorded at 67 μmol O2 L−1 in early September 2015, which was very close to the threshold value of hypoxia. In the Yellow Sea, periodical suppression of pH and CaCO3 saturation states occurs in its central basin area, where the net community carbonate dissolution was detectable in bottom waters in late summer and autumn, threatening marine calcifiers inhabiting there and with potentially severe consequences for valuable shellfish fisheries.

Continue reading ‘Changing nutrients, dissolved oxygen and carbonate system in the Bohai and Yellow Seas, China’

Transient carbonate chemistry in the expanded Kuroshio region

The Kuroshio is the most significant current in the western North Pacific Ocean and affects a wide area. This work shows that the intrusion of the oligotrophic upper-layer West Philippine Sea seawater into the South China Sea (SCS) as the branch of Kuroshio reduced the productivity and hence the fluxes of sinking particles in the SCS between 2013 and 2017. Conversely, the productivity in the SCS increased during a large scale Kuroshio intrusion in 1998–2006, indicating that other factors also affected the productivity. Further, the western North Pacific Ocean is acidifying, with the surface seawaters to the west having lower acidification rates. This phenomenon is likely a consequence of enhanced productivity owing to more anthropogenic nutrient inputs from the continent in the west, but needs further investigation. In the East China Sea, the Kuroshio Intermediate Water has increased nutrient concentrations, but decreased in both dissolved oxygen (DO) concentration and pH, most likely owing to reduced ventilation in the North Pacific Intermediate Water. Further warming of the surface oceans would strengthen the stratification of the surface ocean, weakening ventilation. Consequently, DO and pH would continue to decline while nutrients level increases.

Continue reading ‘Transient carbonate chemistry in the expanded Kuroshio region’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,357,933 hits


Ocean acidification in the IPCC AR5 WG II

OUP book