Posts Tagged 'North Pacific'

Changes in fish communities due to benthic habitat shifts under ocean acidification conditions


• Ocean acidification-mediated habitat shifts and decreased complexity affect associated fish communities.

• Altered fish traits and reduced diversity occurred under near-future ocean acidification levels.

• Ocean acidification may oppose the poleward-shift of tropical fish species under warming.


Ocean acidification will likely change the structure and function of coastal marine ecosystems over coming decades. Volcanic carbon dioxide seeps generate dissolved CO2 and pH gradients that provide realistic insights into the direction and magnitude of these changes. Here, we used fish and benthic community surveys to assess the spatio-temporal dynamics of fish community properties off CO2 seeps in Japan. Adding to previous evidence from ocean acidification ecosystem studies conducted elsewhere, our findings documented shifts from calcified to non-calcified habitats with reduced benthic complexity. In addition, we found that such habitat transition led to decreased diversity of associated fish and to selection of those fish species better adapted to simplified ecosystems dominated by algae. Our data suggest that near-future projected ocean acidification levels will oppose the ongoing range expansion of coral reef-associated fish due to global warming.

Continue reading ‘Changes in fish communities due to benthic habitat shifts under ocean acidification conditions’

Earthquake and typhoon trigger unprecedented transient shifts in shallow hydrothermal vents biogeochemistry

Shallow hydrothermal vents are of pivotal relevance for ocean biogeochemical cycles, including seawater dissolved heavy metals and trace elements as well as the carbonate system balance. The Kueishan Tao (KST) stratovolcano off Taiwan is associated with numerous hydrothermal vents emitting warm sulfur-rich fluids at so-called White Vents (WV) and Yellow Vent (YV) that impact the surrounding seawater masses and habitats. The morphological and biogeochemical consequences caused by a M5.8 earthquake and a C5 typhoon (“Nepartak”) hitting KST (12th May, and 2nd–10th July, 2016) were studied within a 10-year time series (2009–2018) combining aerial drone imagery, technical diving, and hydrographic surveys. The catastrophic disturbances triggered landslides that reshaped the shoreline, burying the seabed and, as a consequence, native sulfur accretions that were abundant on the seafloor disappeared. A significant reduction in venting activity and fluid flow was observed at the high-temperature YV. Dissolved Inorganic Carbon (DIC) maxima in surrounding seawater reached 3000–5000 µmol kg−1, and Total Alkalinity (TA) drawdowns were below 1500–1000 µmol kg−1 lasting for one year. A strong decrease and, in some cases, depletion of dissolved elements (Cd, Ba, Tl, Pb, Fe, Cu, As) including Mg and Cl in seawater from shallow depths to the open ocean followed the disturbance, with a recovery of Mg and Cl to pre-disturbance concentrations in 2018. The WV and YV benthic megafauna exhibited mixed responses in their skeleton Mg:Ca and Sr:Ca ratios, not always following directions of seawater chemical changes. Over 70% of the organisms increased skeleton Mg:Ca ratio during rising DIC (higher CO2) despite decreasing seawater Mg:Ca ratios showing a high level of resilience. KST benthic organisms have historically co-existed with such events providing them ecological advantages under extreme conditions. The sudden and catastrophic changes observed at the KST site profoundly reshaped biogeochemical processes in shallow and offshore waters for one year, but they remained transient in nature, with a possible recovery of the system within two years.

Continue reading ‘Earthquake and typhoon trigger unprecedented transient shifts in shallow hydrothermal vents biogeochemistry’

Planetary boundary downscaling for absolute environmental sustainability assessment — Case study of Taiwan


• The PB concept has been applied in assessing AES in local level.

• The current national data can be easily connected with PB concept.

• Downscaled PBs by territorial perspective can be the local targets for AES.

• Dynamic concept was introduced for enhancing normalization and weighting.


The planetary boundary (PB) concept can be used as a guide for the absolute environmental sustainability (AES) of humanity. However, the downscaling of PB as a guide remains a challenge at the local scale. This study aims to establish absolute environmentally sustainable indicators (AESIs) and a threshold based on five processes of the Earth system, namely, climate change, ocean acidification, biogeochemical flow (phosphorus and nitrogen cycles), land system change, and freshwater use, for local AES assessment. A case study of Taiwan was conducted. This work also introduced the dynamic concept into developing dynamic normalization factors (DNFs) and dynamic weighting factors (DWFs) for AESIs to support decision-making. DNFs were defined as desired targets in the future; they were developed on the basis of the thresholds of AESIs at the global and national levels in a different timeline. DWFs were defined as weights for assessing the distance of a current situation from the desired targets; they were evaluated on the basis of the distance-to-target approach.

The territorial perspective was adopted as a downscaling method to develop 11 AESIs and thresholds based on the PB framework for the AES assessment of Taiwan. Results showed that the nationally determined contribution target of the carbon pathway is not ambitious compared with the annual and cumulative boundaries of climate change and ocean acidification. Phosphorus and nitrogen fertilizers are two of the three subcategories in biogeochemical flow with very high risks. Phosphorus flow from a freshwater system to the oceans and forest cover was evaluated as moderate risk. Meanwhile, annual freshwater use was determined as low risk. However, when spatial and temporal factors were considered, annual freshwater use was assessed as high risk during the dry season in Southern and Central Taiwan. DNFs and DWFs are more suitable at the local level than at the global level when applying normalization and weighting to reflect a real situation. This study not only provided a new concept for local policy makers to rethink environmental sustainability, but also explored various AES tools at the local scale to connect the local situation with global issues to support decision-making.

Continue reading ‘Planetary boundary downscaling for absolute environmental sustainability assessment — Case study of Taiwan’

Short-term effects of hypoxia are more important than effects of ocean acidification on grazing interactions with juvenile giant kelp (Macrocystis pyrifera)

Species interactions are crucial for the persistence of ecosystems. Within vegetated habitats, early life stages of plants and algae must survive factors such as grazing to recover from disturbances. However, grazing impacts on early stages, especially under the context of a rapidly changing climate, are largely unknown. Here we examine interaction strengths between juvenile giant kelp (Macrocystis pyrifera) and four common grazers under hypoxia and ocean acidification using short-term laboratory experiments and field data of grazer abundances to estimate population-level grazing impacts. We found that grazing is a significant source of mortality for juvenile kelp and, using field abundances, estimate grazers can remove on average 15.4% and a maximum of 73.9% of juveniles per m2 per day. Short-term exposure to low oxygen, not acidification, weakened interaction strengths across the four species and decreased estimated population-level impacts of grazing threefold, from 15.4% to 4.0% of juvenile kelp removed, on average, per m2 per day. This study highlights potentially high juvenile kelp mortality from grazing. We also show that the effects of hypoxia are stronger than the effects of acidification in weakening these grazing interactions over short timescales, with possible future consequences for the persistence of giant kelp and energy flow through these highly productive food webs.

Continue reading ‘Short-term effects of hypoxia are more important than effects of ocean acidification on grazing interactions with juvenile giant kelp (Macrocystis pyrifera)’

A sediment trap evaluation of B/Ca as a carbonate system proxy in asymbiotic and nondinoflagellate hosting planktonic foraminifera

The ratio of boron to calcium (B/Ca) in a subset of foraminifera has been shown to covary with seawater carbonate chemistry, making this geochemical signature a promising proxy for carbon cycle science. Some studies suggest complications with the B/Ca proxy in photosymbiont‐bearing planktonic foraminifera, while relatively few studies have investigated B/Ca in species that lack large dinoflagellate symbionts. For the first time, we use a sediment trap time series to evaluate B/Ca of subtropical and subpolar planktonic foraminifera species that are asymbiotic (Globigerina bulloides and Neogloboquadrina incompta) and a species that hosts small intrashell photosymbionts (Neogloboquadrina dutertrei). We find that B/Ca measurements across size fractions indicate overall little to no size‐dependent uptake of boron that has previously been reported in some symbiont‐bearing foraminifera. Neogloboquadrina incompta and N. dutertrei B/Ca are strongly correlated with calcite saturation, pH, and carbonate ion concentration, which is in good agreement with the limited number of published core top results. While G. bulloides B/Ca trends with seasonal fluctuations in carbonate chemistry, during discrete periods considerable B/Ca offsets occur when a cryptic G. bulloides species is known to be seasonally present within the region. We confirm presence and significant B/Ca offset between cryptic species by individual LA‐ICP‐MS analyses. This finding calls into question the use of traditional morphological classification to lump what might be genetically distinct species for geochemical analyses. Our overall results highlight the utility of G. bulloides, N. incompta, and N. dutertrei B/Ca while bringing to light new considerations regarding divergent geochemistry of cryptic species.

Continue reading ‘A sediment trap evaluation of B/Ca as a carbonate system proxy in asymbiotic and nondinoflagellate hosting planktonic foraminifera’

Recent density decline in wild-collected subarctic crustose coralline algae reveals climate change signature

Warming surface ocean temperatures combined with the continued diffusion of atmospheric CO2 into seawater have been shown to have detrimental impacts on calcareous marine organisms in tropical and temperate localities. However, greater oceanic CO2 uptake in higher latitudes may present a higher oceanic acidification risk to carbonate organisms residing in Arctic and subarctic habitats. This is especially true for crustose coralline algae that build their skeletons using high-Mg calcite, which is among the least stable and most soluble of the carbonate minerals. Here we present a century-long annually resolved growth, density, and calcification rate record from the crustose coralline alga Clathromorphum nereostratum, a dominant calcifier in Pacific Arctic and subarctic benthic communities. Specimens were collected from the Aleutian Islands, Alaska (USA), a region that has undergone a long-term decline of 0.08 ± 0.01 pH units since the late 19th century. Growth and calcification rates remain relatively stable throughout the record, but skeletal densities have declined substantially since A.D. 1983. Strong correlations to warming sea-surface temperatures indicate that temperature stress may play a significant role in influencing the ability of corallines to calcify. Decreasing algal skeletal density may offset the benefits of continued growth and calcification due to a weakening in structural integrity, which could have detrimental consequences for the diverse reef-like communities associated with algal structures in mid-to-high latitudes.

Continue reading ‘Recent density decline in wild-collected subarctic crustose coralline algae reveals climate change signature’

Characterization of marine teleost ionocytes in the gill, skin, and inner ear epithelia and their implications for ocean acidification

Ionocytes are specialized epithelial cells that excrete or absorb ions across an epithelium to regulate ionic, osmotic and acid-base levels in internal fluids. These ionocytes perform a wide range of functions (e.g. osmoregulation, pH regulation, and calcification) across various organs (e.g. gill, skin, inner ear). As atmospheric CO2 levels rise and oceanic pH levels fall, teleosts may increase their investment on ionocytes to survive in future ocean conditions. But generally speaking, the gill, skin, and inner ear ionocytes within marine teleost are not well characterized. This dissertation contains research spanning five southern Californian teleosts: the Blacksmith Chromis punctipinnis, the Yellowfin Tuna Thunnus albacares, the White Seabass Atractoscion nobilis, the Pacific Mackerel Scomber japonicus, and the Splitnose Rockfish Sebastes diploproa. In Chapter II, I investigated the individual and group behavioral responses of the Blacksmith, a temperate damselfish, after exposure to CO2-induced low-pH conditions. In Chapter III, I describe a novel technique used to quantify skin ionocytes in larval fishes. In Chapter IV, I applied the Chapter III’s technique to document developmental patterns in the skin and gill ionocytes of larval Yellowfin Tuna. In Chapter V, I investigated larval White Seabass response to hypercapnia by monitoring oxygen consumption rate and quantifying ionocyte abundance and relative ionocyte area across development. In Chapter VI, I characterized two types of inner ear ionocytes responsible for otolith calcification in the Pacific Mackerel. In Chapter VII, I investigated whether future CO2 /pH conditions would affect the gill and inner ear ionocytes of Splitnose Rockfish. Altogether, this work across the multiple teleosts demonstrates that ionocytes 1) have the plasticity to respond to external pH stress, 2) are sufficient to maintain internal homeostasis despite significant differences in CO2/pH levels, and 3) differ greatly in protein, morphology, and function depending on the tissue in question.

Continue reading ‘Characterization of marine teleost ionocytes in the gill, skin, and inner ear epithelia and their implications for ocean acidification’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,336,422 hits


Ocean acidification in the IPCC AR5 WG II

OUP book