Posts Tagged 'North Pacific'



Uncovering mechanisms of global ocean change effects on the Dungeness crab (Cancer magister) through metabolomics analysis

The Dungeness crab is an economically and ecologically important species distributed along the North American Pacific coast. To predict how Dungeness crab may physiologically respond to future global ocean change on a molecular level, we performed untargeted metabolomic approaches on individual Dungeness crab juveniles reared in treatments that mimicked current and projected future pH and dissolved oxygen conditions. We found 94 metabolites and 127 lipids responded in a condition-specific manner, with a greater number of known compounds more strongly responding to low oxygen than low pH exposure. Pathway analysis of these compounds revealed that juveniles may respond to low oxygen through evolutionarily conserved processes including downregulating glutathione biosynthesis and upregulating glycogen storage, and may respond to low pH by increasing ATP production. Most interestingly, we found that the response of juveniles to combined low pH and low oxygen exposure was most similar to the low oxygen exposure response, indicating low oxygen may drive the physiology of juvenile crabs more than pH. Our study elucidates metabolic dynamics that expand our overall understanding of how the species might respond to future ocean conditions and provides a comprehensive dataset that could be used in future ocean acidification response studies.

Continue reading ‘Uncovering mechanisms of global ocean change effects on the Dungeness crab (Cancer magister) through metabolomics analysis’

Effects of seasonal upwelling and runoff on water chemistry and growth and survival of native and commercial oysters

The effects of climate change, including ocean acidification and ocean heatwaves, on biological communities in estuaries are often uncertain. Part of the uncertainty is due to the complex suite of environmental factors in addition to acidification and warming that influence the growth of shells and skeletons of many estuarine organisms. The goal of this study was to document spatial and temporal variation in water column properties and to measure the in situ effects on larval and recently settled stages of ecologically important Olympia oysters (Ostrea lurida) and commercially important Pacific oysters (Crassostrea gigas) in a low‐inflow estuary with a Mediterranean climate in Northern California. Our results reveal that seasonal inputs of upwelled or riverine water create important and predictable gradients of carbonate system parameters, temperature, salinity, dissolved oxygen (DO), and other variables that influence oyster performance, and that the influence of these gradients is contingent upon the location in the estuary as well as seasonal timing. During upwelling events (dry season), temperature, carbonate chemistry, and DO had the greatest impact on oyster performance. During runoff events (wet season), gradients in salinity, nutrient concentrations, and total alkalinity driven by river discharge were comparatively more important. These results suggest that the spatial importance of carbonate chemistry and temperature are seasonally variable and are two of several other factors that determine oyster performance. We use these results to discuss future impacts on oysters given projected regional changes in the frequency and magnitude of upwelling and precipitation‐driven runoff events.

Continue reading ‘Effects of seasonal upwelling and runoff on water chemistry and growth and survival of native and commercial oysters’

Biological modification of seawater chemistry by an ecosystem engineer, the California mussel, Mytilus californianus

Marine habitat‐forming species often play critical roles on rocky shores by ameliorating stressful conditions for associated organisms. Such ecosystem engineers provide structure and shelter, for example, by creating refuges from thermal and desiccation stresses at low tide. Less explored is the potential for habitat formers to alter interstitial seawater chemistry during their submergence. Here, we quantify the capacity for dense assemblages of the California mussel, Mytilus californianus, to change seawater chemistry (dissolved O2, pH, and total alkalinity) within the interiors of mussel beds at high tide via respiration and calcification. We established a living mussel bed within a laboratory flow tank and measured vertical pH and oxygen gradients within and above the mussel bed over a range of water velocities. We documented decreases of up to 0.1 pH and 25 μmol O2 kg−1 internal to the bed, along with declines of 100 μmol kg−1 in alkalinity, when external flows were  95% of the time. Reductions in pH and O2 inside mussel beds may negatively impact resident organisms and exacerbate parallel human‐induced perturbations to ocean chemistry while potentially selecting for improved tolerance to altered chemistry conditions.

Continue reading ‘Biological modification of seawater chemistry by an ecosystem engineer, the California mussel, Mytilus californianus’

Decreasing carbonate load of seagrass leaves with increasing latitude

Highlights

• Seagrass epiphyte carbonate load was examined along a latitudinal and Ω gradient.

• Epiphyte carbonate content, load and production decreased as latitude increased.

• Epiphyte carbonate content, load and production increased as Ω increased.

• These trends are similar to those described in other carbonate producer communities.

Abstract

Seagrass meadows play a significant role in the formation of carbonate sediments, serving as a substrate for carbonate-producing epiphyte communities. The magnitude of the epiphyte load depends on plant structural and physiological parameters, related to the time available for epiphyte colonization. Yet, the carbonate accumulation is likely to also depend on the carbonate saturation state of seawater (Ω) that tends to decrease as latitude increases due to decreasing temperature and salinity. A decrease in carbonate accumulation with increasing latitude has already been demonstrated for other carbonate producing communities. The aim of this study was to assess whether there was any correlation between latitude and the epiphyte carbonate load and net carbonate production rate on seagrass leaves. Shoots from 8 different meadows of the Zostera genus distributed across a broad latitudinal range (27 °S to up to 64 °N) were sampled along with measurements of temperature and Ω. The Ω within meadows significantly decreased as latitude increased and temperature decreased. The mean carbonate content and load on seagrass leaves ranged from 17 % DW to 36 % DW and 0.4-2.3 mg CO3 cm-2, respectively, and the associated mean carbonate net production rate varied from 0.007 to 0.9 mg CO3 cm-2 d-1. Mean carbonate load and net production rates decreased from subtropical and tropical, warmer regions towards subpolar latitudes, consistent with the decrease in Ω. These results point to a latitudinal variation in the contribution of seagrass to the accumulation of carbonates in their sediments which affect important processes occurring in seagrass meadows, such as nutrient cycling, carbon sequestration and sediment accretion.

Continue reading ‘Decreasing carbonate load of seagrass leaves with increasing latitude’

Effects of ocean acidification and short-term light/temperature stress on biogenic dimethylated sulfur compounds cycling in the Changjiang River Estuary

Ocean acidification (OA) affects marine primary productivity and community structure. Therefore, OA may influence the biogeochemical cycles of volatile biogenic dimethyl sulfide (DMS), and its precursor dimethylsulfoniopropionate (DMSP) and photochemical oxidation product dimethyl sulfoxide (DMSO). A 23-day shipboard incubation experiment investigated the short-term response of the production and cycling of biogenic sulfur compounds to OA in the Changjiang River Estuary to understand the effects of OA on biogenic sulfur compounds. Phytoplankton abundance and community composition showed a marked difference at three different pH levels at the late stage of the experiment. Significant reductions in chlorophyll a (Chl-a), DMS, particulate DMSP (DMSPp) and dissolved DMSO (DMSOd) concentrations were identified under high CO2 levels. Moreover, minimal changes were observed in the productions of dissolved DMSP (DMSPd) and particulate DMSO (DMSOp) among the treatments. The ratios of DMS, total DMSP (DMSPt) and total DMSO (DMSOt) to Chl-a were not affected by a change in pH. Furthermore, the concentrations of DMS and DMSOd were closely related to the mean bacterial abundance at the three pH levels. Additional short-term (8 h) incubation experiments on the light and temperature effects showed that the influence of pH on the production of dimethylated sulfur compounds also depended on solar radiation and temperature. Under natural and UVB light, DMS photodegradation rates increased by 1.6 to 4.2 times at low pH levels. Thus, OA may lead to decreasing DMS concentrations in surface seawater. Light and temperature conditions also play important roles in the production and cycling of biogenic sulfur compounds.

Continue reading ‘Effects of ocean acidification and short-term light/temperature stress on biogenic dimethylated sulfur compounds cycling in the Changjiang River Estuary’

Shifts in seawater chemistry disrupt trophic links within a simple shoreline food web

Marine intertidal systems have long served as focal environments for ecological research, yet these environments are changing due to the entry of human-produced carbon dioxide into seawater, which causes ‘ocean acidification’ (OA). One component of OA is a decline in seawater pH, an alteration known to disrupt organism behaviors underlying predator–prey interactions. To date, however, studies examining OA’s effects on feeding relationships consider predominantly simple direct interactions between consumers and their food sources. Here, we extended these established approaches to test how decreased seawater pH might alter cascading effects that span tiered linkages in trophic networks. We employed a model shoreline food web incorporating a sea star predator (Leptasterias hexactis), an herbivorous snail prey (Tegula funebralis), and a common macroalgal resource for the prey (Mazzaella flaccida). Results demonstrate direct negative effects of low pH on anti-predator behavior of snails, but also weakened indirect interactions, driven by increased snail consumption of macroalgae even as sea stars ate more snails. This latter outcome arose because low pH induced ‘foolhardy’ behaviors in snails, whereby their flight responses were supplanted by other activities that allowed for foraging. These findings highlight the potential for human-induced changes in seawater chemistry to perturb prey behaviors and trophic dynamics with accompanying community-level consequences.

Continue reading ‘Shifts in seawater chemistry disrupt trophic links within a simple shoreline food web’

Climate vulnerability assessment for Pacific salmon and steelhead in the California Current Large Marine Ecosystem

Major ecological realignments are already occurring in response to climate change. To be successful, conservation strategies now need to account for geographical patterns in traits sensitive to climate change, as well as climate threats to species-level diversity. As part of an effort to provide such information, we conducted a climate vulnerability assessment that included all anadromous Pacific salmon and steelhead (Oncorhynchus spp.) population units listed under the U.S. Endangered Species Act. Using an expert-based scoring system, we ranked 20 attributes for the 28 listed units and 5 additional units. Attributes captured biological sensitivity, or the strength of linkages between each listing unit and the present climate; climate exposure, or the magnitude of projected change in local environmental conditions; and adaptive capacity, or the ability to modify phenotypes to cope with new climatic conditions. Each listing unit was then assigned one of four vulnerability categories. Units ranked most vulnerable overall were Chinook (O. tshawytscha) in the California Central Valley, coho (O. kisutch) in California and southern Oregon, sockeye (O. nerka) in the Snake River Basin, and spring-run Chinook in the interior Columbia and Willamette River Basins. We identified units with similar vulnerability profiles using a hierarchical cluster analysis. Life history characteristics, especially freshwater and estuary residence times, interplayed with gradations in exposure from south to north and from coastal to interior regions to generate landscape-level patterns within each species. Nearly all listing units faced high exposures to projected increases in stream temperature, sea surface temperature, and ocean acidification, but other aspects of exposure peaked in particular regions. Anthropogenic factors, especially migration barriers, habitat degradation, and hatchery influence, have reduced the adaptive capacity of most steelhead and salmon populations. Enhancing adaptive capacity is essential to mitigate for the increasing threat of climate change. Collectively, these results provide a framework to support recovery planning that considers climate impacts on the majority of West Coast anadromous salmonids.

Continue reading ‘Climate vulnerability assessment for Pacific salmon and steelhead in the California Current Large Marine Ecosystem’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,279,028 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book