Posts Tagged 'South Atlantic'

Influence of acidification and warming of seawater on biofouling by bacteria grown over API 5L steel

The acidification and warming of seawater have several impacts on marine organisms, including over microorganisms. The influence of acidification and warming of seawater on biofilms grown on API 5L steel surfaces was evaluated by sequencing the 16S ribosomal gene. For this, three microcosms were designed, the first simulating the natural marine environment (MCC), the second with a decrease in pH from 8.1 to 7.9, and an increase in temperature by 2 °C (MMS), and the third with pH in around 7.7 and an increase in temperature of 4 °C (MES). The results showed that MCC was dominated by the Gammaproteobacteria class, mainly members of the Alteromonadales Order. The second most abundant group was Alphaproteobacteria, with a predominance of Rhodobacterales and Oceanospirillales. In the MMS system there was a balance between representatives of the Gammaproteobacteria and Alphaproteobacteria classes. In MES there was an inversion in the representations of the most prevalent classes previously described in MCC. In this condition, there was a predominance of members of the Alphaproteobacteria Class, in contrast to the decrease in the abundance of Gammaproteobacteria members. These results suggest that possible future climate changes may influence the dynamics of the biofouling process in surface metals.

Continue reading ‘Influence of acidification and warming of seawater on biofouling by bacteria grown over API 5L steel’

Ocean circulation drives the variability of the carbon system in the Eastern Tropical Atlantic

The carbon system in the eastern tropical Atlantic remains poorly known. The variability and drivers of the carbon system are assessed using surface dissolved inorganic carbon (DIC), alkalinity (TA) and fugacity of CO2 (fCO2) measured in the 12° N–12° S, 12° W–12° E region from 2005 to 2019. A relationship linking DIC to temperature, salinity and year has been determined, with salinity being the strongest predictor. The seasonal variations of DIC, ranging from 80 to 120 mol kg−1, are more important than the year-to-year variability that is less than 50 mol kg−1 over the 2010–2019 period. DIC and TA concentrations are lower in the northern part of the basin where surface waters are fresher and warmer. Carbon supply dominates over biological carbon uptake during the productive upwelling period from July to September. The lowest DIC and TA are located in the Congo plume. The influence of the Congo is still observed at the mooring at 6° S, 8° E as shown by large salinity and chlorophyll variations. Nevertheless, this site is a source of CO2 emissions into the atmosphere.

Continue reading ‘Ocean circulation drives the variability of the carbon system in the Eastern Tropical Atlantic’

Effects of ocean acidification on growth, pigment contents and antioxidant potential of the subtropical Atlantic red alga Hypnea pseudomusciformis Nauer, Cassano & M.C. Oliveira (Gigartinales) in laboratory

Marine ecosystems are subject to several modifications due to anthropogenic impacts, including ocean acidification caused by the absorption of excessive CO2 present in the atmosphere. Perspectives are for dramatic modifications in seawater pH and more than 60% of the ocean surface impacted over the next 100 years by global change. In this study, ocean acidification scenarios were simulated by CO2 enrichment into seawater in three pH levels (8.0, 7.6 and 7.2) using a bioreactor system in laboratory conditions. Experimental evaluation was performed with Hypnea pseudomusciformis Nauer, Cassano & M.C. Oliveira due to its great importance in coastal marine ecosystems for primary production and commercial interest. Contrary to our initial hypothesis, the growth rate of H. pseudomusciformis decreased significantly with decreased pH conditions, even with increased availability of CO2. The maximum quantum yield and chlorophyll a content were also negatively affected by the pH reduction, while an increase in antioxidant activity was observed, indicating physiological stress. The physiological responses to decreased pH conditions reflect the importance of species-level studies and corroborate the changes caused by the ocean acidification on the macroalgal species.

Continue reading ‘Effects of ocean acidification on growth, pigment contents and antioxidant potential of the subtropical Atlantic red alga Hypnea pseudomusciformis Nauer, Cassano & M.C. Oliveira (Gigartinales) in laboratory’

Photoprotection and antioxidative metabolism in Ulva lactuca exposed to coastal oceanic acidification scenarios in the presence of Irgarol

Highlights

  • Photosynthetic yield is affected by low pH in assays with and without Irgarol.
  • Membrane damage and antioxidant activities increased in low pH added to Irgarol.
  • H2O2 content and lipid peroxidation were not affected by low pH isolated.
  • U.lactuca is tolerant to low pH by triggering photoprotector mechanisms.
  • Protective mechanisms could not avoid the simultaneous effects of low pH and Irgarol.

Abstract

Anthropogenic changes such as ocean acidification, eutrophication, and the release of hazardous chemicals affect coastal environments and aquatic organisms. We investigated the effects of seawater pH (7.4 and 8.2) isolated and in combination with Irgarol on Ulva lactuca. Stress indicators such as membrane damage, lipid peroxidation, and hydrogen peroxide content were assessed. In addition, chlorophyll fluorescence and antioxidant enzyme activities were measured. The photosynthetic yield was affected by low pH in assays with and without Irgarol. However, the combination of low pH and Irgarol promoted photoinhibition, besides the induction of non-photochemical quenching (NPQ) and changes in photosynthetic pigment contents. The induction of NPQ was directly influenced by low pH. The membrane damage was increased in low pH with and without Irgarol exposure. Total soluble protein and carbohydrate contents decreased in low pH, and in presence of Irgarol. The H2O2 content and lipid peroxidation were not affected by low pH. In contrast, Irgarol exposure strongly increased lipid peroxidation in both pHs, suggesting a possible synergistic effect. To avoid the harmful effects of high H2O2U. lactuca increased antioxidant enzyme activities in treatments under low pH and in presence of Irgarol. Our results indicate that U. lactuca is tolerant to low pH by inducing NPQ, changing pigment contents, and increasing antioxidant defenses. In contrast, these protective mechanisms could not avoid the harmful effects of the combination with Irgarol.

Continue reading ‘Photoprotection and antioxidative metabolism in Ulva lactuca exposed to coastal oceanic acidification scenarios in the presence of Irgarol’

Autonomous measurement of seawater total alkalinity as an enhancement of ocean carbon observations: from performance characterization to long-term field deployment

Since around the mid of the 18th century, the global atmospheric carbon dioxide (CO2) concentration has significantly increased due to anthropogenic activities. For 2018, around 11.5 GtC yr−1 were emitted by fossil fuel combustion and cement production, and land use changes. A sink for the atmospheric CO2 is the ocean, which has taken up around 2.6 GtC yr−1 in 2018. The relative good understanding of the current global mean oceanic uptake of anthropogenic CO2 is contrasted by a lack of knowledge how the natural carbon cycle will respond regionally to changes introduced by anthropogenic CO2 emissions, like global warming, ocean acidification or ocean deoxygenation. In view of the central role of the oceanic CO2 sink and its vulnerability to these changes, extensive ocean carbon observations are necessary. Over several years, the Ships of Opportunity (SOOP) network provides high-quality CO2 partial pressure (p(CO2)) data of the surface ocean, and, therefore, forms the backbone of the global observation system for the oceanic CO2 sink. However, to get full insight into the marine CO2 system, at least two of the four measurable carbonate variables are required, which are p(CO2), total alkalinity (AT), dissolved inorganic carbon (CT) and pH. The so far common workaround is the prediction of AT by using established temperature-salinity based parameterizations. However, compared with direct measurements, this procedure leads to higher uncertainties and spatiotemporal biases. Therefore, autonomous SOOP-based AT measurements are of great interest and, in the end, should enhance ocean carbon observations. In order to achieve this enhancement, this thesis goals to provide an example of a successful implementation of a novel autonomous analyzer for seawater AT, the CONTROS HydroFIA TA (-4H-JENA engineering GmbH, Germany), on a Carbon-SOOP station operating in the subpolar North Atlantic (together with fundamental guidelines and recommendations leading to high-quality AT data).

Continue reading ‘Autonomous measurement of seawater total alkalinity as an enhancement of ocean carbon observations: from performance characterization to long-term field deployment’

The success of the fertilization and early larval development of the tropical sea urchin Echinometra lucunter (Echinodermata: Echinoidea) is affected by the pH decrease and temperature increase

Highlights

• Temperature and pH were tested on embryo-larval development of sea urchins.

• Larval development test proved to be more sensitive compared to gamete fecundity test.

• Low pH as an isolated factor exhibit significant results on fertilization and embryo-larval development.

• Extreme high temperature associated with low pH affect only sea urchin’s embryo-larval.

• Combination of low pH and high temperature causes damages in sea urchin.

Abstract

The decrease in the pH of oceans and the increase in their temperature are the two main problems observed in the marine ecosystems due to the increasing emission of CO2 in the atmosphere. Both conditions can affect the ecological processes of reproduction, recruitment and survival of the marine biota. Thus, the objective of the present study was to evaluate the effects of pH decrease and temperature increase of seawater on the fertilization success and embryo-larval development of a species of tropical sea urchin. For this purpose, fertilization success (gametes) and embryo-larval development rate were determined by exposing gametes and embryos to decreasing pH values (8.0 (control), 7.7, and 7.4) and increasing temperatures (26 (control), 28, 30, 34, and 38 °C). These conditions were tested associated with each other (in synergy). The gamete test was sensitive to all investigated scenarios, the fertilization success was significantly reduced in the conditions of increased temperature (28, 30, 34, and 38 °C) associated with the ideal pH (pH 8.0) and the conditions of reduced pH (pH 7.7, and 7.4), remaining unchanged only in the ideal condition (pH 8.0 + 26 °C). However, the embryo test displayed enhanced sensitivity in the scenarios of temperature increase (28, 30, 34, and 38 °C) associated with pH decrease conditions. A significantly reduction of 29%, 23% and 10% was observed in all tested pH values at 38 °C, when compared to the control group (80%, 79.5% and 63%, respectively). Therefore, the present study suggests that the occurrence of both scenarios may have a significant impact, in the coming years, on the population of Echinometra lucunter.

Continue reading ‘The success of the fertilization and early larval development of the tropical sea urchin Echinometra lucunter (Echinodermata: Echinoidea) is affected by the pH decrease and temperature increase’

Vulnerability and resilience of tropical coastal ecosystems to ocean acidification

Ocean acidification leads to a wide variety of responses from tropical coastal ecosystems. Coral reefs are most vulnerable with most coral species exhibiting declining calcification rates with decreasing pH and carbonate chemistry parameters. Some corals show resilience to acidification likely due to active physiological regulation of their calcifying fluid. Other calcifying organisms, such as some foraminifera and coccolithophores, exhibit negative responses, whereas some symbiont-bearing calcifiers respond positively, to increasing acidification. Seagrasses and brown macroalgae thrive under acidified conditions, with increasing rates of primary productivity. Some tropical coastal fish species are resilient, and in some species, respond positively, to acidification. Some tropical species show complex, nonlinear responses to declining pH and carbonate chemistry. Factors that influence the ability of a species to adapt to and/or resist acidification include food supply, nutrient availability, temperature, diet, interactions with symbionts and other organisms and species and community diversity. Interactive effects of ocean acidification with other climate change parameters, such as elevated temperature, play an important but poorly understood role in determining the resilience and vulnerability of tropical coastal species, communities and ecosystems. Some short-lived species can undergo acclimation and/or adaptive evolution to increase fitness in the face of acidification. Biota living in tropical estuarine and nearshore environments, such as mangroves, seagrasses and intertidal and subtidal inshore benthos, are unlikely to be significantly affected by future acidification as such environments exhibit very wide variations in water and sediment pH and carbonate chemistry. Nearly all tropical coastal environments exhibit significant CO2 efflux to the atmosphere due to pCO2 and [CO32-] oversaturation caused by high rates of respiration and factors linked to fluvial discharge. Except for coral reefs, most calcifying organisms and upwelling regions, tropical estuarine and inshore ecosystems unaffected by eutrophication and other anthropogenic problems should be resilient to future acidification.

Continue reading ‘Vulnerability and resilience of tropical coastal ecosystems to ocean acidification’

Seawater pH reconstruction using boron isotopes in multiple planktonic foraminifera species with different depth habitats and their potential to constrain pH and pCO2 gradients (update)

Boron isotope systematics of planktonic foraminifera from core-top sediments and culture experiments have been studied to investigate the sensitivity of δ11B of calcite tests to seawater pH. However, our knowledge of the relationship between δ11B and pH remains incomplete for many taxa. Thus, to expand the potential scope of application of this proxy, we report δ11B data for seven different species of planktonic foraminifera from sediment core tops. We utilize a method for the measurement of small samples of foraminifera and calculate the δ11B-calcite sensitivity to pH for Globigerinoides ruber, Trilobus sacculifer (sacc or without sacc), Orbulina universa, Pulleniatina obliquiloculata, Neogloboquadrina dutertrei, Globorotalia menardii, and Globorotalia tumida, including for unstudied core tops and species. These taxa have diverse ecological preferences and are from sites that span a range of oceanographic regimes, including some that are in regions of air–sea equilibrium and others that are out of equilibrium with the atmosphere. The sensitivity of δ11Bcarbonate to δ11Bborate (e.g., Δδ11Bcarbonate∕Δδ11Bborate) in core tops is consistent with previous studies for T. sacculifer and G. ruber and close to unity for N. dutertrei, O. universa, and combined deep-dwelling species. Deep-dwelling species closely follow the core-top calibration for O. universa, which is attributed to respiration-driven microenvironments likely caused by light limitation and/or symbiont–host interactions. Our data support the premise that utilizing boron isotope measurements of multiple species within a sediment core can be utilized to constrain vertical profiles of pH and pCO2 at sites spanning different oceanic regimes, thereby constraining changes in vertical pH gradients and yielding insights into the past behavior of the oceanic carbon pumps.

Continue reading ‘Seawater pH reconstruction using boron isotopes in multiple planktonic foraminifera species with different depth habitats and their potential to constrain pH and pCO2 gradients (update)’

Air-sea CO2 flux in an equatorial continental shelf dominated by coral reefs (Southwestern Atlantic Ocean)

Highlights

•Air-sea CO2 fluxes and carbonate chemistry were investigated in coral reef-dominated waters (SW Atlantic).

•The relationship between nTA and nDIC evidenced occurrence of CaCO3 calcification in coral reefs.

•CaCO3 calcification increased the values of fCO2sw, and lowered the pHT and Ωara.

•Aquatic emissions of CO2 in coral reefs were higher than nearshore and offshore locations.

•The results have implications considering the carbon budget at the SW Atlantic Ocean.

Abstract

Coral reefs are ecosystems highly vulnerable to changes in seawater carbonate chemistry, including those related to the ocean acidification and global warming. Brazilian coral reefs contains the major area of reefs coverage in the Southwestern (SW) Atlantic Ocean, however, studies aimed at investigating the controls of seawater carbonate chemistry in coral reefs are still overlooked in Brazil. This study comprehends the first investigation of complete seawater carbonate chemistry parameters in a section of the equatorial continental shelf dominated by coral reefs in the SW Atlantic Ocean. The sampling included spatial continuous underway measurements of sea surface CO2 fugacity (fCO2sw), temperature (SST), salinity (SSS), and discrete investigations of total alkalinity (TA), dissolved inorganic carbon (DIC), bicarbonate (HCO3), carbonate (CO32−), and saturation state of aragonite (Ωara). The study was conducted during a dry period (July-2019) in the Marine State Park of Pedra da Risca do Meio (PRM), a marine protected area dominated by coral reef communities. Overall, the coral-reef dominated waters presented higher values of fCO2sw (475 ± 28 μatm), and lower values of pHT (7.98 ± 0.008), CO32− (217 ± 5 μmol kg-1) and Ωara (3.49 ± 0.07), compared to nearshore regions without the influence of coral reef waters, where the averages of fCO2sw, pHT, CO32−, and Ωarawere, respectively, 458 ± 21 μatm, 8.00 ± 0.007, 224 ± 4 μmol kg-1, and 3.58 ± 0.05. The relationship between salinity-normalized TA (nTA) and salinity-normalized DIC (nDIC) showed a slope higher than 1 (1.26) in the coral reef, evidencing the occurrence of calcium carbonate (CaCO3) precipitation and prevalence of inorganic carbon metabolism. The CaCO3 precipitation involves the consumption of TA and DIC in a ratio 2:1, with production of CO2. This mechanism explains the higher values of fCO2sw in the coral reef-dominated waters. The values of fCO2sw were always higher than the atmospheric values (fCO2air), indicating a permanent source of CO2 in the study area during the sampled period. The calculated fluxes of CO2 at the air-sea interface averaged 8.4 ± 6.5 mmolC m-2 d-1 in the coral reef-dominated waters, and these data are higher than those verified in nearshore and offshore locations. These higher emissions of CO2 in coral reef-dominated waters evidence that the carbon budgets calculated for North and Northeastern continental shelf of Brazil must include these environments taking into account the widespread coral reef coverage in the region. This study also confirms that biogeochemical processes occurring in coral reefs are modifying the seawater carbonate chemistry, with implication in the context of the current process of ocean acidification.

Continue reading ‘Air-sea CO2 flux in an equatorial continental shelf dominated by coral reefs (Southwestern Atlantic Ocean)’

Interactive effects of pH and temperature on native and alien mussels from the west coast of South Africa

Global warming and ocean acidification influence marine calcifying organisms, particularly those with external shells. Among these, mussels may compensate for environmental changes by phenotypic plasticity, but this may entail trade-offs between shell deposition, growth and reproduction. We assessed main and interactive effects of pH and temperature on four mussel species on the west coast of South Africa (33°48′ S, 18°27′ E) in October 2012 by comparing shell dissolution, shell growth, shell breaking force and condition index of two native species, the ribbed mussel Aulacomya atra and the black mussel Choromytilus meridionalis, and two aliens, the Mediterranean mussel Mytilus galloprovincialis and the bisexual mussel Semimytilus algosus. Live mussels and dead shells were exposed for 42 days to seawater of pH 7.5 or 8.0, at 14 °C or 20 °C. Low pH, high temperature and their combination increased shell dissolution of the two aliens but their growth rates and condition indices remained unchanged. Aulacomya atra also experienced greater shell dissolution at a low pH and high temperature, but grew faster in low-pH treatments. For C. meridionalis, shell dissolution was unaffected by pH or temperature; it also grew faster in low-pH treatments, but had a lower condition index in the higher temperature treatment. Shell strength was not determined by thickness alone. In most respects, all four species proved to be robust to short-term reduction of pH and elevation of temperature, but the native species compensated for greater shell dissolution at low pH by increasing growth rate, whereas the aliens did not, so their invasive success cannot be ascribed to benefits accruing from climate change.

Continue reading ‘Interactive effects of pH and temperature on native and alien mussels from the west coast of South Africa’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,426,001 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book

Archives