Posts Tagged 'morphology'

The effects on low pH on sea urchin larval survivorship and development

In recent decades, increasing atmospheric CO2 levels have contributed to the acidification of the world’s oceans. Seawater absorbs CO2 from the atmosphere, which, through a series of chemical reactions, causes an increase in free hydrogen ions and a subsequent decrease in carbonate ions. This adversely affects marine organisms, including sea urchins, since carbonate is critical for building calcium carbonate structures such as shells, without which organisms can die. Declines in urchin populations can have ecological and economic effects, as urchins play critical roles in maintaining ecological balance in marine habitats and are important commercially harvested invertebrates. Larval marine organisms are particularly vulnerable, and increased deformities and mortality are expected in more acidic environments. Therefore, we exposed green sea urchin (Lytechinus variegatus) larvae to different pH levels and examined the effects on development and mortality. Fertilized eggs were reared in seawater with environmentally realistic pH values ranging from pH 7.8 to pH 8.2 (normal seawater), and a larval sample from each treatment was collected every 24 hours for 7 – 10 days. Mortality was documented by counting dead larvae, and development was assessed by comparing morphology among the control and treatment groups. In general, both mortality and morphological abnormalities showed inverse correlations with pH, with the highest mortality rate and most severe abnormalities occurring in larvae exposed to the lowest pH seawater. Larval development was also somewhat delayed in urchin larvae exposed to low pH seawater. These results suggest that acidic seawater, at pH values currently found in the world’s oceans, can adversely affect sea urchin larval development, which can, in turn, have negative ecological and economic consequences.

Continue reading ‘The effects on low pH on sea urchin larval survivorship and development’

Evaluation of the effect of local water chemistry on trace metal accumulation in Puget Sound shellfish shows that concentration varies with species, size, and location

Global climate change is causing ocean acidification (OA), warming, and decreased dissolved oxygen (DO) in coastal areas, which can cause physiological stress and compromise the health of marine organisms. While there is increased focus on how these stressors will affect marine species, there is little known regarding how changes in water chemistry will impact the bioaccumulation of trace metals. This study compared trace metal concentrations in tissue of Mediterranean mussels (Mytilus galloprovincialis) and Olympia oysters (Ostrea lurida) in Puget Sound, Washington, a region that experiences naturally low pH, seasonal hypoxia, and is surrounded by urbanized and industrialized areas. Shellfish were held at three sites (Carr Inlet, Point Wells, and Dabob Bay) where oceanographic data was continuously collected using mooring buoys. Using inductively coupled plasma mass-spectrometry (ICP-MS) to measure trace metals in the tissue, we found differences in accumulation of trace metals based on species, location, and shellfish size. Our study found differences between sites in both the mean metal concentrations and variability around the mean of those concentrations in bivalves. However, high metal concentrations in bivalves were not associated with high concentrations of metals in seawater. Metal concentrations in shellfish were associated with size: smaller shellfish had higher concentrations of metals. Carr Inlet at 20 m depth had the smallest shellfish and the highest metal concentrations. While we could not eliminate possible confounding factors, we also found higher metal concentrations in shellfish associated with lower pH, lower temperature, and lower dissolved oxygen (conditions seen at Carr Inlet at 20 m and to a lesser extent at Point Wells at 5 m depth). There were also significant differences in accumulation of metals between oysters and mussels, most notably copper and zinc, which were found in higher concentrations in oysters. These findings increase our understanding of spatial differences in trace metal bioaccumulation in shellfish from Puget Sound. Our results can help inform the Puget Sound aquaculture industry how shellfish may be impacted at different sites as climate change progresses and coastal pollution increases.

Continue reading ‘Evaluation of the effect of local water chemistry on trace metal accumulation in Puget Sound shellfish shows that concentration varies with species, size, and location’

Ocean acidification but not elevated spring warming threatens a European Seas predator

Highlights

  • Treatments in marine climate research often ignore important, natural variation
  • Fish embryos were exposed to stable versus warming temperatures (T) and high pCO2
  • Development, hatching and metabolism of a predatory fish (garfish) were examined
  • Increased spring warming benefitted garfish but stable high T and pCO2 were lethal
  • Allospecific prey of garpike have adapted suggesting future, trophodynamic change

Abstract

Ocean acidification has the potential to negatively affect marine ecosystems by influencing the development and metabolism of key members of food webs. The garfish, Belone belone, is an ecologically important predator in European regional seas and it remains unknown how this species will be impacted by projected changes in climate. We artificially fertilized and reared garfish embryos until hatch at present (400 μatm) and future (1300 μatm) pCO2 levels within three temperature treatments, i.e. two daily warming regimes and one constant high temperature (17°C). For the two warming treatments, embryos were fertilized at 13°C and experienced 0.1 or 0.3°C/day warming. The 0.1°C/day treatment served as control: 13°C was the in situ temperature of parental fish in the Southwest Baltic Sea and 0.1°C/day is the average warming rate experienced by embryos of this population in nature. Survival was drastically reduced at both future pCO2 and at the constant high temperature while the highest survival in any treatment was observed at 0.3°C/day warming. The proportion of embryos with morphological deformities increased with elevated pCO2 but not temperature. Hatch characteristics and physiological measures such as heart rate and critical thermal ranges, however, were not affected by pCO2 but were influenced by temperature. Our results suggest that garfish in the Baltic Sea will benefit from projected increased rates of spring warming but not the concomitant increase in pCO2. Previous studies on the impacts of ocean acidification on resident fishes in the Baltic Sea indicate that this piscivorous fish is at higher risk compared to its prey which may have broader implications for the future trophodynamic structure and function of the coastal food web.

Continue reading ‘Ocean acidification but not elevated spring warming threatens a European Seas predator’

Combined effect of microplastics and global warming factors on early growth and development of the sea urchin (Paracentrotus lividus)

Highlights

  • This work focusses on the effect of a multi-stressor environment in sea urchin.
  • Embryo-larval bioassays were used to determine growth and morphometric parameters.
  • A lower water pH (7.6) reduced larval growth and caused deformities.
  • Microplastics aggravate the effect of water acidification in sea urchin larvae.
  • High temperatures caused an additional stress and reduced larvae stomach volume.

Abstract

The aim of this work was to estimate the potential risk of the combined effect of global change factors (acidification, temperature increase) and microplastic (MP) pollution on the growth and development of the sea urchin P. lividus. Embryo-larval bioassays were conducted to determine growth and morphology after 48 h of incubation with MP (1000 and 3000 particles/mL); with filtered sea water at pH = 7.6; and with their combinations. A second experiment was conducted to study the effect of pH and MP in combination with a temperature increase of 4 °C compared to control (20 °C). We found that the inhibition of growth in embryos reared at pH = 7.6 was around 75%. Larvae incubated at 3000 MP particles/mL showed a 20% decrease in growth compared to controls. The exposure to MP also induced an increase in the postoral arm separation or rounded vertices. The combined exposure to a pH 7.6 and MP caused a significant decrease of larval growth compared to control, to MP and to pH 7.6 treatments. Morphological alterations were observed in these treatments, including the development of only two arms. Increasing the temperature resulted in an increased growth in control, in pH 7.6 and pH 7.6 + MP3000 treatments, but the relative stomach volume decreased. However, when growth parameters were expressed per Degree-Days the lower growth provoked by the thermal stress was evidenced in all treatments. In this work we demonstrated that MP could aggravate the effect of a decreased pH and that an increase in water temperature generated an additional stress on P. lividus larvae, manifested in a lower growth and an altered development. Therefore, the combined stress caused by ocean warming, ocean acidification, and microplastic pollution, could threaten sea urchin populations leading to a potential impact on coastal ecosystems.

Continue reading ‘Combined effect of microplastics and global warming factors on early growth and development of the sea urchin (Paracentrotus lividus)’

Coast‐wide evidence of low pH amelioration by seagrass ecosystems

Global‐scale ocean acidification has spurred interest in the capacity of seagrass ecosystems to increase seawater pH within crucial shoreline habitats through photosynthetic activity. However, the dynamic variability of the coastal carbonate system has impeded generalization into whether seagrass aerobic metabolism ameliorates low pH on physiologically and ecologically relevant timescales. Here we present results of the most extensive study to date of pH modulation by seagrasses, spanning seven meadows (Zostera marina) and 1000 km of U.S. west coast over 6 years. Amelioration by seagrass ecosystems compared to non‐vegetated areas occurred 65% of the time (mean increase 0.07 ± 0.008 SE). Events of continuous elevation in pH within seagrass ecosystems, indicating amelioration of low pH, were longer and of greater magnitude than opposing cases of reduced pH or exacerbation. Sustained elevations in pH of >0.1, comparable to a 30% decrease in [H+], were not restricted only to daylight hours but instead persisted for up to 21 days. Maximal pH elevations occurred in spring and summer during the seagrass growth season, with a tendency for stronger effects in higher latitude meadows. These results indicate that seagrass meadows can locally alleviate low pH conditions for extended periods of time with important implications for the conservation and management of coastal ecosystems.

Continue reading ‘Coast‐wide evidence of low pH amelioration by seagrass ecosystems’

Transgenerational responses to seawater pH in the edible oyster, with implications for the mariculture of the species under future ocean acidification

Highlights

• Larval offspring of C. hongkongensis were resilient to OA exposure

• Phenotypic traits in out-planted juveniles improved with parental exposure

• Positive carry-over effect from exposed parents persisted and manifested in the estuary

• Linking multiple life stages is vital to assess OA-induced carry-over capacity

• OA exposure at early life stages revealed potential mariculture application and species fitness

Abstract

The majority of common edible oysters are projected to grow more slowly and have smaller impaired shells because of anthropogenic CO2-induced reductions in seawater carbonate ion concentration and pH, a process called ocean acidification (OA). Recent evidence has shown that OA has carryover effects, for example, larvae exposed to OA will also exhibit either positive or negative effects after metamorphosis. This study examined the hidden carryover effects of OA exposure during parental and larval stages on post-metamorphic traits of the commercially important oyster species Crassostrea hongkongensis. Adults of C. hongkongensis were exposed to control pH (pHNBS 8.0) and OA-induced low pH (pHNBS 7.4) conditions. Their larval offspring were then exposed to the same aquarium conditions before being out-planted as post-metamorphic juveniles at a mariculture site for 10 months. Initially, larval offspring were resilient to low pH with or without parental exposure. The larvae exposed to low pH had significantly faster development and higher percentage of settlement success compared to control groups. The out-planted juveniles with parental exposure had improved survival and growth compared to juveniles without parental exposure, regardless of the larval exposure history. This implies that transgenerational effects due to parental exposure not only persists but also have a greater influence than the within-generational effects of larval exposure. Our results shed light on the importance of linking the various life history stages when assessing the OA-induced carryover capacity of C. hongkongensis in the natural environment. Understanding these linked relationships helps us better predict the species rapid adaptation responses in the face of changing coastal conditions due to OA.

Continue reading ‘Transgenerational responses to seawater pH in the edible oyster, with implications for the mariculture of the species under future ocean acidification’

Experimental assessment of the impacts of ocean acidification and urchin grazing on benthic kelp forest assemblages

Ocean acidification (OA) is likely to differentially affect the biology and physiology of calcifying and non-calcifying taxa, thereby potentially altering key ecological interactions (e.g., facilitation, competition, predation) in ways that are difficult to predict from single-species experiments. We used a two-factor experimental design to investigate how multispecies benthic assemblages in southern California kelp forests respond to OA and grazing by the purple sea urchinStrongylocentrotus purpuratus. Settlement tiles accrued natural mixed assemblages of algae and invertebrates in a kelp forest off San Diego, CA for one year before being exposed to OA and grazing in a laboratory experiment for two months. Space occupying organisms were identified and pooled into six functional groups: calcified invertebrates, non-calcified invertebrates, calcified algae, fleshy algae, sediment, and bare space for subsequent analyses of community structure. Interestingly, communities that developed on separate tile racks were unique, despite being deployed close in space, and further changes in community structure in response to OA and grazing depended on this initial community state. On Rack 1, we found significant effects of both pCO2 and grazing with elevated pCO2 increasing cover of fleshy algae, but sea urchin grazers decreasing cover of fleshy algae. On Rack 2, we found a ~ 35% higher percent cover of sediment on tiles reared in ambient pCO2 but observed ~27% higher cover of bare space in the high pCO2 conditions. On Rack 3, we found an average of 45% lower percent cover of calcified sessile invertebrates at ambient pCO2 than in high pCO2 treatments on Rack 3. Net community calcification was 137% lower in elevated pCO2 treatments. Kelp sporophyte densities on tiles without urchins were 74% higher than on tiles with urchins and kelp densities were highest in the elevated pCO2 treatment. Urchin growth and grazing rates were 49% and 126% higher under ambient than high pCO2 conditions. This study highlights consistent negative impacts of OA on community processes such as calcification and grazing rates, even though impacts on community structure were highly context-dependent.

Continue reading ‘Experimental assessment of the impacts of ocean acidification and urchin grazing on benthic kelp forest assemblages’

Multiple-stressor effects of warming and acidification on the embryonic development of an estuarine fiddler crab

Highlights

  • Elevated temperature accelerated early and late embryonic development.
  • Reduced pH accelerated late embryonic development.
  • Elevated temperature reduced survivorship in later stages.
  • A negative synergetic effect between pH and temperature was evidenced in egg volume.
  • > 70% of embryos well-developed under elevated temperature and reduced pH.

Abstract

Predicted effects of anthropogenic climate change on estuarine and coastal organisms are complex, and early life history stages of calcified ectotherms are amongst the most sensitive groups. Despite the importance of understanding their vulnerability, we lack information on the effects of multiple stressors on the embryonic development of estuarine and burrowing organisms, mainly mangrove-associated species. Here, we determined the combined effects of elevated temperature and decreased pH on the embryonic development of the estuarine fiddler crab Leptuca thayeri. Initially, the microhabitat (burrow) of ovigerous (egg-bearing) females was measured for temperature, pH, and salinity, which provided control values in our laboratory experiment. Embryos at the early stage of development were subjected to cross-factored treatments of predicted temperature and pH and evaluated for development rate, survivorship, and volume until their later embryonic stage. Embryo development was faster at early and later stages of development, and survivorship was lower under elevated temperature. Embryos under reduced pH showed advanced embryonic stages at their late development stage. Higher egg volume was observed in a warmer and acidified environment, and lower volume in warmer and non-acidified conditions, indicating that embryo development is synergistically affected by warming and acidification. More than 70% of embryos developed until late stages under the multiple-stressors treatment, giving insights on the effects of a warm and acidified environment on burrowing estuarine organisms and their early stages of development.

Continue reading ‘Multiple-stressor effects of warming and acidification on the embryonic development of an estuarine fiddler crab’

Increased thermal sensitivity of a tropical marine gastropod under combined CO2 and temperature stress

The ability of an organism to alter its physiology in response to environmental conditions offers a short-term defense mechanism in the face of weather extremes resulting from climate change. These often manifest as multiple, interacting drivers, especially pH and temperature. In particular, decreased pH can impose constraints on the biological mechanisms which define thermal limits by throwing off energetic equilibrium and diminishing physiological functions (e.g., in many marine ectotherms). For many species, however, we do not have a detailed understanding of these interactive effects, especially on short-term acclimation responses. Here, we investigated the metabolic plasticity of a tropical subtidal gastropod (Trochus maculatus) to increased levels of CO2 (700 ppm) and heating (+3°C), measuring metabolic performance (Q10 coefficient) and thermal sensitivity [temperature of maximum metabolic rate (TMMR), and upper lethal temperature (ULT)]. Individuals demonstrated metabolic acclimation in response to the stressors, with TMMR increasing by +4.1°C under higher temperatures, +2.7°C under elevated CO2, and +4.4°C under the combined stressors. In contrast, the ULT only increased marginally in response to heating (+0.3°C), but decreased by −2.3°C under CO2, and −8.7°C under combined stressors. Therefore, although phenotypic plasticity is evident with metabolic acclimation, acute lethal temperature limits seem to be less flexible during short-term acclimation.

Continue reading ‘Increased thermal sensitivity of a tropical marine gastropod under combined CO2 and temperature stress’

Severe biological effects under present-day estuarine acidification in the seasonally variable Salish Sea

Highlights

• Spatial and temporal variation in estuarine acidification cause severe biological responses.

• Extreme low saturation state and duration of exposure cause pteropod shell dissolution.

• Changing estuarine conditions cause cumulative stress that was used to generate stress index.

• Compensatory mechanisms allow pelagic calcifiers to persist in extreme OA estuarine habitats.

Abstract

Estuaries are recognized as one of the habitats most vulnerable to coastal ocean acidification due to seasonal extremes and prolonged duration of acidified conditions. This is combined with co-occurring environmental stressors such as increased temperature and low dissolved oxygen. Despite this, evidence of biological impacts of ocean acidification in estuarine habitats is largely lacking. By combining physical, biogeochemical, and biological time-series observations over relevant seasonal-to-interannual time scales, this study is the first to describe both the spatial and temporal variation of biological response in the pteropod Limacina helicina to estuarine acidification in association with other stressors. Using clustering and principal component analyses, sampling sites were grouped according to their distribution of physical and biogeochemical variables over space and time. This identified the most exposed habitats and time intervals corresponding to the most severe negative biological impacts across three seasons and three years. We developed a cumulative stress index as a means of integrating spatial-temporal OA variation over the organismal life history. Our findings show that over the 2014–2016 study period, the severity of low aragonite saturation state combined with the duration of exposure contributed to overall cumulative stress and resulted in severe shell dissolution. Seasonally-variable estuaries such as the Salish Sea (Washington, U.S.A.) predispose sensitive organisms to more severe acidified conditions than those of coastal and open-ocean habitats, yet the sensitive organisms persist. We suggest potential environmental factors and compensatory mechanisms that allow pelagic calcifiers to inhabit less favorable habitats and partially offset associated stressors, for instance through food supply, increased temperature, and adaptation of their life history. The novel metric of cumulative stress developed here can be applied to other estuarine environments with similar physical and chemical dynamics, providing a new tool for monitoring biological response in estuaries under pressure from accelerating global change.

Continue reading ‘Severe biological effects under present-day estuarine acidification in the seasonally variable Salish Sea’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,442,480 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book

Archives