Posts Tagged 'morphology'

Impact of climate change on direct and indirect species interactions

Recent marine climate change research has largely focused on the response of individual species to environmental changes including warming and acidification. The response of communities, driven by the direct effects of ocean change on individual species as well the cascade of indirect effects, has received far less study. We used several rocky intertidal species including crabs, whelks, juvenile abalone, and mussels to determine how feeding, growth, and interactions between species could be shifted by changing ocean conditions. Our 10 wk experiment revealed many complex outcomes which highlight the unpredictability of community-level responses. Contrary to our predictions, the largest impact of elevated CO2 was reduced crab feeding and survival, with a pH drop of 0.3 units. Surprisingly, whelks showed no response to higher temperatures or CO2 levels, while abalone shells grew 40% less under high CO2 conditions. Massive non-consumptive effects of crabs on whelks showed how important indirect effects can be in determining climate change responses. Predictions of species outcomes that account solely for physiological responses to climate change do not consider the potentially large role of indirect effects due to species interactions. For strongly linked species (e.g. predator-prey or competitor relationships), the indirect effects of climate change are much less known than direct effects, but may be far more powerful in reshaping future marine communities.

Continue reading ‘Impact of climate change on direct and indirect species interactions’

The combined effects of increased temperature and ocean acidification on the early life history stages of Caribbean coral and its implication for the recovery potential of Florida reefs

The early life history stages of coral are an essential component determining the recovery potential of coral reefs through sexual reproduction and recruitment. The pelagic larval phase is inherent in all coral species regardless of differing reproductive strategies and is the only time in coral life history where large scale movement is possible allowing for the repopulation of reef areas both within and outside the natal reef habitat. In the face of climate change, the larval dispersal and recruitment phase will take place in a warmer more acidic ocean if we continue on the path of unabated fossil fuel emissions. While much research has focused on how increased temperature or ocean acidification affect coral larvae independently, our understanding of how these factors interact to shape larval response is limited, especially in regards to Caribbean coral species.

To gain a better understanding of how the early life history stages of Caribbean coral may be affected by climate change, this dissertation investigates the effects of increased temperature (2.5 °C above historical averages in the Florida Keys) and carbon dioxide levels (900-1000 parts per million CO2) on corals from the Florida Reef tract by investigating the effects on larval metabolism, survivorship, settlement, and post-settlement growth and survival. Additionally, a coupled biophysical model was developed to determine the potential changes in connectivity that may result from the biological effects of increased temperature and ocean acidification on the larval phase. The larval respiratory response of three Caribbean coral species revealed Orbicella faveolata as the most environmentally responsive with significant increases in respiration after 1 day exposure to increased temperature (68% greater than control conditions) with a counteracting effect of ocean acidification significantly decreasing respiration. The changes in metabolism over time correlated with decreased time to competency under elevated temperature in O. faveolata larvae, resulting in a greater number of settlers (76% greater than control) and a relative increase in local retention and self-recruitment rates as revealed by the biophysical model (5 and 7% greater than control respectively). However, when increased temperature occurred in combination with elevated CO2 levels, respiration was not significantly increased relative to control conditions and development of competency is minimally impacted. This resulted in a smaller increase in settlers (13% greater than control) and no significant changes in connectivity patterns. The post-settlement phase was similarly impacted with counteracting effects of increased temperature and ocean acidification on recruit growth.

Overall, this dissertation reveals the potential for adaptation to increased temperature in at least one important coral species (Orbicella faveolata) that is greatly diminished when encountered in combination with ocean acidification. These results encourage the reduction of carbon emissions to give coral species the chance to adapt to elevated temperatures through the recruitment of more resilient individuals without the additional stress of ocean acidification.

Continue reading ‘The combined effects of increased temperature and ocean acidification on the early life history stages of Caribbean coral and its implication for the recovery potential of Florida reefs’

Ocean acidification impacts spine integrity but not regenerative capacity of spines and tube feet in adult sea urchins

Increasing atmospheric carbon dioxide (CO2) has resulted in a change in seawater chemistry and lowering of pH, referred to as ocean acidification. Understanding how different organisms and processes respond to ocean acidification is vital to predict how marine ecosystems will be altered under future scenarios of continued environmental change. Regenerative processes involving biomineralization in marine calcifiers such as sea urchins are predicted to be especially vulnerable. In this study, the effect of ocean acidification on regeneration of external appendages (spines and tube feet) was investigated in the sea urchin Lytechinus variegatus exposed to ambient (546 µatm), intermediate (1027 µatm) and high (1841 µatm) partial pressure of CO2 (pCO2) for eight weeks. The rate of regeneration was maintained in spines and tube feet throughout two periods of amputation and regrowth under conditions of elevated pCO2. Increased expression of several biomineralization-related genes indicated molecular compensatory mechanisms; however, the structural integrity of both regenerating and homeostatic spines was compromised in high pCO2 conditions. Indicators of physiological fitness (righting response, growth rate, coelomocyte concentration and composition) were not affected by increasing pCO2, but compromised spine integrity is likely to have negative consequences for defence capabilities and therefore survival of these ecologically and economically important organisms.

Continue reading ‘Ocean acidification impacts spine integrity but not regenerative capacity of spines and tube feet in adult sea urchins’

Is the chemical composition of biomass the agent by which ocean acidification influences on zooplankton ecology?

Climate change impacts prevail on marine pelagic systems and food webs, including zooplankton, the key link between primary producers and fish. Several metabolic, physiological, and ecological responses of zooplankton species and communities to global stressors have recently been tested, with an emerging field in assessing effects of combined climate-related factors. Yet, integrative studies are needed to understand how ocean acidification interacts with global warming, mediating zooplankton body chemistry and ecology. Here, we tested the combined effects of global warming and ocean acidification, predicted for the year 2100, on a community of calanoid copepods, a ubiquitously important mesozooplankton compartment. Warming combined with tested pCO2 increase affected metabolism, altered stable isotope composition and fatty acid contents, and reduced zooplankton fitness, leading to lower copepodite abundances and decreased body sizes, and ultimately reduced survival. These interactive effects of temperature and acidification indicate that metabolism-driven chemical responses may be the underlying correlates of ecological effects observed in zooplankton communities, and highlight the importance of testing combined stressors with a regression approach when identifying possible effects on higher trophic levels.

Continue reading ‘Is the chemical composition of biomass the agent by which ocean acidification influences on zooplankton ecology?’

Ocean acidification in the Baltic Sea : implications for the bivalve Macoma balthica

The Baltic Sea is one of the most human-impacted sea areas in the world and its ecosystems are exposed to a variety of stressors of anthropogenic origin. Large changes in the environmental conditions, species and communities of the Baltic Sea are predicted to occur due to global climate change, but the extent and magnitude of the future changes are challenging to estimate due to the multiple stressors simultaneously impacting the system. As an additional threat, future ocean acidification will play a role in modifying the environmental conditions, and these CO2-induced changes are predicted to be fast in the Baltic Sea. This is especially of concern for the species-poor, but functionally essential benthic communities where key species such as bivalve Macoma balthica live at the limits of their tolerance range, and are already regularly disturbed by environmental stressors such as hypoxia. Currently, only very limited knowledge about the effects of future ocean acidification exists for this species.

The overall aim of my thesis was to develop an understanding of the effects of CO2 increase on the vulnerability of Baltic Sea key species, and how this is related to other effects of climate change, e.g. an increase in bottom-water hypoxia. Specifically, I investigated how different life stages of the infaunal bivalve M. balthica could be affected by future ocean acidification. Survival, growth, behaviour and physiological responses were assessed in a combination of laboratory and mesocosm experiments by exposing different life stages of M. balthica to different pH levels over different time periods depending on the life stage in question. While some life stage-based differences in vulnerability and survival were found, the results indicate that reduced pH has a negative effect on all life stages. In larval M. balthica, even a slight pH decrease was found to cause significant negative changes during that delicate life stage, both by slowing growth and by decreasing survival. Other observed impacts included delayed settling of the post-larvae and increasing energetic demand of adult bivalves.

The results suggest consistent negative effects at all life stages with potential major implications for the resilience of M. Balthica populations, which are currently under threat from a range of anthropogenic stressors such as increasing hypoxia. The kind of experimental studies conducted in this thesis are useful for pinpointing mechanisms, but they are always simplifications of reality, however, and are usually conducted over time scales that are short in relation to the time scales over which ocean acidification is affecting populations, communities and ecosystems. To fully understand and to be able to estimate how the complex ecosystems are about to change in the future, incorporating more of the biotic interactions, impacting stressors and relevant environmental conditions are needed for increasing the level of realism in the experiments.

Continue reading ‘Ocean acidification in the Baltic Sea : implications for the bivalve Macoma balthica’

Effects of ocean acidification on juveniles sea urchins: Predator-prey interactions

Increasing CO2 concentration in the atmosphere during the last decades has led to a significant decrease in ocean pH. Organisms that need carbonate to build their calcareous skeletons could be severely affected. In this study we focused on the effects of ocean acidification on juveniles of the sea urchins Paracentrotus lividus and Diadema africanum. We assessed the effects of decreased pH on two skeletal structures, spines and test, and their impacts on species performance to avoid predation events in the field. Juveniles of both study species were exposed for 100 days to two treatments of pH: a pH of 8.0 (413.2 μatm) and pH of 7.6 (1349 μatm). Our results showed that D. africanum juveniles from the acidic treatment were more predated than those kept in the control treatment. These differences were not observed between treatments in P. lividus. Diadema africanum may be more sensitive to the indirect effects of ocean acidification on predator avoidance than P. lividus. However juveniles reared in a pH of 7.6 showed changes in shape in skeletal structures in both species. Considering these results in future scenarios, P lividus may be considered a “winning species”, and D. africanum a “losing species” in the climate change stake.

Continue reading ‘Effects of ocean acidification on juveniles sea urchins: Predator-prey interactions’

Pontellid copepods, Labidocera spp., affected by ocean acidification: A field study at natural CO2 seeps

CO2 seeps in coral reefs were used as natural laboratories to study the impacts of ocean acidification on the pontellid copepod, Labidocera spp. Pontellid abundances were reduced by ∼70% under high-CO2 conditions. Biological parameters and substratum preferences of the copepods were explored to determine the underlying causes of such reduced abundances. Stage- and sex-specific copepod lengths, feeding ability, and egg development were unaffected by ocean acidification, thus changes in these physiological parameters were not the driving factor for reduced abundances under high-CO2 exposure. Labidocera spp. are demersal copepods, hence they live amongst reef substrata during the day and emerge into the water column at night. Deployments of emergence traps showed that their preferred reef substrata at control sites were coral rubble, macro algae, and turf algae. However, under high-CO2 conditions they no longer had an association with any specific substrata. Results from this study indicate that even though the biology of a copepod might be unaffected by high-CO2, Labidocera spp. are highly vulnerable to ocean acidification.

Continue reading ‘Pontellid copepods, Labidocera spp., affected by ocean acidification: A field study at natural CO2 seeps’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,001,025 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book