Posts Tagged 'morphology'

Ocean acidification decreases mussel byssal attachment strength and induces molecular byssal responses

Ocean acidification (OA) is a term describing the uptake of CO2 from the atmosphere, decreasing seawater pH and altering carbonate chemistry. Mussels are an ecologically and economically important taxon that attach to solid surfaces via the byssus. To date, little is known about the effects of OA on mussel byssal attachment and the underlying molecular byssal responses. This study demonstrated that after 1 wk of exposure to acidified seawater, both mechanical properties (such as strength and extensibility) and the numbers of byssal threads produced by Mytilus coruscus were significantly reduced, leading to a 60 to 65% decrease in mussel byssal attachment strength. Real-time PCR results suggested that OA also altered the expression of genes encoding the proximal thread matrix protein (PTMP), precursor collagen proteins (preCOL-P, -NG and -D) and mussel foot proteins (mfp-1, -2, -3, -4, -5 and -6). The down-regulation of some specific byssal proteins may be one of the reasons for the weakened mechanical properties of individual byssal threads under OA conditions. In contrast, the up-regulation of some other specific byssal proteins may be adaptive responses to minimize the adverse effect of OA on byssal attachment. OA may weaken mussel byssal attachment by reducing the production and mechanical properties of byssal threads and by inducing byssal molecular responses. The weakened byssal attachment induced by OA therefore could pose a substantial threat to both mussel aquaculture and mussel-bed ecosystems.

Continue reading ‘Ocean acidification decreases mussel byssal attachment strength and induces molecular byssal responses’

Effects of elevated carbon dioxide and temperature on locomotion and the repeatability of lateralization in a keystone marine mollusc

Recent work has shown that the behaviour of marine organisms can be affected by elevated pCO2, although little is known about the effect of multiple stressors. We therefore investigated the effect of elevated pCO2 and temperature on locomotion and behaviour during prey searching in the marine gastropod Concholepas concholepas, a predator characteristic of the southeastern Pacific coast. Movement duration, decision time, route finding and lateralization were measured using a T-maze tank with a prey positioned behind a barrier. Four treatments, representing present day and near-future scenarios of ocean acidification and warming were used in rearing the individuals for 6 months. Regardless of the treatment, no significant differences were found in relative and absolute lateralization before and after exposure for 6 months. However, relative lateralization was not repeatable for animals tested after 6 months at elevated pCO2 at both experimental temperatures, whereas it was repeatable in individuals kept at the present day level of pCO2. We suggest that these effects may be related to a behavioural malfunction caused by elevated pCO2. Movement duration, decision time and route finding were not repeatable. However, movement duration and decision time increased and route finding decreased in elevated pCO2 (at 15°C), suggesting that elevated pCO2 has negative effects on the locomotor and sensory performance of C. concholepas in the presence of a prey odour, thereby decreasing their ability to forage efficiently.

Continue reading ‘Effects of elevated carbon dioxide and temperature on locomotion and the repeatability of lateralization in a keystone marine mollusc’

Marine gametes in a changing ocean: Impacts of climate change stressors on fecundity and the egg

In marine invertebrates, the environmental history of the mother can influence fecundity and egg size. Acclimation of females in climate change stressors, increased temperature and low pH, results in a decrease in egg number and size in many taxa, with the exception of cephalopods, where eggs increase in size. With respect to spawned eggs, near future levels of ocean acidification can interfere with the eggs’ block to polyspermy and intracellular pH. Reduction of the extracellular egg jelly coat seen in low pH conditions has implications for impaired egg function and fertilization. Some fast generation species (e.g. copepods, polychaetes) have shown restoration of female reproductive output after several generations in treatments. It will be important to determine if the changes to egg number and size induced by exposure to climate change stressors are heritable.

Continue reading ‘Marine gametes in a changing ocean: Impacts of climate change stressors on fecundity and the egg’

Mineralogical plasticity acts as a compensatory mechanism to the impacts of ocean acidification

Calcifying organisms are considered particularly susceptible to the future impacts of ocean acidification (OA), but recent evidence suggests that they may be able to maintain calcification and overall fitness. The underlying mechanism remains unclear but may be attributed to mineralogical plasticity, which modifies the energetic cost of calcification. To test the hypothesis that mineralogical plasticity enables the maintenance of shell growth and functionality under OA conditions, we assessed the biological performance of a gastropod (respiration rate, feeding rate, somatic growth, and shell growth of Austrocochlea constricta) and analyzed its shell mechanical and geochemical properties (shell hardness, elastic modulus, amorphous calcium carbonate, calcite to aragonite ratio, and magnesium to calcium ratio). Despite minor metabolic depression and no increase in feeding rate, shell growth was faster under OA conditions, probably due to increased precipitation of calcite and trade-offs against inner shell density. In addition, the resulting shell was functionally suitable for increasingly “corrosive” oceans, i.e., harder and less soluble shells. We conclude that mineralogical plasticity may act as a compensatory mechanism to maintain overall performance of calcifying organisms under OA conditions and could be a cornerstone of calcifying organisms to acclimate to and maintain their ecological functions in acidifying oceans.

Continue reading ‘Mineralogical plasticity acts as a compensatory mechanism to the impacts of ocean acidification’

Adult exposure to ocean acidification is maladaptive for larvae of the Sydney rock oyster Saccostrea glomerata in the presence of multiple stressors

Parental effects passed from adults to their offspring have been identified as a source of rapid acclimation that may allow marine populations to persist as our surface oceans continue to decrease in pH. Little is known, however, whether parental effects are beneficial for offspring in the presence of multiple stressors. We exposed adults of the oyster Saccostrea glomerata to elevated CO2 and examined the impacts of elevated CO2 (control = 392; 856 µatm) combined with elevated temperature (control = 24; 28°C), reduced salinity (control = 35; 25) and reduced food concentration (control = full; half diet) on their larvae. Adult exposure to elevated CO2 had a positive impact on larvae reared at elevated CO2 as a sole stressor, which were 8% larger and developed faster at elevated CO2 compared with larvae from adults exposed to ambient CO2. These larvae, however, had significantly reduced survival in all multistressor treatments. This was particularly evident for larvae reared at elevated CO2 combined with elevated temperature or reduced food concentration, with no larvae surviving in some treatment combinations. Larvae from CO2-exposed adults had a higher standard metabolic rate. Our results provide evidence that parental exposure to ocean acidification may be maladaptive when larvae experience multiple stressors.

Continue reading ‘Adult exposure to ocean acidification is maladaptive for larvae of the Sydney rock oyster Saccostrea glomerata in the presence of multiple stressors’

Seawater acidification induced immune function changes of haemocytes in Mytilus edulis: a comparative study of CO2 and HCl enrichment

The present study was performed to evaluate the effects of CO2− or HCl-induced seawater acidification (pH 7.7 or 7.1; control: pH 8.1) on haemocytes of Mytilus edulis, and the changes in the structure and immune function were investigated during a 21-day experiment. The results demonstrated that seawater acidification had little effect on the cellular mortality and granulocyte proportion but damaged the granulocyte ultrastructure. Phagocytosis of haemocytes was also significantly inhibited in a clearly concentration-dependent manner, demonstrating that the immune function was affected. Moreover, ROS production was significantly induced in both CO2 and HCl treatments, and four antioxidant components, GSH, GST, GR and GPx, had active responses to the acidification stress. Comparatively, CO2 had more severe destructive effects on haemocytes than HCl at the same pH level, indicating that CO2 stressed cells in other ways beyond the increasing H+ concentration. One possible explanation was that seawater acidification induced ROS overproduction, which damaged the ultrastructure of haemocytes and decreased phagocytosis.

Continue reading ‘Seawater acidification induced immune function changes of haemocytes in Mytilus edulis: a comparative study of CO2 and HCl enrichment’

Response of Marginopora vertebralis (Foraminifera) from Laucala Bay, Fiji, to changing ocean pH

Increased CO2 emissions into the atmosphere lead to increased concentrations of dissolved CO2 in the ocean. A chemical reaction between the dissolved CO2 and seawater produces HCO3 −, CO3 2− and H+ ions. These H+ ions increase the acidity of seawater and decrease the pH. Increased acidity and decreased availability of CO3 2− ion affect calcite and aragonite production by marine calcifiers in the ocean. To assess potential responses of the larger benthic foraminifer Marginopora vertebralis to ocean acidification, we performed growth experiments at three pH levels [7.5, 7.8, 8.1 (ambient seawater)] for 11 weeks. Specimens were stained with the fluorescent compound Calcein ( ̴40 µmole/l) prior to treatment, allowing identification of calcite added during the treatment period. At pH 8.1, specimens increased their test weight by 8.4%, at pH 7.8 growth was 4.2%, and at pH 7.5, growth was only 3.2%. These differences represent a significant relationship between ocean pH and test growth (i.e., calcification). In addition, several specimens in the pH 8.1 treatment underwent asexual reproduction during the experiment, while no reproduction was observed in the pH 7.8 or 7.5 treatments. These results indicate that ocean acidification predicted to occur by the end of the 21st century will cause a decline in population densities of Marginopora vertebralis in their natural environment, as consequences of both reduced growth rates and rates of reproduction. And because the tests of these foraminifers are important components of carbonate sediments on coral cays and tropical beaches, a decline in their rates of sediment production will exacerbate the consequences of rising sea level.

Continue reading ‘Response of Marginopora vertebralis (Foraminifera) from Laucala Bay, Fiji, to changing ocean pH’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 976,475 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book