Posts Tagged 'morphology'



Ervilia castanea (Mollusca, Bivalvia) populations adversely affected at CO2 seeps in the North Atlantic

Highlights

  • The bivalve Ervilia castanea was studied at volcanic CO2 seeps and reference sites.
  • Abundance, size and net-calcification were inversely related to CO2 levels.
  • Large individuals were scarce or absent at high CO2 sites.
  • Recruitment of this bivalve was highest at the CO2 seeps.
  • Abundance and size of E. castanea were positively correlated with Chl-a in sediment.

 

Abstract

Sites with naturally high CO2 conditions provide unique opportunities to forecast the vulnerability of coastal ecosystems to ocean acidification, by studying the biological responses and potential adaptations to this increased environmental variability. In this study, we investigated the bivalve Ervilia castanea in coastal sandy sediments at reference sites and at volcanic CO2 seeps off the Azores, where the pH of bottom waters ranged from average oceanic levels of 8.2, along gradients, down to 6.81, in carbonated seawater at the seeps. The bivalve population structure changed markedly at the seeps. Large individuals became less abundant as seawater CO2 levels rose and were completely absent from the most acidified sites. In contrast, small bivalves were most abundant at the CO2 seeps. We propose that larvae can settle and initially live in high abundances under elevated CO2 levels, but that high rates of post-settlement dispersal and/or mortality occur. Ervilia castanea were susceptible to elevated CO2 levels and these effects were consistently associated to lower food supplies. This raises concerns about the effects of ocean acidification on the brood stock of this species and other bivalve molluscs of similar life history traits.

 

Continue reading ‘Ervilia castanea (Mollusca, Bivalvia) populations adversely affected at CO2 seeps in the North Atlantic’

Temperature elevation and acidification damage microstructure of abalone via expression change of crystal induction genes

Highlights

• Thermal and acidification stress destroy the microstructure of abalone shells.

• Expression pattern change of direct crystal induction genes interfered the microstructure of shell under stress.

• Thermal stress changed the shell microstructure via Expression pattern change of direct crystal induction genes.

Abstract

Ocean warming and acidification caused by global climate change interferes with the shell growth of mollusks. In abalone Haliotis discus hannai, the microstructural changes in the shell under stress are unclear, and the effect of thermal stress on biomineralization is unknown. The lack of gene information has also hampered the study of abalone biomineralization mechanisms. In this study, the microstructure of reconstructed shell in H. discus hannai was observed to determine the effects of thermal and acidification stress on shell growth. Three nacre protein genes, Hdh-AP7, Hdh-AP24, and Hdh-perlustrin, were characterized, and their expression pattern during shell repair was measured under thermal and acidification stress and compared with those of two known biomineralization-related genes, Hdh-AP-1 and Hdh-defensin. The stress resulted in aragonite plates with corroded or irregular microstructures. The gene expression of two nacre proteins (Hdh-AP7 and Hdh-AP24), which directly induce crystal formation, were more sensitive to thermal stress than to acidification, but the expression of the regulatory nacre protein (Hdh-perlustrin) and the two known genes (Hdh-AP-1 and Hdh-defensin), which are also related to immunity, showed an interlinked, complex pattern change. We concluded that high temperature and acidification damages the shell microstructure by disturbing the expression pattern of biomineralization-related genes.

Continue reading ‘Temperature elevation and acidification damage microstructure of abalone via expression change of crystal induction genes’

Ocean acidification has impacted coral growth on the Great Barrier Reef

Ocean acidification (OA) reduces the concentration of seawater carbonate ions that stony corals need to produce their calcium carbonate skeletons, and is considered a significant threat to the functional integrity of coral reef ecosystems. However, detection and attribution of OA impact on corals in nature are confounded by concurrent environmental changes, including ocean warming. Here we use a numerical model to isolate the effects of OA and temperature, and show that OA alone has caused 13±3% decline in the skeletal density of massive Porites corals on the Great Barrier Reef since 1950. This OA‐induced thinning of coral skeletons, also evident in Porites from the South China Sea but not in the central equatorial Pacific, reflects enhanced acidification of reef water relative to the surrounding open ocean. Our finding reinforces concerns that even corals that might survive multiple heatwaves are structurally weakened and increasingly vulnerable to the compounding effects of climate change.

Continue reading ‘Ocean acidification has impacted coral growth on the Great Barrier Reef’

Inorganic carbon uptake strategies in coralline algae: plasticity across evolutionary lineages under ocean acidification and warming

Highlights

• Ambient diffusive CO2 use of reef-building crustose coralline algae ranges from 35 to 65%.

• Algae largely maintain or increase bicarbonate use under ocean acidification and warming.

• Maintained or increased bicarbonate use is associated with sustained metabolic performance.

• Lineage predicts inorganic carbon uptake strategy.

• Proposed initial framework for inorganic carbon uptake strategies in crustose coralline algae.

Abstract

Dissolved inorganic carbon (DIC) assimilation is essential to the reef-building capacity of crustose coralline algae (CCA). Little is known, however, about the DIC uptake strategies and their potential plasticity under ongoing ocean acidification (OA) and warming. The persistence of CCA lineages throughout historical oscillations of pCO2 and temperature suggests that evolutionary history may play a role in selecting for adaptive traits. We evaluated the effects of pCO2 and temperature on the plasticity of DIC uptake strategies and associated energetic consequences in reef-building CCA from different evolutionary lineages. We simulated past, present, moderate (IPCC RCP 6.0) and high pCO2 (RCP 8.5) and present and high (RCP 8.5) temperature conditions and quantified stable carbon isotope fractionation (13ε), organic carbon content, growth and photochemical efficiency. All investigated CCA species possess CO2-concentrating mechanisms (CCMs) and assimilate CO2 via diffusion to varying degrees. Under OA and warming, CCA either increased or maintained CCM capacity, which was associated with overall neutral effects on metabolic performance. More basal taxa, Sporolithales and Hapalidiales, had greater capacity for diffusive CO2 use than Corallinales. We suggest that CCMs are an adaptation that supports a robust carbon physiology and are likely responsible for the endurance of CCA in historically changing oceans.

Continue reading ‘Inorganic carbon uptake strategies in coralline algae: plasticity across evolutionary lineages under ocean acidification and warming’

Effects of future climate on coral-coral competition

As carbon dioxide (CO2) levels increase, coral reefs and other marine systems will be affected by the joint stressors of ocean acidification (OA) and warming. The effects of these two stressors on coral physiology are relatively well studied, but their impact on biotic interactions between corals are poorly understood. While coral-coral interactions are less common on modern reefs, it is important to document the nature of these interactions to better inform restoration strategies in the face of climate change. Using a mesocosm study, we evaluated whether the combined effects of ocean acidification and warming alter the competitive interactions between the common coral Porites astreoides and two other mounding corals (Montastraea cavernosa or Orbicella faveolata) common in the Caribbean. After 7 days of direct contact, P. astreoides suppressed the photosynthetic potential of M. cavernosa by 100% in areas of contact under both present (~28.5°C and ~400 μatm pCO2) and predicted future (~30.0°C and ~1000 μatm pCO2) conditions. In contrast, under present conditions M. cavernosa reduced the photosynthetic potential of P. astreoides by only 38% in areas of contact, while under future conditions reduction was 100%. A similar pattern occurred between P. astreoides and O. faveolata at day 7 post contact, but by day 14, each coral had reduced the photosynthetic potential of the other by 100% at the point of contact, and O. faveolata was generating larger lesions on P. astreoides than the reverse. In the absence of competition, OA and warming did not affect the photosynthetic potential of any coral. These results suggest that OA and warming can alter the severity of initial coral-coral interactions, with potential cascading effects due to corals serving as foundation species on coral reefs.

Continue reading ‘Effects of future climate on coral-coral competition’

Ocean acidification impacts on biomass and fatty acid composition of a post-bloom marine plankton community

A mesocosm approach was used to investigate the effects of ocean acidification (OA) on a natural plankton community in coastal waters off Norway by manipulating CO2 partial pressure ( pCO2). Eight enclosures were deployed in the Raunefjord near Bergen. Treatment levels were ambient (~320 µatm) and elevated pCO2 (~2000 µatm), each in 4 replicate enclosures. The experiment lasted for 53 d in May-June 2015. To assess impacts of OA on the plankton community, phytoplankton and protozooplankton biomass and total seston fatty acid content were analyzed. In both treatments, the plankton community was dominated by the dinoflagellate Ceratium longipes. In the elevated pCO2 treatment, however, biomass of this species as well as that of other dinoflagellates was strongly negatively affected. At the end of the experiment, total dinoflagellate biomass was 4-fold higher in the control group than under elevated pCO2 conditions. In a size comparison of C. longipes, cell size in the high pCO2 treatment was significantly larger. The ratio of polyunsaturated fatty acids to saturated fatty acids of seston decreased at high pCO2. In particular, the concentration of docosahexaenoic acid (C 22:6n3c), essential for development and reproduction of metazoans, was less than half at high pCO2 compared to ambient pCO2. Thus, elevated pCO2 led to a deterioration in the quality and quantity of food in a natural plankton community, with potential consequences for the transfer of matter and energy to higher trophic levels.

Continue reading ‘Ocean acidification impacts on biomass and fatty acid composition of a post-bloom marine plankton community’

Temperature and salinity, not acidification, predict near-future larval growth and larval habitat suitability of Olympia oysters in the Salish Sea

Most invertebrates in the ocean begin their lives with planktonic larval phases that are critical for dispersal and distribution of these species. Larvae are particularly vulnerable to environmental change, so understanding interactive effects of environmental stressors on larval life is essential in predicting population persistence and vulnerability of species. Here, we use a novel experimental approach to rear larvae under interacting gradients of temperature, salinity, and ocean acidification, then model growth rate and duration of Olympia oyster larvae and predict the suitability of habitats for larval survival. We find that temperature and salinity are closely linked to larval growth and larval habitat suitability, but larvae are tolerant to acidification at this scale. We discover that present conditions in the Salish Sea are actually suboptimal for Olympia oyster larvae from populations in the region, and that larvae from these populations might actually benefit from some degree of global ocean change. Our models predict a vast decrease in mean pelagic larval duration by the year 2095, which has the potential to alter population dynamics for this species in future oceans. Additionally, we find that larval tolerance can explain large-scale biogeographic patterns for this species across its range.

Continue reading ‘Temperature and salinity, not acidification, predict near-future larval growth and larval habitat suitability of Olympia oysters in the Salish Sea’

The role of gastropod shell composition and microstructure in resisting dissolution caused by ocean acidification

Highlights

• Two gastropods with different shell microstructure were exposed to low pH (six months).

• Micro-CT scans indicate decreased densities on exterior-most shell in both gastropods.

• Fibrous calcite layers experience more dissolution than homogeneous calcite layers.

• Microstructural crystal arrangement likely determines susceptibility to dissolution.

• Tegula funebralis shells are critically vulnerable to changes in ocean chemistry.

Abstract

Organisms, such as molluscs, that produce their hard parts from calcium carbonate are expected to show increased difficulties growing and maintaining their skeletons under ocean acidification (OA). Any loss of shell integrity increases vulnerability, as shells provide protection against predation, desiccation, and disease. Not all species show the same responses to OA, which may be due to the composition and microstructural arrangement of their shells. We explore the role of shell composition and microstructure in resisting dissolution caused by decreases in seawater pH using a combination of microCT scans, XRD analysis, and SEM imaging. Two gastropods with different shell compositions and microstructure, Tegula funebralis and Nucella ostrina, were exposed to simulated ocean acidification conditions for six months. Both species showed signs of dissolution on the exterior of their shells, but changes in density were significantly more pronounced in T. funebralis. XRD analysis indicated that the exterior layer of both shell types was made of calcite. T. funebralis may be more prone to dissolution because their outer fibrous calcite layer has more crystal edges and faces exposed, potentially increasing the surface area on which dissolution can occur. These results support a previous study where T. funebralis showed significant decreases in both shell growth and strength, but N. ostrina only showed slight reductions in shell strength, and unaffected growth. We suggest that microstructural arrangement of shell layers in molluscs, more so than their composition alone, is critical for determining the vulnerability of mollusc shells to OA.

Continue reading ‘The role of gastropod shell composition and microstructure in resisting dissolution caused by ocean acidification’

Interactive effects of increased temperature, elevated pCO2 and different nitrogen sources on the coccolithophore Gephyrocapsaoceanica

As a widespread phytoplankton species, the coccolithophore Gephyrocapsaoceanica has a significant impact on the global biogeochemical cycle through calcium carbonate precipitation and photosynthesis. As global change continues, marine phytoplankton will experience alterations in multiple parameters, including temperature, pH, CO2, and nitrogen sources, and the interactive effects of these variables should be examined to understand how marine organisms will respond to global change. Here, we show that the specific growth rate of G. oceanica is reduced by elevated CO2 (1000 μatm) in -grown cells, while it is increased by high CO2 in -grown ones. This difference was related to intracellular metabolic regulation, with decreased cellular particulate organic carbon and particulate organic nitrogen (PON) content in the and high CO2 condition compared to the low CO2 condition. In contrast, no significant difference was found between the high and low CO2 levels in cultures (p > 0.05). The temperature increase from 20°C to 25°C increased the PON production rate, and the enhancement was more prominent in cultures. Enhanced or inhibited particulate inorganic carbon production rate in cells supplied with relative to was observed, depending on the temperature and CO2 condition. These results suggest that a greater disruption of the organic carbon pump can be expected in response to the combined effects of increased / ratio, temperature, and CO2 level in the oceans of the future. Additional experiments conducted under nutrient limitation conditions are needed before we can extrapolate our findings to the global oceans.

Continue reading ‘Interactive effects of increased temperature, elevated pCO2 and different nitrogen sources on the coccolithophore Gephyrocapsaoceanica’

Effects of multiple drivers of ocean global change on the physiology and functional gene expression of the coccolithophore Emiliania huxleyi

Ongoing ocean global change due to anthropogenic activities is causing multiple chemical and physical seawater properties to change simultaneously, which may affect the physiology of marine phytoplankton. The coccolithophore Emiliania huxleyi is a model species often employed in the study of the marine carbon cycle. The effect of ocean acidification (OA) on coccolithophore calcification has been extensively studied; however, physiological responses to multiple environmental drivers are still largely unknown. Here we examined two‐way and multiple driver effects of OA and other key environmental drivers—nitrate, phosphate, irradiance, and temperature—on the growth, photosynthetic, and calcification rates, and the elemental composition of E. huxleyi. In addition, changes in functional gene expression were examined to understand the molecular mechanisms underpinning the physiological responses. The single driver manipulation experiments suggest decreased nitrate supply being the most important driver regulating E. huxleyi physiology, by significantly reducing the growth, photosynthetic, and calcification rates. In addition, the interaction of OA and decreased nitrate supply (projected for year 2100) had more negative synergistic effects on E. huxleyi physiology than all other two‐way factorial manipulations, suggesting a linkage between the single dominant driver (nitrate) effects and interactive effects with other drivers. Simultaneous manipulation of all five environmental drivers to the conditions of the projected year 2100 had the largest negative effects on most of the physiological metrics. Furthermore, functional genes associated with inorganic carbon acquisition (RubisCO, AEL1, and δCA) and calcification (CAX3, AEL1, PATP, and NhaA2) were most downregulated by the multiple driver manipulation, revealing linkages between responses of functional gene expression and associated physiological metrics. These findings together indicate that for more holistic projections of coccolithophore responses to future ocean global change, it is necessary to understand the relative importance of environmental drivers both individually (i.e., mechanistic understanding) and interactively (i.e., cumulative effect) on coccolithophore physiology.

Continue reading ‘Effects of multiple drivers of ocean global change on the physiology and functional gene expression of the coccolithophore Emiliania huxleyi’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,376,653 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book