Posts Tagged 'morphology'



Comparison of larval development in domesticated and naturalized stocks of the Pacific oyster Crassostrea gigas exposed to high pCO2 conditions

Ocean acidification (OA) has had significant negative effects on oyster populations on the west coast of North America over the past decade. Many studies have focused on the physiological challenges experienced by young oyster larvae in high pCO2/low pH seawater with reduced aragonite saturation state (Ωarag), which is characteristic of OA. Relatively few, by contrast, have evaluated these impacts upon fitness traits across multiple larval stages and between discrete oyster populations. In this study, we conducted 2 replicated experiments, in 2015 and 2016, using larvae from naturalized ‘wild’ and selectively bred stocks of the Pacific oyster Crassostrea gigas from the US Pacific Northwest and reared them in ambient (~400 µatm) or high (~1600 µatm) pCO2 seawater from fertilization through final metamorphosis to juvenile ‘spat.’ In each year, high pCO2 seawater inhibited early larval development and affected the timing, but not the magnitude, of mortality during this stage. The effects of acidified seawater on metamorphosis of pediveligers to spat were variable between years, with no effect of seawater pCO2 in the first experiment but a ~42% reduction in spat in the second. Despite this variability, larvae from selectively bred oysters produced, on average, more (+ 55 and 37%) and larger (+ 5 and 23%) spat in ambient and high pCO2 seawater, respectively. These findings highlight the variable and stage-specific sensitivity of larval oysters to acidified seawater and the influence that genetic factors have in determining the larval performance of C. gigas exposed to high pCO2 seawater.

Continue reading ‘Comparison of larval development in domesticated and naturalized stocks of the Pacific oyster Crassostrea gigas exposed to high pCO2 conditions’

Sensitivity of planktic foraminiferal test bulk density to ocean acidification

The anthropogenic CO2 accumulating in the ocean is lowering seawater carbonate ion concentration and may reduce calcification rates of marine calcareous organisms. Several proxies based on test weights of planktic foraminifera have been used to evaluate the impact of ocean acidification on these organisms. Unfortunately, because of the absence of a method to evaluate the bulk density of a test, the impact of seawater carbonate chemistry on test calcification is still not fully understood. In this study, we measured bulk densities of living Globigerina bulloides (planktic foraminifera) tests with an X-ray micro-computed tomography (XMCT) scanner and compared them with ambient seawater characteristics. Results demonstrated that test bulk densities were controlled by ambient seawater carbonate ion concentrations and that changes of test bulk densities were accompanied by changes in micron to submicron scale porosity of internal ultrastructure. These results suggest that alteration of the bulk density of foraminiferal tests due to acidification of ambient seawater can be directly observed by XMCT scanning. A useful metric of calcification intensity would therefore be physical measurements of test densities with XMCT.

Continue reading ‘Sensitivity of planktic foraminiferal test bulk density to ocean acidification’

Testing the adaptive potential of yellowtail kingfish to ocean warming and acidification

Estimating the heritability and genotype by environment (GxE) interactions of performance-related traits (e.g., growth, survival, reproduction) under future ocean conditions is necessary for inferring the adaptive potential of marine species to climate change. To date, no studies have used quantitative genetics techniques to test the adaptive potential of large pelagic fishes to the combined effects of elevated water temperature and ocean acidification. We used an experimental approach to test for heritability and GxE interactions in morphological traits of juvenile yellowtail kingfish, Seriola lalandi, under current-day and predicted future ocean conditions. We also tracked the fate of genetic diversity among treatments over the experimental period to test for selection favoring some genotypes over others under elevated temperature and CO2. Specifically, we reared kingfish to 21 days post hatching (dph) in a fully crossed 2 × 2 experimental design comprising current-day average summer temperature (21°C) and seawater pCO2 (500 μatm CO2) and elevated temperature (25°C) and seawater pCO2 (1,000 μatm CO2). We sampled larvae and juveniles at 1, 11, and 21 dph and identified family of origin of each fish (1,942 in total) by DNA parentage analysis. The animal model was used to estimate heritability of morphological traits and test for GxE interactions among the experimental treatments at 21 dph. Elevated temperature, but not elevated CO2 affected all morphological traits. Weight, length and other morphological traits in juvenile yellowtail kingfish exhibited low but significant heritability under current day and elevated temperature. However, there were no measurable GxE interactions in morphological traits between the two temperature treatments at 21 dph. Similarly, there was no detectable change in any of the measures of genetic diversity over the duration of the experiment. Nonetheless, one family exhibited differential survivorship between temperatures, declining in relative abundance between 1 and 21 dph at 21°C, but increasing in relative abundance between 1 and 21 dph at 25°C. This suggests that this family line could perform better under future warming than in current-day conditions. Our results provide the first preliminary evidence of the adaptive potential of a large pelagic fisheries species to future ocean conditions.

Continue reading ‘Testing the adaptive potential of yellowtail kingfish to ocean warming and acidification’

Effects of seawater acidification on early development of clam Cyclina sinensis

Anthropogenic emission of atmospheric carbon dioxide (CO2) has led to a rapid increase in atmospheric CO2 concentration. Increasing atmospheric CO2 can reduce seawater pH and carbonate ions, which may adversely affect the survival of the larvae of calcareous animals. Cyclina sinensis is a commercially and ecologically important species in several Asian countries. Living in coast shallow waters, this species has experienced the coastal environmental changes frequently throughout its life cycle. In this study, we simulated possible future seawater pH values including 8.2, 7.8 and 7.4 and examined the effects of ocean acidification on the early development of C. sinensis. Clam embryos were incubated for 48 h (2 d) in control and high-CO2 seawater to compare embryogenesis, larval growth and swimming behavior. Fertilization rate was quite sensitive to pH, and moderate acidification could induce a significant decrease in fertilization rate. However, only extreme acidification could bring significant negative effect to hatching rate, body size, and average path velocity of trochophora. Moreover, with seawater acidification, C. sinensis needs much more time to reach the same developmental stage, which increases the risk of larva survival. Together with recent studies demonstrating negative impacts of high CO2 on fertilization and larva swimming behavior, the results imply a future decrease of C. sinensis populations in oceans if its acclimation to the predicted environmental alteration does not occur.

Continue reading ‘Effects of seawater acidification on early development of clam Cyclina sinensis’

Impact of ocean acidification on crystallographic vital effect of the coral skeleton

Distinguishing between environmental and species-specific physiological signals, recorded in coral skeletons, is one of the fundamental challenges in their reliable use as (paleo)climate proxies. To date, characteristic biological bias in skeleton-recorded environmental signatures (vital effect) was shown in shifts in geochemical signatures. Herein, for the first time, we have assessed crystallographic parameters of bio-aragonite to study the response of the reef-building coral Stylophora pistillata to experimental seawater acidification (pH 8.2, 7.6 and 7.3). Skeletons formed under high pCO2 conditions show systematic crystallographic changes such as better constrained crystal orientation and anisotropic distortions of bio-aragonite lattice parameters due to increased amount of intracrystalline organic matrix and water content. These variations in crystallographic features that seem to reflect physiological adjustments of biomineralizing organisms to environmental change, are herein called crystallographic vital effect (CVE). CVE may register those changes in the biomineralization process that may not yet be perceived at the macromorphological skeletal level.

Continue reading ‘Impact of ocean acidification on crystallographic vital effect of the coral skeleton’

Assessing the impact of elevated pCO2 within and across generations in a highly invasive fouling mussel (Musculista senhousia)

Highlights

• Asian date mussels are sensitive to elevated pCO2 during gonadal ripening.

• Transgenerational phenotypic plasticity occurred through all life history stages.

• Maternal provisioning and metabolic adaptation serve as key mechanisms.

• Mussels hold the great ability to rapidly adapt to changing ocean conditions.

Abstract

Marine biofouling by the swiftly spreading invasive mussel (Musculista senhousia) has caused serious ecological and economic consequences in the global coastal waters. However, the fate of this highly invasive fouling species in a rapidly acidifying ocean remains unknown. Here, we demonstrated the impacts of ocean acidification within and across generations, to understand whether M. senhousia has the capacity to acclimate to changing ocean conditions. During the gonadal development, exposure of mussels to elevated pCO2 caused significant decreases of survival, growth performance and condition index, and shifted the whole-organism energy budget by inflating energy expenses to fuel compensatory processes, eventually impairing the success of spawning. Yet, rapid transgenerational acclimation occurred during the early life history stage and persisted into adulthood. Eggs spawned from CO2-exposed mussels were significantly bigger compared with those from non-CO2-exposed mussels, indicating increased maternal provisioning into eggs and hence conferring larvae resilience under harsh conditions. Larvae with a prior history of transgenerational exposure to elevated pCO2 developed faster and had a higher survival than those with no prior history of CO2 exposure. Transgenerational exposure significantly increased the number of larvae completing metamorphosis. While significant differences in shell growth were no longer observed during juvenile nursery and adult grow-out, transgenerationally exposed mussels displayed improved survival in comparison to non-transgenerationally exposed mussels. Metabolic plasticity arose following transgenerational acclimation, generating more energy available for fitness-related functions. Overall, the present study demonstrates the remarkable ability of M. senhousia to respond plastically and acclimate rapidly to changing ocean conditions.

Continue reading ‘Assessing the impact of elevated pCO2 within and across generations in a highly invasive fouling mussel (Musculista senhousia)’

Integrity of crustacean predator defenses under ocean acidification and warming conditions

Crustaceans are a diverse group of species, but all rely on an exoskeleton that is shed and formed anew throughout their lifetime. Exoskeletons perform a wide range of functions, sometimes acting as armor, a means to produce sound, a tool to crush hard prey, or even a window to facilitate transparency. The exoskeleton and its functions, however, are likely vulnerable to ocean acidification and ocean warming, which may alter its composition and the energy allocated towards its production. I investigated the effects of these future ocean conditions on two southern Californian crustaceans, the California spiny lobster Panulirus interruptus and the grass shrimp Hippolyte californiensis, which rely on their exoskeleton for different predator defenses. P. interruptus is an iconic feature of southern California’s kelp forest ecosystem but also a potential prey item for many of its large predators. Spiny lobsters use their antennae, mandibles, carapace, and horns to avoid predation. Each of these structures is specialized for a certain defense, displaying differences in composition, structure, and material properties that allow the antennae, for example, to remain flexible to avoid breaking when pushing predators away while imbuing hardness in crushing structures like the mandible (Chapter 1). Juvenile lobsters exposed to ocean acidification-like conditions largely maintained their predator defenses, displaying some differences in the composition across the exoskeleton but no strong effects to defense functionality, including the non-exoskeletal defenses of detecting chemical cues and the tail-flip escape response (Chapter 3). Additionally, larval P. interruptus, exposed to both ocean acidification and warming conditions, grew slightly smaller in reduced pH but maintained their transparency in both conditions (Chapter 2). In contrast, H. californiensis resides in eelgrass meadows where a primary defense strategy is cryptic colouration, accomplished via a transparent exoskeleton with underlying pigment. When exposed to both ocean acidification and ocean warming-like conditions, shrimp maintained their transparency and did not respond negatively to either condition (Chapter 4). Together, this work on both species demonstrates that a diversity of predator defenses in temperate crustaceans, included those afforded by the exoskeleton, appear to be relatively resilient to both future ocean acidification and ocean warming conditions.

Continue reading ‘Integrity of crustacean predator defenses under ocean acidification and warming conditions’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,272,582 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book