Posts Tagged 'morphology'



Calcification response of planktic foraminifera to environmental change in the western Mediterranean Sea during the industrial era (update)

The Mediterranean Sea sustains a rich and fragile ecosystem currently threatened by multiple anthropogenic impacts that include, among others, warming, pollution, and changes in seawater carbonate speciation associated to increasing uptake of atmospheric CO2. This environmental change represents a major risk for marine calcifiers such as planktonic foraminifera, key components of pelagic Mediterranean ecosystems and major exporters of calcium carbonate to the sea floor, thereby playing a major role in the marine carbon cycle. In this study, we investigate the response of planktic foraminifera calcification in the northwestern Mediterranean Sea on different timescales across the industrial era. This study is based on data from a 12-year-long sediment trap record retrieved in the in the Gulf of Lions and seabed sediment samples from the Gulf of Lions and the promontory of Menorca. Three different planktic foraminifera species were selected based on their different ecology and abundance: Globigerina bulloidesNeogloboquadrina incompta, and Globorotalia truncatulinoides. A total of 273 samples were weighted in both sediment trap and seabed samples.

The results of our study suggest substantial different seasonal calcification patterns across species: G. bulloides shows a slight calcification increase during the high productivity period, while both N. incompta and G. truncatulinoides display a higher calcification during the low productivity period. The comparison of these patterns with environmental parameters indicate that controls on seasonal calcification are species-specific. Interannual analysis suggests that both G. bulloides and N. incompta did not significantly reduce their calcification between 1994 and 2005, while G. truncatulinoides exhibited a constant and pronounced increase in its calcification that translated in an increase of 20 % of its shell weight. The comparison of these patterns with environmental data reveals that optimum growth conditions affect positively and negatively G. bulloides and G. truncatulinoides calcification, respectively. Sea surface temperatures (SSTs) have a positive influence on N. incompta and G. truncatulinoides calcification, while carbonate system parameters appear to affect positively the calcification of three species in the Gulf of Lions throughout the 12-year time series.

Finally, comparison between sediment trap data and seabed sediments allowed us to assess the changes of planktic foraminifera calcification during the late Holocene, including the pre-industrial era. Several lines of evidence indicate that selective dissolution did not bias the results in any of our data sets. Our results showed a weight reduction between pre-industrial and post-industrial Holocene and recent data, with G. truncatulinoides experiencing the largest weight loss (32 %–40 %) followed by G. bulloides (18 %–24 %) and N. incompta (9 %–18 %). Overall, our results provide evidence of a decrease in planktic foraminifera calcification in the western Mediterranean, most likely associated with ongoing ocean acidification and regional SST trends, a feature consistent with previous observations in other settings of the world’s oceans.

Continue reading ‘Calcification response of planktic foraminifera to environmental change in the western Mediterranean Sea during the industrial era (update)’

Biocalcification crisis in the continental shelf under ocean acidification

Highlights:

  • An eight months’ ocean acidification (OA) simulation experiment was conducted.
  • The ecological and biological responses of benthic foraminifera to OA was studied.
  • Benthic foraminifera in nearshore area had more resistance to OA than offshore one.
  • Thinner and smaller shells in calcareous foraminifera were produced under OA.
  • There will be a biocalcification crisis in continental shelf under future OA.

Abstract

Ocean acidification (OA) is a persistent challenge for humans and is predicted to have deleterious effects on marine organisms, especially marine calcifiers such as coral and foraminifera. Benthic foraminifera is an important component of sediment in the continental shelf, while little is known about the impact of ocean acidification on benthic foraminifera both at the community and individual level and associated calcium carbonate deposition. We conducted eight months continued culture experiment under the scenario of 400, 800, 1200 and 1600 ppm pCO2 gradients on living benthic foraminifera from four stations in the continental shelf of the West Pacific Ocean. Statistic results showed OA had a negative effect on the abundance of benthic foraminifera. In contrast, the diversity increased roughly under OA conditions implying OA might stimulate the emergence of rare species and promote community diversity to some extent. In addition, we confirmed that the offshore area wasn’t the refuge for benthic foraminifera while the nearshore one had more resistance to moderate acidification. Calcareous species Protelphidium tuberculatum was the dominant species occupying on average 75% in all treatments and its shell diameter, weight and thickness showed a decrease, indicating the decrease of calcification of benthic foraminifera. A relationship between the weight of P. tuberculatum and pCO2 (R2 = 0.96) was established. Based on the present work, calcareous benthic foraminifera deposited 8.57×104 t calcium carbonate per year and this might reduce by nearly half and 90% under 800 and 1200 ppm scenarios, which indicates a biocalcification crisis under ongoing OA. This work shows an analogy for palaeoceanic OA and also provides new insights into the sediment of calcium carbonate in the future.

Continue reading ‘Biocalcification crisis in the continental shelf under ocean acidification’

Calcareous sponges can synthesize their skeleton under short-term ocean acidification

Calcifying organisms are considered as threatened by ocean acidification, because of their calcium carbonate skeleton. This study investigated if a calcareous sponge could synthesize its skeleton (i.e. spicules) under ocean-acidification conditions. Sponge cell aggregates that have the potential to develop into a functional sponge, called primmorphs, were submitted to a 5-day experiment, with two treatments: control (pH 8.1) and acidified conditions (pH 7.6). Primmorphs of the calcareous sponge Paraleucilla magna were able to synthesize a skeleton, even under low pH, and to develop into functional sponges. The spicules had the same shape in both conditions, although the spicules synthesized in low pH were slightly thinner than those in the control. These results suggest that Pmagna may be able to survive near-future ocean-acidification conditions.

Continue reading ‘Calcareous sponges can synthesize their skeleton under short-term ocean acidification’

Adult snow crab, Chionoecetes opilio, display body-wide exoskeletal resistance to the effects of long-term ocean acidification

Structural and mechanical properties of the decapod exoskeleton affect foraging, defense, and locomotion. Ocean acidification (OA) poses a threat to marine biomes and their inhabitants, particularly calcifying organisms. Vulnerability of the snow crab, Chionecetes opilio, a commercially important, high-latitude species, to OA has not been explored. Although all oceans are experiencing acidification, abiotic factors in high-latitude areas increase the rate of acidification. We examined the effect of long-term (2 year) exposure to decreased seawater pH (7.8 and 7.5, PCO2 ~ 760 and 1550 µatm, respectively) on exoskeletal properties in post-terminal-molt female C. opilio. Since the effects of OA vary among body regions in decapods, exoskeletal properties (microhardness, thickness, and elemental composition) were measured in five body regions: the carapace, both claws, and both third walking legs. Overall, adult C. opilio exoskeletons were robust to OA in all body regions. Decreased pH had no effect on microhardness or thickness of the exoskeleton, despite a slight (~ 6%) reduction in calcium content in crabs held at pH 7.5. In contrast, exoskeletal properties varied dramatically among body regions regardless of pH. The exoskeleton of the claws was harder, thicker, and contained more calcium but less magnesium than that of other body regions. Exoskeleton of the legs was thinner than that of other body regions and contained significantly greater magnesium concentrations (~ 2.5 times higher than the claws). Maintenance of exoskeletal properties after long-term OA exposure, at least down to pH 7.5, in adult C. opilio suggests that wild populations may tolerate future ocean pH conditions.

Continue reading ‘Adult snow crab, Chionoecetes opilio, display body-wide exoskeletal resistance to the effects of long-term ocean acidification’

Addressing the joint impact of temperature and pH on Vibrio harveyi adaptation in the time of climate change

Global warming and acidification of the global ocean are two important manifestations of the ongoing climate change. To characterize their joint impact on Vibrio adaptation and fitness, we analyzed the temperature-dependent adaptation of Vibrio harveyi at different pHs (7.0, 7.5, 8.0, 8.3 and 8.5) that mimic the pH of the world ocean in the past, present and future. Comparison of V. harveyi growth at 20, 25 and 30 °C show that higher temperature per se facilitates the logarithmic growth of V. harveyi in nutrient-rich environments in a pH-dependent manner. Further survival tests carried out in artificial seawater for 35 days revealed that cell culturability declined significantly upon incubation at 25 °C and 30 °C but not at 20 °C. Moreover, although acidification displayed a negative impact on cell culturability at 25 °C, it appeared to play a minor role at 30 °C, suggesting that elevated temperature, rather than pH, was the key player in the observed reduction of cell culturability. In addition, analyses of the stressed cell morphology and size distribution by epifluorescent microscopy indicates that V. harveyi likely exploits different adaptation strategies (e.g., acquisition of coccoid-like morphology) whose roles might differ depending on the temperature–pH combination.

Continue reading ‘Addressing the joint impact of temperature and pH on Vibrio harveyi adaptation in the time of climate change’

Morpho-anatomical, and chemical characterization of some calcareous Mediterranean red algae species

Climatic changes are anticipated to have a detrimental effect on calcifying marine species. Calcareous red algae may be especially vulnerable to seasonal variations since they are common and essential biologically, but there is little research on the morpho-anatomical, and chemical characterization of such species. This study conducted the seasonal investigation of the three dominant Mediterranean calcified red algae. Morphological and 18S rRNA analysis confirmed the identification of collected species as Corallina officinalis, Jania rubens, and Amphiroa rigida. In general, C. officinalis was represented in the four seasons and flourishing maximum in autumn (70% of total species individuals). While J. rubens species was represented in winter, autumn, and spring and completely absent in summer. A. rigida was abundant only in the summer season by 40%. A full morphological and anatomical description of these species were examined, and their chemical compositions (carbohydrate, protein, lipid, pigments, and elements content) were assessed in different seasons, where carbohydrates were the dominant accumulates followed by proteins and lipids. Pearson correlation analysis confirmed a positive correlation between salinity level and nitrogenous nutrients of the seawater with the pigment contents (phycobiliproteins, carotenoids, and chlorophyll a) of the studied seaweeds. The results proved that calcified red algae were able to deposit a mixture of calcium carbonates such as calcite, vaterite, calcium oxalate, calcite-III I calcium carbonate, and aragonite in variable forms depending on the species.

Continue reading ‘Morpho-anatomical, and chemical characterization of some calcareous Mediterranean red algae species’

Benthic foraminiferal turnover and trait changes across the Palaeocene–Eocene Thermal Maximum (PETM) at ODP site 1265A, Walvis Ridge, SE Atlantic Ocean

Benthic foraminiferal turnover during the Palaeocene–Eocene Thermal Maximum (PETM) has been extensively studied but numerous questions remained unresolved, question such as why some foraminiferal species went into extinction at a particular location but survive in another or why some species survive in extremely low oxygen environment. Because foraminiferal community interaction with the environment is driven by biological traits instead of taxonomic composition, this study has adopted trait-based approach to provide insight into the life strategies of foraminifera that enables them to survive in extreme environmental conditions. The result from this study shows that traits such as test composition, perforation, ornamentation and living habits play an important role in the ecological functioning and adaptability of foraminifera in the environment. The faunal assemblage in the studied site is dominantly cosmopolitan taxa suggesting the environment was perturbed during the PETM. Foraminiferal composition is characterised by faunal turnover indicated in extensive mortalities and extinction of both planktonic and benthic fauna. The ordination (non-metric dimensional scaling) of faunal composition also indicated ecological disturbance. The planktonic community was relatively stable before and after PETM but experienced a high level of ecological perturbation during the carbon isotopic excursion (CIE). The benthic community showed higher evidence of perturbation as the fauna assemblage ordination indicated that ecological stress started before the PETM with the disarray of samples in the ordination diagram. Only the recovery interval experienced some level of ecological stability. The environmental disturbance noticed in the fauna composition reflected on the trait. Benthic foraminiferal traits indicated instability throughout the studied section. The evidence of environmental disturbance in the benthic community suggests that the source of the light carbon that caused the PETM may have originated beneath sea floor in the Atlantic Ocean.

Continue reading ‘Benthic foraminiferal turnover and trait changes across the Palaeocene–Eocene Thermal Maximum (PETM) at ODP site 1265A, Walvis Ridge, SE Atlantic Ocean’

Abundance and size structure of Patella spp. (Mollusca, Gastropoda) under ocean acidification conditions at CO2 vents (Ischia Island, Italy)

Abundance and size structure of Patella spp. were studied at Ischia Island (Tyrrhenian Sea) in two populations living at CO2 vents off Castello Aragonese, under natural ocean acidification (OA) conditions (pH 7.4-7.9), and three control populations in sites characterized by normal pH conditions (pH 8.1). Both CO2 vent populations had 95% of heavily corroded shells and significant lower abundances than control populations, while the size structure showed individuals of higher dimensions (>2 cm), fewer small specimens (0-1 cm) and lack of new recruits in the vent’s populations subjected to OA conditions. These results confirm that, although with low densities, limpets thrive under OA conditions, and exhibit larger sizes, than in control areas, but a reduced recruitment of juveniles. This fact suggests a habitat selection only by adult specimens likely more robust to OA then juveniles, and the potential influence of other indirect factors, such as the amount and quality of the plant food (higher N content), which seems higher under OA conditions, or a reduced predation, that can explain the larger limpet’s size.

Continue reading ‘Abundance and size structure of Patella spp. (Mollusca, Gastropoda) under ocean acidification conditions at CO2 vents (Ischia Island, Italy)’

Effects of dissolved carbon dioxide on growth and vertebral column of hybrid marine grouper (Epinephelus fuscoguttatus × E. lanceolatus) early advanced larvae

Highlights

  • Ocean acidification negatively impacted the early advanced larvae of the marine hybrid tiger grouper × giant grouper (TG × GG).
  • Worst growth, survival, weight, food consumption, and conversion rates at 1000 ppm CO2.
  • Deformed vertebral columns were observed at 1000 ppm CO2, while normal vertebral column observed at 400 ppm CO2.
  • This study provides guidelines for future studies on TG × GG larvae or other marine fish larvae under elevated CO2 concentrations.

Abstract

This study investigated the effects of different dissolved carbon dioxide (CO2) concentrations (400, 700, and 1000 ppm) on the growth and vertebral column formation of hybrid tiger grouper × giant grouper (TG × GG) in their advanced larval stage under controlled laboratory conditions for 12 weeks. Growth parameters, including specific growth rate (SGR), survival rate, food consumption (FC), and food conversion rate (FCR), were calculated at the end of the experiment. Vertebral column formation was analysed using X-radiography and osteology methods. The results showed that all growth parameters were significantly affected by CO2 concentration, with the best performances observed under 400 ppm CO2. The highest statistically significant (p < 0.05) SGR, survival rate, and FC were observed under 400 ppm CO2, whereas the lowest was observed under 1000 ppm CO2. The lowest FCR (0.40, p < 0.05) was observed in 400 ppm CO2 and the highest was observed at 1000 ppm CO2 (0.59, p < 0.05). Furthermore, larvae without vertebral column malformations were observed in 400 ppm CO2, while larvae with small angles of kyphosis were observed in 700 ppm CO2, and larvae with kyphosis, lordosis, and vertebral compression were observed in 1000 ppm CO2. Only six spine measurements out of 31 obtained under different CO2 concentrations were significantly different (p < 0.05). Overall, the results suggest that CO2 concentration plays a crucial role in the growth and vertebral column formation of TG × GG in their advanced larval stage. The optimal CO2 concentration for the aquaculture of TG × GG in their advanced larval stage was found to be 400 ppm or lower. This study highlights the importance of maintaining optimal CO2 concentrations to enhance the growth and health of fish in aquaculture systems…

Continue reading ‘Effects of dissolved carbon dioxide on growth and vertebral column of hybrid marine grouper (Epinephelus fuscoguttatus × E. lanceolatus) early advanced larvae’

How ocean warming and acidification affect the life cycle of six worldwide commercialised sea urchin species: a review

Ongoing global changes are expected to affect the worldwide production of many fisheries and aquaculture systems. Because invertebrates represent a relevant industry, it is crucial to anticipate challenges that are resulting from the current environmental alterations. In this review, we rely on the estimated physiological limits of six commercialised species of sea urchins (Loxechinus albusMesocentrotus franciscanusParacentrotus lividus, Strongylocentrotus droebachiensisStrongylocentrotus intermedius and Strongylocentrotus purpuratus) to define the vulnerability (or resilience) of their populations facing ocean warming and acidification (OW&A). Considering that coastal systems do not change uniformly and that the populations’ response to stressors varies depending on their origin, we investigate the effects of OW&A by including studies that estimate future environmental mutations within their distribution areas. Cross-referencing 79 studies, we find that several sea urchin populations are potentially vulnerable to the predicted OW&A as environmental conditions in certain regions are expected to shift beyond their estimated physiological limit of tolerance. Specifically, while upper thermal thresholds seem to be respected for L. albus along the SW American coast, M. franciscanus and S. purpuratus southern populations appear to be vulnerable in NW America. Moreover, as a result of the strong warming expected in the Arctic and sub-Arctic regions, the local productivity of S. droebachiensis is also potentially largely affected. Finally, populations of S. intermedius and P. lividus found in northern Japan and eastern Mediterranean respectively, are supposed to decline due to large environmental changes brought about by OW&A. This review highlights the status and the potential of local adaptation of a number of sea urchin populations in response to changing environmental conditions, revealing possible future challenges for various local fishing industries.

Continue reading ‘How ocean warming and acidification affect the life cycle of six worldwide commercialised sea urchin species: a review’

Secretory and transcriptomic responses of mantle cells to low pH in the Pacific oyster (Crassostrea gigas)

Since the Industrial Revolution, the concentration of atmospheric carbon dioxide (CO2) due to anthropogenic activities has increased at unprecedented rates. One-third of the atmospheric anthropogenic CO2 emissions are dissolved in the oceans affecting the chemical equilibrium of seawater, which in turn leads to a decrease in pH and carbonate ion (CO32-) concentration, a phenomenon known as ocean acidification (OA). This chemical disequilibrium can be detrimental to marine organisms (e.g., mollusks) that fabricate mineralized structures based on calcium carbonate (CaCO3). Most studies on the effect of reduced pH in seawater have been conducted on the early developmental stages of shell-building invertebrates, given less attention to how adult individuals face OA stress. Here, we evaluate histological, secretory, and transcriptional changes in the mantle of adult oysters (Crassostrea gigas) exposure to ambient (8.0 ± 0.2) and reduced (7.6 ± 0.2) pH during 20 days. Most histological observations did not show differences in terms of mantle cell morphology. However, Alcian Blue/PAS staining revealed significant differences in the number of Alcian Blue positive cells in the mantle edge, suggesting a decrease in the secretory activity in this morphogenetic zone. Transcriptomic analysis revealed 172 differentially expressed genes (DEGs) between mantle tissues from adult oysters kept in normal and reduced pH conditions. Almost 18% of the DEGs encode secreted proteins that are likely to be contributing to shell fabrication and patterning. 17 of 31 DEGs encoding secreted proteins correspond to oyster-specific genes, highlighting the fact that molluscan shell formation is underpinned by a rapidly evolving secretome. The GO analysis of DEGs encoding secreted proteins showed that they are involved in the cellular response to stimulus, response to stress, protein binding, and ion binding, suggesting these biological processes and molecular functions are altered by OA. This study demonstrates that histology and gene expression profiling can advance our understanding of the cellular and molecular mechanisms underlying adult oyster tolerance to low pH conditions.

Continue reading ‘Secretory and transcriptomic responses of mantle cells to low pH in the Pacific oyster (Crassostrea gigas)’

Two treatment methods on Ulva prolifera bloom result in distinctively different ecological effects in coastal environment

Green tides Ulva prolifera have broken out in the Yellow Sea for more than 10 years, becoming a periodic ecological disaster. The largest-ever green tide that occurred in 2021 promoted innovation in treatment methods. Different from the traditional harvest-disposal method, a microbial complex formulation was firstly sprayed on the harvest U. prolifera that promotes rapid degradation, and then fermented and disposed into the sea. At present, little was known about the ecological effects of those different treatment methods. In order to examine this hypothesis, we run an in-lab incubation of 60 days to simulate the two methods to degrade U. prolifera, with focuses on the degradation ensued impacts on water quality. The degradation process of fresh U. prolifera over two months was dominated by the continuous and slow release of DOM, and the concentration of DOM in the water column was hardly observed to decrease within two months. The pre-discomposed-disposal method also significantly altered microbial community structure. The pre-decomposing treatment with microbial complex formulations destroyed U. prolifera cell tissues and changed its physical state in seawater from floating to fast depositing, and increased the degradation rate by about 14 times. The rapid decomposition of the released bioactive organic matter consumed a substantial amount of dissolved oxygen in local seawater, which has the potential risk of causing local hypoxia and acidification in a short-term. The pre-decomposition treatment of U. prolifera could be a practical and efficient countermeasures to U. prolifera blooming. After the complete degradation of the pre-decomposed U. prolifera, the resulting dissolved organic matter could increase TA to resist acidification. Overall, compared with traditional harvest-packing-disposal method, the pre-decomposing-disposal treatment is an efficient and environmental-friendly disposal method to deal with the U. prolifera “green tide”, but it should be used cautiously.

Continue reading ‘Two treatment methods on Ulva prolifera bloom result in distinctively different ecological effects in coastal environment’

Embryonic encapsulated development of the gastropod Acanthina monodon is impacted by future environmental changes of temperature and pCO2

Egg capsules of the gastropod Acanthina monodon were maintained during the entire period of encapsulated development at three temperatures (10, 15, 20 °C) and two pCO2 levels (400, 1200 μatm). Embryos per capsule, size at hatching, time to hatching, embryonic metabolic rates, and the resistance of juveniles to shell breakage were quantified. No embryos maintained at 20 °C developed to hatching. The combination of temperature and pCO2 levels had synergistic effects on hatching time and developmental success, antagonistic effects on number of hatchlings per capsule, resistance to juvenile shell cracking and metabolism, and additive effect on hatching size. Juveniles hatched significantly sooner at 15 °C, independent of the pCO2 level that they had been exposed to, while individuals hatched at significantly smaller sizes if they had been held under 15 °C/1200 μatm rather than at 10 °C/low pCO2. Embryos held at the higher pCO2 had a significantly greater percentage of abnormalities. For capsules maintained at low pCO2 and 15 °C, emerging juveniles had less resistance to shell breakage. Embryonic metabolism was significantly higher at 15 °C than at 10 °C, independent of pCO2 level. The lower metabolism occurred in embryos maintained at the higher pCO2 level. Thus, in this study, temperature was the factor that had the greatest effect on the encapsulated development of A. monodon, increasing the metabolism of the embryos and consequently accelerating development, which was expressed in a shorter intracapsular development time, but with smaller individuals at hatching and a lower resistance of their shells to breakage. On the other hand, the high pCO2 level suppressed metabolism, prolonged intracapsular development, and promoted more incomplete development of the embryos. However, the combination of the two factors can mitigate–to some extent–the adverse effects of both incomplete development and lower resistance to shell breakage.

Continue reading ‘Embryonic encapsulated development of the gastropod Acanthina monodon is impacted by future environmental changes of temperature and pCO2’

Ocean acidification enhances the embryotoxicity of CuO nanoparticles to Oryzias melastigma

Concerns are raised towards individual effects of ocean acidification (OA) and engineered nanoparticles (NPs) on marine organisms. However, there are scarce studies regarding nanotoxicity under OA conditions. We investigated the combined effects of OA (pHs, 7.70 and 7.40) and CuO NPs on the embryotoxicity of marine medaka Oryzias melastigma and the bioavailability of CuO NPs in embryos. The results showed that OA alleviated the aggregation of CuO NPs and promoted the dissolution of CuO NPs in seawater (increased by 0.010 and 0.029 mg/L under pHs 7.70 and 7.40, respectively). Synergistic effects of OA with CuO NPs on medaka embryos were observed as indicated by much higher mortality and oxidative damage. Importantly, the enhanced toxicity of CuO NPs to medaka embryos under OA conditions mainly originated from the higher bioavailability of particulate CuO (e.g., 30.28 mg/kg at pH 7.40) rather than their released Cu2+ ions (e.g. 3.04 mg/kg at pH 7.40). The weaker aggregation of NPs under OA conditions resulted in higher penetration of individual particles (or small aggregates) into embryos through the micropyle and chorionic pores, causing enhanced bioavailability of NPs. The obtained results provided underlying insights into understanding the risk of NPs to marine ecosystem under OA conditions.

Continue reading ‘Ocean acidification enhances the embryotoxicity of CuO nanoparticles to Oryzias melastigma’

Ocean acidification conditions and marine diatoms

Ocean acidification doesn’t just erode calcium carbonate shells. It can also slow the rate of diatoms to build their beautiful, intricate silica cell walls. Thinner walls mean lighter diatoms making the algae less able to transport carbon to the deep ocean. Diatoms are a key group of non-calcifying marine phytoplankton, responsible for ~40% of ocean productivity. Growth, cell size, and silica content are strong determinants of diatom resilience and sinking velocity; therefore, the effect of diatom species on ocean biogeochemistry is a function of its growth strategy, size, and frustule thickness. In natural environments, pH directly affects the diatom’s growth rate and therefore the timing and abundance of species. Consequently, understanding impacts of ocean acidification on diatom community structure is crucial for evaluating the sensitivity of biogeochemical cycles and ecosystem services in the world’s oceans.

Continue reading ‘Ocean acidification conditions and marine diatoms’

Hypoxia tolerance, but not low pH tolerance, is associated with a latitudinal cline across populations of Tigriopus californicus

Intertidal organisms must tolerate daily fluctuations in environmental parameters, and repeated exposure to co-occurring conditions may result in tolerance to multiple stressors correlating. The intertidal copepod Tigriopus californicus experiences diurnal variation in dissolved oxygen levels and pH as the opposing processes of photosynthesis and cellular respiration lead to coordinated highs during the day and lows at night. While environmental parameters with overlapping spatial gradients frequently result in correlated traits, less attention has been given to exploring temporally correlated stressors. We investigated whether hypoxia tolerance correlates with low pH tolerance by separately testing the hypoxia and low pH stress tolerance separately of 6 genetically differentiated populations of Tcalifornicus. We independently checked for similarities in tolerance for each of the two stressors by latitude, sex, size, and time since collection as predictors. We found that although hypoxia tolerance correlated with latitude, low pH tolerance did not, and no predictor was significant for both stressors. We concluded that temporally coordinated exposure to low pH and low oxygen did not result in populations developing equivalent tolerance for both. Although climate change alters several environmental variables simultaneously, organisms’ abilities to tolerate these changes may not be similarly coupled.

Continue reading ‘Hypoxia tolerance, but not low pH tolerance, is associated with a latitudinal cline across populations of Tigriopus californicus’

Balance dysfunction in large yellow croaker in response to ocean acidification

Highlights

  • Hearing system is important to soniferous and commercial large yellow croaker.
  • How structure and function of whole inner ear responds to acidification is unknow.
  • Left and right paired lapillus became asymmetrical after acidification.
  • Unable to maintain balance after exposure to higher CO2 acidification
  • Nervous system function and mineralization pathways were enriched by RNA-seq.

Abstract

Large yellow croaker (Larimichthys crocea) is a coastal-dwelling soniferous, commercially important fish species that is sensitive to sound. An understanding of how ocean acidification might affect its auditory system is therefore important for its long-term viability and management as a fisheries resource. We tested the effects of ocean acidification with four CO2 treatments (440 ppm (control), 1000 ppm, 1800 ppm, and 3000 ppm) on the inner ear system of this species. After exposure to acidified water for 50 d, the impacts on the perimeter and mass of the sagitta, asteriscus, and lapillus otoliths were determined. In the acidified water treatments, the shape of sagittal otoliths became more irregular, and the surface became rougher. Similar sound frequency ranges triggered startle responses of fish in all treatments. In the highest CO2 treatment (3000 ppm CO2), significant asymmetry of the left and right lapillus perimeter and weight was apparent. Moreover, in the higher CO2 treatments (1800 ppm and 3000 ppm CO2), the fish were unable to maintain a balanced dorsal-up posture and tilted to one side. This result suggested that the balance functions of the inner ear might be affected by ocean acidification, which may threaten large yellow croaker individuals and populations. The molecular response to acidification was analyzed by RNA-Seq. The differentially expressed genes (DEGs) between right and left sensory epithelia of the utricle in each CO2 treatment group were identified. In higher CO2 concentration groups, nervous system function and regulation of bone mineralization pathways were enriched with DEGs. The comparative transcriptome analyses provide valuable molecular information about how the inner ear system responds to an acidified environment.

Continue reading ‘Balance dysfunction in large yellow croaker in response to ocean acidification’

Assessing the impact of ocean acidification: a methods comparison of SEM, CT and light microscopy on pteropod shells

Since the onset of the Industrial Revolution, the world’s oceans have absorbed approximately one third of all anthropogenic CO2 emissions and are experiencing acidification as a result. Pteropods are a marine group of snails that are vulnerable to acidification due to their thin shells composed of aragonite, which is 50% more soluble than calcite. Due to their vulnerability and ubiquity throughout the world’s oceans, pteropods are considered bioindicators of ocean acidification; their responses include decreased size, reduced shell thickness, and increased shell dissolution. Shell dissolution has been measured using a variety of metrics involving light microscopy, scanning electron microscopy (SEM), and computed tomography (CT). Assessing which method(s) effectively capture acidification’s impact on pteropod shells is still an active area of research. While CT and SEM metrics offer high resolution imaging, these analyses are cost- and time-intensive relative to light microscopy analyses and may be inaccessible for ocean monitoring projects and research. This research compares light microscopy, CT, and SEM shell dissolution metrics across three pteropod species: Limacina helicina, Limacina retroversa, and Heliconoides inflatus. Sourced from multiple localities, these taxa lived in tropical to subpolar environments and were exposed to varying aragonite saturations states due to stark oceanographic differences in these environments. Specimens were evaluated using light microscopy for the Limacina Dissolution Index (LDX), using SEM for average and maximum dissolution type, and using CT for shell thickness. Spearman correlation tests were run among the dissolution metrics within each species dataset and significance was assessed both before and viii after Bonferroni correction. Before Bonferroni correction, LDX and SEM average dissolution type were highly correlated for both the Limacina retroversa (rho = 0.81, p > 0.001) and Heliconoides inflatus (rho = 0.79, p > 0.001) datasets, and remained significant after Bonferroni correction. For Limacina retroversa, LDX was also significantly correlated to SEM maximum dissolution type (rho = 0.77, p > 0.001). The CT metrics for shell thickness were not significantly correlated to any other dissolution metrics for any species. However, severely dissolved (type 3) areas apparent in SEM were also visually discernible in CT thickness heatmaps. Although the genera Heliconoides and Limacina have different shell microstructures, the relationship between LDX and SEM average dissolution type did not vary by species. Additionally, the Heliconoides inflatus specimens were sourced from both the aragonite-undersaturated California Current and the aragonite-oversaturated Cariaco Basin; however, the differing localities and their respective oceanographic conditions did not have a significant influence on the relationship between LDX and SEM average dissolution. Overall, these findings show that the cheaper and faster LDX method, which needs only a light microscope, is a promising method for detecting dissolution resulting from ocean acidification across multiple species and oceanographic conditions.

Continue reading ‘Assessing the impact of ocean acidification: a methods comparison of SEM, CT and light microscopy on pteropod shells’

Oyster biomineralisation in acidifying oceans: from genes to shells

Biomineralisation is the process of biologically controlled shell fabrication in marine calcifiers including edible oysters where shell matrix proteins and organic molecules secreted by mantle tissue controls calcium carbonate nucleation, crystallisation, growth, and mechanical properties. It is also one of the key processes that is notably affected in marine calcifiers under human induced environmental stressor, ocean acidification (OA). Understanding molecular changes in the biomineralisation process under OA, therefore, is key to developing conservation strategies for protecting ecologically and economically important oyster species. In this PhD thesis, I have presented hierarchical analyses of biomineralisation mechanisms of Crassostrea hongkongensis (Hong Kong oysters) under OA. The hierarchical analyses include study of changes in DNA methylation and gene expression of mantle tissue of juvenile Hong Kong oysters under OA. On top of studying molecular changes, this study also has incorporated shell mechanical properties in terms of micro-structure, shell crystal orientation and micro-hardness. In addition to juveniles, larvae which are known to be sensitive to OA than juveniles and adults, were also studied for understanding their shell fabrication capacity under OA. This study is also the first to attempt characterisation of shell proteome changes in an oyster species under OA. The results indicate moderate resilience of Hong Kong oyster biomineralisation to OA. Specifically, calcium binding or signalling related genes were subtly differentially expressed in mantle under OA, with no correlation between gene expression and DNA methylation changes. Hong Kong oysters were able to make unimpaired shells in terms of micro-structure and nanostructure (crystal orientation) in both larval and juvenile stages. We conclude that OA would be still a dissolution problem for resilient species such as Hong Kong oysters despite the organism’s ability to make error free shells under OA. We also define the concept directional dissolution – where shell dissolution is directional from hinge to shell edge; and from outer periostracum to inner layers. Ecologists can adapt the directional dissolution concept for accurate use of shell dissolution as a parameter for OA biomonitoring. This thesis will be of interest not only to marine molecular biologists and ecologists but also to material scientists who are interested in biomimetic material designing.

Continue reading ‘Oyster biomineralisation in acidifying oceans: from genes to shells’

Acclimatization in a changing environment: linking larval and juvenile performance in the quahog Mercenaria mercenaria

Marine invertebrates in coastal communities are currently experiencing unprecedented, rapid environmental change. These symptoms of climate change and ocean acidification are projected to worsen faster than can be accommodated by evolutionary processes like adaptation via natural selection, necessitating investigations of alternative mechanisms that facilitate adaptive responses to environmental change. This dissertation posits that in the absence of adaptation, early development (larval) exposure to stressors can increase population tolerance by leveraging existing variation in the energy metabolism and host-microbial interactions. Focusing specifically on resiliency to acidification (low pH), hypoxia (low dissolved oxygen), and elevated temperature stress in the clam, Mercenaria mercenaria, this dissertation uses a combination of laboratory and field experiments in conjunction with next-generation sequencing and physiological assays to investigate the relationship between host health, microbial community structure, and environmental change.

Continue reading ‘Acclimatization in a changing environment: linking larval and juvenile performance in the quahog Mercenaria mercenaria’

  • Reset

Subscribe

OA-ICC Highlights


%d bloggers like this: