Posts Tagged 'morphology'

Near-future ocean acidification does not alter the lipid content and fatty acid composition of adult Antarctic krill

Euphausia superba (Antarctic krill) is a keystone species in the Southern Ocean, but little is known about how it will respond to climate change. Ocean acidification, caused by sequestration of carbon dioxide into ocean surface waters (pCO2), alters the lipid biochemistry of some organisms. This can have cascading effects up the food chain. In a year-long laboratory experiment adult krill were exposed to ambient seawater pCO2 levels (400 μatm), elevated pCO2 levels mimicking near-future ocean acidification (1000, 1500 and 2000 μatm) and an extreme pCO2 level (4000 μatm). Total lipid mass (mg g−1 DM) of krill was unaffected by near-future pCO2. Fatty acid composition (%) and fatty acid ratios associated with immune responses and cell membrane fluidity were also unaffected by near-future pCO2, apart from an increase in 18:3n-3/18:2n-6 ratios in krill in 1500 μatm pCO2 in winter and spring. Extreme pCO2 had no effect on krill lipid biochemistry during summer. During winter and spring, krill in extreme pCO2 had elevated levels of 18:2n-6 (up to 1.2% increase), 20:4n-6 (up to 0.8% increase), lower 18:3n-3/18:2n-6 and 20:5n-3/20:4n-6 ratios, and showed evidence of increased membrane fluidity (up to three-fold increase in phospholipid/sterol ratios). These results indicate that the lipid biochemistry of adult krill is robust to near-future ocean acidification.

Continue reading ‘Near-future ocean acidification does not alter the lipid content and fatty acid composition of adult Antarctic krill’

Deconvolving the long-term impacts of ocean acidification and warming on coral biomineralisation


• Evaluation of temperature and pH effects in coral carbonate chemistry over 1939-2013.

• Coral calcifying fluid pH influenced by both, seawater pH and temperature.

• Temperature principal influence on calcifying fluid pH on seasonal scales.

• Long-term changes in calcifying fluid pH mainly influenced by seawater pH.

• Decline in carbonate ion and calcification consistent with ocean acidification.


Identifying the long-term effects of ocean acidification (OA) and global warming on coral calcification has proven elusive yet has major implications for the continuing viability of coral reefs in the face of climate change. Here we address this question using seasonally and annually resolved boron proxies (11B/10B and B/Ca) of calcifying fluid (cf) pHcf and carbonate ion concentrations ([CO]cf) preserved in a long-lived Porites coral from the Great Barrier Reef (GBR). From 1939 to 2013 we find that the coral pHcf closely followed the decline in seawater pH of ∼0.1 units, but at a reduced rate of ∼60%, indicative of biological buffering. Of the decline in pHcf ∼82% is attributed to OA and ∼17% to the ∼0.5 °C long-term warming observed over this period. This long-term warming induced change in pHcf is consistent with the much larger seasonally modulated changes in pHcf where ∼4 to 6 °C seasonal changes in temperatures are accompanied by relatively large antithetic ∼0.1 changes in pHcf. Furthermore, we find that although the supply of dissolved inorganic carbon (DIC) of the coral cf has remained at constant elevated levels of ∼1.5 × seawater, there has been a significant long-term decline (4 to 11%) in the [CO]cf, due primarily to the OA-induced change in pHcf. This decline in [CO]cf, a critical parameter controlling calcification, is thus likely responsible for the ∼15% decline in coral calcification observed since 1939 and across the GBR generally.

Continue reading ‘Deconvolving the long-term impacts of ocean acidification and warming on coral biomineralisation’

Positive genetic associations among fitness traits support evolvability of a reef‐building coral under multiple stressors

Climate change threatens organisms in a variety of interactive ways that requires simultaneous adaptation of multiple traits. Predicting evolutionary responses requires an understanding of the potential for interactions among stressors and the genetic variance and covariance among fitness‐related traits that may reinforce or constrain an adaptive response. Here we investigate the capacity of Acropora millepora, a reef‐building coral, to adapt to multiple environmental stressors: rising sea surface temperature, ocean acidification, and increased prevalence of infectious diseases. We measured growth rates (weight gain), coral color (a proxy for Symbiodiniaceae density), and survival, in addition to nine physiological indicators of coral and algal health in 40 coral genets exposed to each of these three stressors singly and combined. Individual stressors resulted in predicted responses (e.g., corals developed lesions after bacterial challenge and bleached under thermal stress). However, corals did not suffer substantially more when all three stressors were combined. Nor were trade‐offs observed between tolerances to different stressors; instead, individuals performing well under one stressor also tended to perform well under every other stressor. An analysis of genetic correlations between traits revealed positive covariances, suggesting that selection to multiple stressors will reinforce rather than constrain the simultaneous evolution of traits related to holobiont health (e.g., weight gain and algal density). These findings support the potential for rapid coral adaptation under climate change and emphasize the importance of accounting for corals’ adaptive capacity when predicting the future of coral reefs.

Continue reading ‘Positive genetic associations among fitness traits support evolvability of a reef‐building coral under multiple stressors’

The combined effects of ocean acidification with fleshy macroalgae and filamentous turfs on tropical crustose coralline algae

Global climate change induces multiple stressors on tropical coral reefs that threaten their persistence. Ocean acidification decreases calcification in most dominant reef builders, such as crustose coralline algae (CCA). Climate change also has the potential to increase the biomass of fleshy macroalgae and filamentous turf in coral reef ecosystems. While fleshy macroalgae and turf may shade, abrade, and have otherwise negative consequences on CCA metabolism, their high rates of photosynthesis may mitigate OA locally through carbon uptake, resulting in a local increase in pH. This thesis explored the effects of OA, combined with the presence of either fleshy macroalgae or algal turfs, on Lithophyllum kotschyanum, an abundant species of CCA in Moorea, French Polynesia. In a mesocosm study, three canopy types, clear mimics, dark mimics, and S. pacificum, were crossed with two CO2 levels, ambient (400 μatm) and elevated (1000 μatm). The clear, dark, and S. pacificum canopies resulted in stepwise decreases in calcification of L. kotschyanum. This response suggests that shading and likely flow moderation decrease CCA calcification. To separate the effects of fleshy macroalgal metabolism from the effects of its physical structure, a subsequent mesocosm and field experiment were performed. In the mesocosm study, a header tank that provided S. pacificum-treated seawater to treatment tanks was used to determine the metabolic effect of S. pacificum on L. kotschyanum. In the field, S. pacificum canopies were attached to 20  30 cm grids, upstream from CCA samples. Data from the mesocosm study support a positive effect of carbon uptake by S. pacificum, but the metabolic effect did not translate into the field. Because S. pacificum was placed in closer proximity to CCA samples in the field than in lab, the difference in L. kotschyanum calcification between the mesocosm and field experiment may be due to physical effects of the canopy in the field, such as shading. The combined results of these two studies suggest that upstream macroalgal communities have the potential to mitigate the negative effects of OA to downstream calcifiers, but will not benefit understory calcifiers. Finally, a mesocosm experiment was conducted to address the combined effects of OA and the presence of epiphytic turf algae on host CCA. In a factorial experiment, L. kotschyanum samples with and without epiphytic turf algae were placed in flow through tanks where pCO2 was ambient (400 μatm) or elevated (1000 μatm). Results indicated a significant effect of elevated pCO2 on CCA calcification and a negative effect of turf presence, despite a higher pH in the presence of turf during light incubations. This indicates that any benefit of higher daytime pH within the DBL of L. kotschyanum was outweighed by the negative effects, such as shading, nighttime anoxia and low pH. Overall, these studies indicate that fleshy macroalgae and filamentous turfs can raise seawater pH locally, but any benefit of this effect is outweighed by the negative effects of fleshy macroalgae and turf presence. The only instance during which CCA may incur a net benefit from fleshy macroalgae occurs when calcifiers are situated downstream of a dense macroalgal community, entirely unaffected by its physical structure. Ultimately, fleshy macroalgae and turf affect CCA negatively, regardless of OA treatment.

Continue reading ‘The combined effects of ocean acidification with fleshy macroalgae and filamentous turfs on tropical crustose coralline algae’

Acidification diminishes diatom silica production in the Southern Ocean

Diatoms, large bloom-forming marine microorganisms, build frustules out of silicate, which ballasts the cells and aids their export to the deep ocean. This unique physiology forges an important link between the marine silicon and carbon cycles. However, the effect of ocean acidification on the silicification of diatoms is unclear. Here we show that diatom silicification strongly diminishes with increased acidity in a natural Antarctic community. Analyses of single cells from within the community reveal that the effect of reduced pH on silicification differs among taxa, with several species having significantly reduced silica incorporation at CO2 levels equivalent to those projected for 2100. These findings suggest that, before the end of this century, ocean acidification may influence the carbon and silicon cycle by both altering the composition of the diatom assemblages and reducing cell ballasting, which will probably alter vertical flux of these elements to the deep ocean.

Continue reading ‘Acidification diminishes diatom silica production in the Southern Ocean’

Ocean acidification impact on ascidian Ciona robusta spermatozoa: new evidence for stress resilience


• Impact of ocean acidification on sperm quality of the ascidian Ciona robusta was investigated.

• Two experimental approaches were set up to simulate the ocean conditions predicted for the end of this century.

• Alteration of sperm motility, morphology and physiology was detected in short-term exposure.

• A rapid recovery of physiological conditions was observed within one week.

• New evidence of resilience in ascidian C. robusta spermatozoa in response to ocean acidification.


Rising atmospheric CO2 is causing a progressive decrease of seawater pH, termed ocean acidification. Predicting its impact on marine invertebrate reproduction is essential to anticipate the consequences of future climate change on species fitness and survival. Ocean acidification may affect reproductive success either in terms of gamete or progeny quality threating species survival. Despite an increasing number of studies focusing on the effects of ocean acidification on the early life history of marine organisms, very few have investigated the effects on invertebrate gamete quality. In this study, we set up two experimental approaches simulating the ocean conditions predicted for the end of this century, in situ transplant experiments at a naturally acidified volcanic vent area along the Ischia island coast and microcosm experiments, to evaluate the short-term effects of the predicted near-future levels of ocean acidification on sperm quality of the ascidian Ciona robusta after parental exposure. In the first days of exposure to acidified conditions, we detected alteration of sperm motility, morphology and physiology, followed by a rapid recovery of physiological conditions that provide a new evidence of resilience of ascidian spermatozoa in response to ocean acidification. Overall, the short-term tolerance to adverse conditions opens a new scenario on the marine species capacity to continue to reproduce and persist in changing oceans.

Continue reading ‘Ocean acidification impact on ascidian Ciona robusta spermatozoa: new evidence for stress resilience’

Impacts of ocean acidification on intertidal benthic foraminiferal growth and calcification

Foraminifera are expected to be particularly susceptible to future changes in ocean carbonate chemistry as a function of increased atmospheric CO2. Studies in an experimental recirculating seawater system were performed with a dominant benthic foraminiferal species collected from intertidal mudflats. We investigated the experimental impacts of ocean acidification on survival, growth/calcification, morphology and the biometric features of a calcareous species Elphidium williamsoni. Foraminifera were exposed for 6 weeks to four different pH treatments that replicated future scenarios of a high CO2 atmosphere resulting in lower seawater pH. Results revealed that declining seawater pH caused a decline in foraminiferal survival rate and growth/calcification (mainly through test weight reduction). Scanning electron microscopy image analysis of live specimens at the end of the experimental period show changes in foraminiferal morphology with clear signs of corrosion and cracking on the test surface, septal bridges, sutures and feeding structures of specimens exposed to the lowest pH conditions. These findings suggest that the morphological changes observed in shell feeding structures may serve to alter: (1) foraminiferal feeding efficiency and their long-term ecological competitiveness, (2) the energy transferred within the benthic food web with a subsequent shift in benthic community structures and (3) carbon cycling and total CaCO3 production, both highly significant processes in coastal waters. These experimental results open-up the possibility of modelling future impacts of ocean acidification on both calcification and dissolution in benthic foraminifera within mid-latitude intertidal environments, with potential implications for understanding the changing marine carbon cycle.

Continue reading ‘Impacts of ocean acidification on intertidal benthic foraminiferal growth and calcification’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,284,155 hits


Ocean acidification in the IPCC AR5 WG II

OUP book