Posts Tagged 'paleo'

δ11B as monitor of calcification site pH in divergent marine calcifying organisms

The boron isotope composition (δ11B) of marine biogenic carbonates has been predominantly studied as a proxy for monitoring past changes in seawater pH and carbonate chemistry. However, a number of assumptions regarding chemical kinetics and thermodynamic isotope exchange reactions are required to derive seawater pH from δ11B biogenic carbonates. It is also probable that δ11B of biogenic carbonate reflects seawater pH at the organism’s site of calcification, which may or may not reflect seawater pH. Here, we report the development of methodology for measuring the δ11B of biogenic carbonate samples at the multi-collector inductively coupled mass spectrometry facility at Ifremer (Plouzané, France) and the evaluation of δ11BCaCO3 in a diverse range of marine calcifying organisms reared for 60 days in isothermal seawater (25 °C) equilibrated with an atmospheric pCO2 of ca. 409 µatm. Average δ11BCaCO3 composition for all species evaluated in this study range from 16.27 to 35.09 ‰, including, in decreasing order, coralline red alga Neogoniolithion sp. (35.89 ± 3.71 ‰), temperate coral Oculina arbuscula (24.12 ± 0.19 ‰), serpulid worm Hydroides crucigera (19.26 ± 0.16 ‰), tropical urchin Eucidaris tribuloides (18.71 ± 0.26 ‰), temperate urchin Arbacia punctulata (16.28 ± 0.86 ‰), and temperate oyster Crassostrea virginica (16.03 ‰). These results are discussed in the context of each species’ proposed mechanism of biocalcification and other factors that could influence skeletal and shell δ11B, including calcifying site pH, the proposed direct incorporation of isotopically enriched boric acid (instead of borate) into biogenic calcium carbonate, and differences in shell/skeleton polymorph mineralogy. We conclude that the large inter-species variability in δ11BCaCO3 (ca. 20 ‰) and significant discrepancies between measured δ11BCaCO3 and δ11BCaCO3 expected from established relationships between abiogenic δ11BCaCO3 and seawater pH arise primarily from fundamental differences in calcifying site pH amongst the different species. These results highlight the potential utility of δ11B as a proxy of calcifying site pH for a wide range of calcifying taxa and underscore the importance of using species-specific seawater-pH–δ11BCaCO3 calibrations when reconstructing seawater pH from δ11B of biogenic carbonates.

Continue reading ‘δ11B as monitor of calcification site pH in divergent marine calcifying organisms’

Boron isotope-based seasonal paleo-pH reconstruction for the Southeast Atlantic – a multispecies approach using habitat preference of planktonic foraminifera


• Coretop foraminifera δ11B accounting for intra-annual peak flux variations.
• Coretop data in agreement with established boron isotope calibrations.
• Multispecies downcore record demonstrates seasonal changes in SST and pCO2.
• Seasonal pCO2 changes probably due to SST and hence CO2 disequilibrium


The boron isotopic composition of planktonic foraminiferal shell calcite (δ11BCc) provides valuable information on the pH of ambient water at the time of calcification. Hence, δ11BCc of fossil surface-dwelling planktonic foraminifera can be used to reconstruct ancient aqueous pCO2 if information on a second carbonate system parameter, temperature and salinity is available. However, pH and pCO2 of surface waters may vary seasonally, largely due to changes in temperature, DIC, and alkalinity. As also the shell fluxes of planktonic foraminifera show species-specific seasonal patterns that are linked to intra-annual changes in temperature, it is obvious that δ11BCc of a certain species reflects the pH and thus pCO2 biased towards a specific time period within a year. This is important to consider for the interpretation of fossil δ11BCc records that may mirror seasonal pH signals. Here we present new Multi-Collector Inductively Coupled Mass Spectrometry (MC-ICPMS) δ11BCc coretop data for the planktonic foraminifera species Globigerina bulloides, Globigerinoides ruber, Trilobatus sacculifer and Orbulina universa   and compare them with δ11Bborate derived from seasonally resolved carbonate system parameters. We show that the inferred season-adjusted δ11BCc/δ11Bborate relationships are similar to existing calibrations and can be combined with published δ11BCc field and culture data to augment paleo-pH calibrations. To test the applicability of these calibrations, we used a core drilled on the Walvis Ridge in the Southeast Atlantic spanning the last 330,000 years to reconstruct changes in surface-water pCO2. The reconstruction based on G. bulloides, which reflects the austral spring season, was shown to yield values that closely resemble the Vostok ice-core data indicating that surface-water pCO2 was close to equilibrium with the atmosphere during the cooler spring season. In contrast, pCO2 estimated from δ11BCc of O. universa, T. sacculifer and G. ruber that predominantly lived during the warmer seasons, exhibits up to ∼50 ppmv higher values than the Vostok ice-core data. This is probably due to the higher austral summer and fall temperatures, as shown by Mg/Ca to be on average ∼4 °C higher than during the cooler spring season, accounting for an increase in pCO2 of ∼4% per 1 °C. Our results demonstrate that paleo-pH estimates based on δ11BCc contain a significant seasonal signal reflecting the habitat preference of the recording foraminifera species.

Continue reading ‘Boron isotope-based seasonal paleo-pH reconstruction for the Southeast Atlantic – a multispecies approach using habitat preference of planktonic foraminifera’

Assessing ocean acidification and carbon cycle perturbations during the end-Permian extinction using boron isotopes

The Permian-Triassic mass extinction represents the most severe environmental crisis in Earth’s history, which dictated the course for evolution of life until today. Volcanism from Siberian traps played a significant role involving a substantial input of relatively light carbon into the atmosphere leading to a combination of global warming by ~6°C, sporadic anoxia or euxinia, and ocean acidification. However, its detailed manifestation and environmental impact is yet to be fully understood. This lack of knowledge also extends to a better quantification of emitted and sequestered carbon budgets (cf. Gutjahr et al., 2017).

Continue reading ‘Assessing ocean acidification and carbon cycle perturbations during the end-Permian extinction using boron isotopes’

Global perturbation of the marine calcium cycle during the Permian-Triassic transition

A negative shift in the calcium isotopic composition of marine carbonate rocks spanning the end-Permian extinction horizon in South China has been used to argue for an ocean acidification event coincident with mass extinction. This interpretation has proven controversial, both because the excursion has not been demonstrated across multiple, widely separated localities, and because modeling results of coupled carbon and calcium isotope records illustrate that calcium cycle imbalances alone cannot account for the full magnitude of the isotope excursion. Here, we further test potential controls on the Permian-Triassic calcium isotope record by measuring calcium isotope ratios from shallow-marine carbonate successions spanning the Permian-Triassic boundary in Turkey, Italy, and Oman. All measured sections display negative shifts in δ44/40Ca of up to 0.6‰. Consistency in the direction, magnitude, and timing of the calcium isotope excursion across these widely separated localities implies a primary and global δ44/40Ca signature. Based on the results of a coupled box model of the geological carbon and calcium cycles, we interpret the excursion to reflect a series of consequences arising from volcanic CO2 release, including a temporary decrease in seawater δ44/40Ca due to short-lived ocean acidification and a more protracted increase in calcium isotope fractionation associated with a shift toward more primary aragonite in the sediment and, potentially, subsequently elevated carbonate saturation states caused by the persistence of elevated CO2 delivery from volcanism. Locally, changing balances between aragonite and calcite production are sufficient to account for the calcium isotope excursions, but this effect alone does not explain the globally observed negative excursion in the δ13C values of carbonate sediments and organic matter as well. Only a carbon release event and related geochemical consequences are consistent both with calcium and carbon isotope data. The carbon release scenario can also account for oxygen isotope evidence for dramatic and protracted global warming as well as paleontological evidence for the preferential extinction of marine animals most susceptible to acidification, warming, and anoxia.

Continue reading ‘Global perturbation of the marine calcium cycle during the Permian-Triassic transition’

Tropical Atlantic climate and ecosystem regime shifts during the Paleocene–Eocene Thermal Maximum (update)

The Paleocene–Eocene Thermal Maximum (PETM, 56 Ma) was a phase of rapid global warming associated with massive carbon input into the ocean–atmosphere system from a 13C-depleted reservoir. Many midlatitude and high-latitude sections have been studied and document changes in salinity, hydrology and sedimentation, deoxygenation, biotic overturning, and migrations, but detailed records from tropical regions are lacking. Here, we study the PETM at Ocean Drilling Program (ODP) Site 959 in the equatorial Atlantic using a range of organic and inorganic proxies and couple these with dinoflagellate cyst (dinocyst) assemblage analysis. The PETM at Site 959 was previously found to be marked by a  ∼  3.8 ‰ negative carbon isotope excursion (CIE) and a  ∼  4 °C surface ocean warming from the uppermost Paleocene to peak PETM, of which  ∼  1 °C occurs before the onset of the CIE. We record upper Paleocene dinocyst assemblages that are similar to PETM assemblages as found in extratropical regions, confirming poleward migrations of ecosystems during the PETM. The early stages of the PETM are marked by a typical acme of the tropical genus Apectodinium, which reaches abundances of up to 95 %. Subsequently, dinocyst abundances diminish greatly, as do carbonate and pyritized silicate microfossils. The combined paleoenvironmental information from Site 959 and a close-by shelf site in Nigeria implies the general absence of eukaryotic surface-dwelling microplankton during peak PETM warmth in the eastern equatorial Atlantic, most likely caused by heat stress. We hypothesize, based on a literature survey, that heat stress might have reduced calcification in more tropical regions, potentially contributing to reduced deep sea carbonate accumulation rates, and, by buffering acidification, also to biological carbonate compensation of the injected carbon during the PETM. Crucially, abundant organic benthic foraminiferal linings imply sustained export production, likely driven by prokaryotes. In sharp contrast, the recovery of the CIE yields rapid (≪ 10 kyr) fluctuations in the abundance of several dinocyst groups, suggesting extreme ecosystem and environmental variability.

Continue reading ‘Tropical Atlantic climate and ecosystem regime shifts during the Paleocene–Eocene Thermal Maximum (update)’

Boron isotopes as a proxy for pH in siliceous and calcareous marine algae

Rising CO2 in the atmosphere has directly led to a reduction in surface ocean pH -a process known as ocean acidification. There is a need to understand past climates in terms of ocean pH change in order to be able to relate these to the current effects of climate change on marine organisms. One way of doing this is by measuring boron isotopes in marine carbonates, such as foraminifera and corals, to estimate past ocean pH, and thus to infer past pCO2. Key regions of atmospheric-ocean CO2 exchange are the Southern Ocean and subarctic North Pacific, and they are also areas where modern ocean acidification is occurring fastest. The current application of the boron isotope proxy is restricted in these high latitude regions due to lack of calcareous organisms preserved in the sediment here. Therefore, there is a need to expand the boron isotope proxy into novel materials, such as diatoms and coralline algae, which are found in these key high latitude habitats in abundance.
This thesis aims to investigate whether the hard parts of marine algae (siliceous: di-atoms; calcareous: coralline algae) are suitable archives for the boron isotope pH proxy. This is achieved by examining: (i) which boron species could be incorporated into the frustule/skeleton; (ii) the relationship between boron isotopic composition and seawater pH, and hence the sensitivity of boron isotopes in each organism to changes in seawater pH; (iii) the palaeo-archive potential of each organism. These aims are addressed by developing a method to measure boron isotopes and boron content of diatoms by MC-ICP-MS, calibrating the boron-pH relationships in a species of diatom using culturing experiments, applying this calibration to sedimentary diatoms collected from a core in the subarctic North Pacific, and also by investigating the relationship between boron isotopes and seawater pH in a species of coralline algae.

Continue reading ‘Boron isotopes as a proxy for pH in siliceous and calcareous marine algae’

The evolution of deep ocean chemistry and respired carbon in the Eastern Equatorial Pacific over the last deglaciation

It has been shown that the deep Eastern Equatorial Pacific (EEP) region was poorly ventilated during the Last Glacial Maximum (LGM) relative to Holocene values. This finding suggests a more efficient biological pump, which indirectly supports the idea of increased carbon storage in the deep ocean contributing to lower atmospheric CO2 during the last glacial. However, proxies related to respired carbon are needed in order to directly test this proposition. Here we present Cibicides wuellerstorfi B/Ca ratios from Ocean Drilling Program Site 1240 measured by laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) as a proxy for deep water carbonate saturation state (Δ[CO32−], and therefore [CO32−]), along with δ13C measurements. In addition, the U/Ca ratio in foraminiferal coatings has been analyzed as an indicator of oxygenation changes. Our results show lower [CO32−], δ13C, and [O2] values during the LGM, which would be consistent with higher respired carbon levels in the deep EEP driven, at least in part, by reduced deep water ventilation. However, the difference between LGM and Holocene [CO32−] observed at our site is relatively small, in accordance with other records from across the Pacific, suggesting that a “counteracting” mechanism, such as seafloor carbonate dissolution, also played a role. If so, this mechanism would have increased average ocean alkalinity, allowing even more atmospheric CO2 to be “sequestered” by the ocean. Therefore, the deep Pacific Ocean very likely stored a significant amount of atmospheric CO2 during the LGM, specifically due to a more efficient biological carbon pump and also an increase in average ocean alkalinity.

Continue reading ‘The evolution of deep ocean chemistry and respired carbon in the Eastern Equatorial Pacific over the last deglaciation’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,066,623 hits


Ocean acidification in the IPCC AR5 WG II

OUP book