Posts Tagged 'paleo'

Testing for ocean acidification during the early Toarcian using δ44/40Ca and δ88/86Sr

During the early Toarcian, volcanic gases released by the Karoo-Ferrar large igneous province are widely believed to have caused severe environmental disturbances, including ocean acidification. Here we show records of δ44/40Ca and δ88/86Sr through the early Toarcian, as recorded in three groups of biogenic calcite: Megateuthididae belemnites, Passaloteuthididae belemnites, and brachiopods of the species Soaresirhynchia bouchardi. We evaluate the data to eliminate the influence on isotopic composition of varying temperature, calcification rate, and salinity, through the section that may mask the environmental signals.

Neither δ44/40Ca and δ88/86Sr show negative isotope excursions across the suggested acidification interval as would be expected had acidification occurred. A profile of δ11B, re-interpreted from a published study, shows no variation through the interval. Taken together, these data provide little support for ocean acidification at this time.

Values of δ88/86Sr are independent of temperature or Sr/Ca in our belemnites. For brachiopods, too few data are available to determine whether such a dependence exists. Values of δ44/40Ca show a weak temperature control of magnitude +0.020± 0.004‰/°C (2 s.d.). In belemnites, δ44/40Ca also correlates positively with Mg/Ca and Sr/Ca.

Continue reading ‘Testing for ocean acidification during the early Toarcian using δ44/40Ca and δ88/86Sr’

Submarine basaltic eruptions across the Guadalupian-Lopingian transition in the Emeishan large igneous province: Implication for end-Guadalupian extinction of marine biota


• Durations of submarine and subaerial eruptions in the Emeishan LIP are constrained.

• Submarine volcanism occurred during the Guadalupian-Lopingian transition.

• Subaerial tuff eruptions extended to the Early-Middle Wuchiapingian.


Massive CO2 and SO2 degassed from large igneous provinces (LIPs) are thought to cause ocean acidification and calcification crisis with a significant loss of calcified marine biota. The ocean acidification caused by the Emeishan LIP event has been proposed as one of the important factors that triggered the end-Guadalupian (Middle Permian) crisis, although the driving mechanism remains unclear. Here we represent a detailed field investigation combined with LA-ICP-MS, SIMS and CA-ID-TIMS zircon geochronology of tuffs from four volcanic sections in the eastern part of the Emeishan LIP. Our new data combined with previous results from this LIP confirm that: (i) the submarine volcanism occurred between ~260.7 Ma and ~ 257.9 Ma, with most basaltic eruptions at ~260.1 Ma to 259.5 Ma; and (ii) explosive tuff eruptions occurred during ~257.9 Ma to ~256.9 Ma in the subaerial environment. We propose a model involving SO2 release from the submarine basaltic eruptions in the Emeishan LIP as the trigger of the end-Guadalupian ocean acidification, due to the high solubility of SO2 in seawater that could produce strongly acidic conditions. The late explosive silicic volcanism in the subaerial setting during Early to Middle Wuchiapingian (Late Permian) might have been a potential strong driver of the global Wuchiapingian cooling event.

Continue reading ‘Submarine basaltic eruptions across the Guadalupian-Lopingian transition in the Emeishan large igneous province: Implication for end-Guadalupian extinction of marine biota’

Calcium isotope composition of Morozovella over the late Paleocene–early Eocene

Ocean acidification (OA) during the Paleocene-Eocene thermal maximum (PETM) likely caused a biocalcification crisis. The calcium isotope composition (δ44/40Ca) of primary carbonate producers may be sensitive to OA. To test this hypothesis, we constructed the first high-resolution, high-precision planktic foraminiferal δ44/40Ca records before and across the PETM. The records employ specimens of Morozovella spp. collected from Ocean Drilling Program Sites 1209 (Shatsky Rise, Pacific Ocean) and 1263 (Walvis Ridge, Atlantic Ocean). At Site 1209, δ44/40Ca values start at –1.33‰ during the Upper Paleocene and increase to a peak of –1.15‰ immediately before the negative carbon isotope excursion (CIE) that marks the PETM onset. Values remain elevated through the PETM interval and decrease into the earliest Eocene. A shorter-term record for Site 1263 shows a similar trend, although δ44/40Ca values are on average 0.22‰ lower and decrease shortly after the CIE onset. The trends support neither diagenetic overprinting, authigenic carbonate additions, nor changes in the δ44/40Ca value of seawater. Rather, they are consistent with a kinetic isotope effect, whereby calcite δ44/40Ca values inversely correlate with precipitation rate. Geologically rapid Ca isotope shifts appear to reflect the response of Morozovella to globally forced changes in the local carbonate geochemistry of seawater. All data combined suggest that the PETM-OA event occurred near the peak of a gradual reduction in seawater carbonate ion concentrations during a time of elevated atmospheric pCO2, potentially driven by North Atlantic igneous province emplacement.

Continue reading ‘Calcium isotope composition of Morozovella over the late Paleocene–early Eocene’

Evolution of paleo-climate and seawater pH from the late Permian to postindustrial periods recorded by boron isotopes and B/Ca in biogenic carbonates


• The fundamentals and advances in δ11B-pH and B/Ca proxies have been demonstrated.

• The evolution of atmospheric CO2 over million-year scale and millennium scale is reviewed.

• The significant ocean acidifications and the associated driving forces were clarified.


Cycling of CO2 between the oceans and the atmosphere has significant impacts on the global climate change. The accurate reconstructions of paleo-pH and atmospheric-oceanic carbon cycling using geochemical tracers (e.g., δ11B, B/Ca) in marine carbonates are reviewed in this work, including the fundamental mechanisms and the remaining challenges in these proxies and the progresses in understanding of evolution of paleo-climate and seawater pH from the late Permian to postindustrial periods. The proxies provide new insight into the evolution of atmospheric CO2 concentrations at time scales from tens of millions to thousands of years, and the direct evidence to the significant ocean acidification during the mass extinction events, and the CO2 cycling in ocean-atmosphere system during the Last Deglaciation and post-industrial periods. On the basis of extensive investigation, it could be concluded that: (i) the carbon dioxide levels and their impacts on Earth surface temperature during the Cenozoic cooling, the Pliocene warmth, and the mid-Pleistocene transition have been evaluated by the combination of multiple proxies; (ii) the benthic/planktonic foraminiferal B/Ca and δ11B data provided consistent implications for global climate variations during the Late Pleistocene, the Late Glacial, Last Glacial Maximum, and the Younger Dryas event; (iii) perturbations of surface ocean pH at the Permo-Triassic (P-T) boundary, the Pliensbachian-Toarcian (Pl-To) boundary, the Cretaceous-Paleogene (K/Pg) boundary and the Palaeocene-Eocene Thermal Maximum (PETM) global warming event were triggered by the large injection of carbon, the short episodic pulses of volcanogenic CO2, the Chicxulub impact, and the volcanism activities of the North Atlantic Igneous Province, respectively; (iv) the ocean acidification in the equatorial and polar Pacific during the Last Deglaciation implied an expanded zone of equatorial upwelling and resultant CO2 emission from higher subsurface dissolved inorganic carbon concentration. The acceleration of modern acidification in post-industrial time was not only driven by anthropogenic CO2 but also varied synchronously with inter-decadal changes in Asian Winter Monsoon Intensity.

Continue reading ‘Evolution of paleo-climate and seawater pH from the late Permian to postindustrial periods recorded by boron isotopes and B/Ca in biogenic carbonates’

Shell mineralogy of a foundational marine species, Mytilus californianus, over half a century in a changing ocean

Anthropogenic warming and ocean acidification are predicted to negatively affect marine calcifiers. While negative effects of these stressors on physiology and shell calcification have been documented in many species, their effects on shell mineralogical composition remains poorly known, especially over longer time periods. Here, we quantify changes in the shell mineralogy of a foundation species, Mytilus californianus, under 60 y of ocean warming and acidification. Using historical data as a baseline and a resampling of present-day populations, we document a substantial increase in shell calcite and decrease in aragonite. These results indicate that ocean pH and saturation state, not temperature or salinity, play a strong role in mediating the shell mineralogy of this species and reveal long-term changes in this trait under ocean acidification.

Continue reading ‘Shell mineralogy of a foundational marine species, Mytilus californianus, over half a century in a changing ocean’

Stable Ca and Sr isotopes support volcanically triggered biocalcification crisis during Oceanic Anoxic Event 1a

Large igneous province (LIP) eruptions are hypothesized to trigger biocalcification crises. The Aptian nannoconid crisis, which correlates with emplacement of the Ontong Java Plateau and Oceanic Anoxic Event 1a (OAE 1a, ca. 120 Ma), represents one such example. The Ca isotope (δ44/40Ca) system offers potential to detect biocalcification fluctuations in the rock record because Ca isotope fractionation is sensitive to precipitation rate. However, other primary and secondary processes, such as input-output flux perturbations and early diagenesis, can produce similar signals. Here, we exploit emergent properties of the stable Sr isotope (δ88/86Sr) system to resolve the origin of δ44/40Ca variability during OAE 1a. This study reports high-precision thermal ionization mass spectrometry (TIMS) δ44/40Ca, δ88/86Sr, and 87Sr/86Sr records for Hole 866A of Ocean Drilling Program Leg 143 drilled in Resolution Guyot, mid-Pacific Ocean. The samples span ~27 m.y. from the Barremian (ca. 127 Ma) to the Albian (ca. 100 Ma). The δ44/40Ca and δ88/86Sr secular trends differ from the 87Sr/86Sr record but mimic each other. δ44/40Ca and [Sr], as well as δ44/40Ca and δ88/86Sr, strongly correlate and yield slopes predicted for kinetic control, which demonstrates that variable mass-dependent fractionation rather than end-member mixing dominated the isotopic relationship between carbonates and seawater. Positive δ44/40Ca and δ88/86Sr shifts that begin before OAE 1a and peak within the interval are consistent with reduced precipitation rates. All results combined point to a cascade of effects on rate-dependent Ca and Sr isotope fractionation, which derive from the dynamic interplay between LIP eruptions and biocalcification feedbacks.

Continue reading ‘Stable Ca and Sr isotopes support volcanically triggered biocalcification crisis during Oceanic Anoxic Event 1a’

Conodont calcium isotopic evidence for multiple shelf acidification events during the early Triassic


  • Conodont δ44/40Ca curve is established for the latest Permian to Middle Triassic.
  • Three episodes of decreasing δ44/40Ca (0.16–0.23‰) occurred in the Early Triassic.
  • Negative δ44/40Ca shift in the PTB suggests a CO2-driven ocean acidification event.
  • Negative δ44/40Ca shifts in SSB & OAB suggest upwelling-driven shelf acidification.


The marine calcium (Ca) cycle is controlled by rates of continental weathering, seawater pH, and carbonate deposition on the seafloor and is linked to atmospheric CO2, climate change, and marine biotic evolution. Here, we provide the first continuous seawater Ca isotope profile from conodont apatite in South China for the latest Permian to early Middle Triassic, revealing major fluctuations in the Early Triassic calcium cycle. Three episodes of decreasing conodont δ44/40Ca (by 0.16–0.23‰) occurred around the Permian-Triassic, Smithian-Spathian, and Olenekian-Anisian boundaries. The first episode, coincident with a negative excursion of carbonate carbon isotopes, global warming, oceanic anoxia, enhanced weathering, and sea-level fall, was likely caused by a combination of volcanic CO2 release, ocean acidification, a reduced skeletal carbonate sink, and enhanced weathering of shelf carbonates. The latter two episodes, coincident with positive excursions of carbon isotopes, global cooling, and oceanic anoxia, possibly resulted from upwelling-driven shelf acidification and reduced skeletal carbonate burial. All three events were associated with marine biotic diversity losses, demonstrating a link between the calcium cycle and mass extinctions.

Continue reading ‘Conodont calcium isotopic evidence for multiple shelf acidification events during the early Triassic’

Chapter: Volcanic past cycles indicators: paleoclimatology and extinctions using benthic and planktonic forams community dynamics

The Benthic and planktonic foraminiferal communities’ dynamics as volcanic past cycles indicators are very well placed within the Paleoclimatology and extinctions studies. We have showed a bit, of what is available to explain how communities have evolved in the past. The past volcanic activity has released as much carbon dioxide into the atmosphere as anthropogenic as predicted emissions projections for the twenty-first century and they are linked to increases in carbon dioxide emissions and with faunal patterns, with marine extinctions observed sediment cores after volcanic episodes, and this increase in carbon dioxide and other volcanic gaseous influences on global warming and ocean acidification is responsible for the extinction of three quarters of species on Earth on the past. For example, dinosaurs were pretty much extinct because of “The Deccan Traps”, an igneous province, one of the largest volcanic features on Earth, located on the west-central India, and the Siberian Traps have influenced the end-Permian extinction, in which more than 90% of life on Earth disappeared. Many patterns should be first understood to be able to forecast future climate change scenarios. We can however explain that the modern ongoing carbon dioxide emissions are similar to those that led to the end-Triassic mass extinction. The importance of understanding Earth’s deep water past is predicated on predicting how it will respond to future climate change. The mass extinction and high-stress conditions were explained by the intense Deccan volcanism leading to rapid global warming and cooling, with enhanced weathering, continental runoff, and ocean acidification, resulting in a carbonate crisis in the marine environment. The chronic explosive volcanic activity generated unstable benthic habitat colonized by only a few species. The increase in atmospheric CO2 concentrations lead to decreased pH and carbonate availability in the ocean, known as Ocean Acidification, and the ability of marine invertebrates to tolerate acidity are the ‘windows into the future’ to study. Cores with ashes and tephra in Papua New Guinea (PNG) during Expedition 363 sampled by the IODP show that total foraminiferal diversity was low when volcanic activity was in place detected by the presence of tephra and volcanic ashes. Foraminiferal density and diversity in PNG were high and similar to those observed on the Great Barrier Reef or other sites, however diversity decreases, and show inverse correlation by benthic foraminifera to high presence of ashes and tephra in the past. However, ecological studies from shallow reef environments observed increased foraminiferal dominance of opportunists when corals became rare from chronic or acute anthropogenic influences, for example with sewage and oil spills. Agglutinate taxa that do not rely on calcification will replace calcifying species, and we call it a fauna replacement by invasive species. Density and diversity of agglutinated taxa is also in decline, but are less marked than calcifying taxa in an environment where pH is low. Dissolution of foraminifera seen in marine sediment under elevated pCO2 unravels other direct ecological impacts. Impacts such as dissolution and loss of biogenesis of carbonate by other organisms that are under near-future pCO2 conditions, which will reach a problematic real-time scenario. None of the previous extinctions were as severe as the ecological or even taxonomic extinction in shallow carbonate areas which we are predicting. Because of the rate of increasing pCO2, and unfortunately, we expect that the increase in the temperature in the Holocene and the tendency until 2100 will take us to the warmest Pliocene climate with the unfortunate consequences of living in a warmer than optimum world. The variability based on the frequency and intensity of some events are one of the warmest our world has ever seen, reflecting changes in temperature derived from data from deep sea sediment core samples, and of course shells of benthic and planktonic Forams and other organisms like pollen act as proxies in drilled marine sediment cores reflecting historic climate. A unique fauna of foraminiferal species from these highly opposed environments created by differences in temperature in the past are recorded paleo cycles, of which responds to the amount of ice in the world, due to their high sensitivity to the environmental changes in the modern and past sediments. Here we show that tephra and ashes of IODP Hole U1485A (Exp. 363 WPWP) record a periodicity of explosive volcanism within the last 0.8 Myr. Possible triggering mechanisms for these mass flow deposits include earthquakes and associated tsunamis and shelf/slope sediment instabilities during times of rapid deposition such as can occur during river flood events. Over longer timescales, it is also possible that sea level played a role in the storage and release of sediment from the PNG shelf (although the shelf itself is very narrow) and from the paleo-valley of the Sepik River, which is a relatively large area presently few meters above sea level. Changes in diversity shows balance of alternating deep (cold) and shallow (warm) benthic foraminifera fauna along time in the past. The “at least” five decreases in diversity peaks in the past show that the response of the benthic community to adverse climate is a change in their ecological pattern. These changes can take a whole community and an entire ecosystem to extinctions, and we have already seen five extinctions along Earth’s history. And if history teaches us anything, it is how to react to and prepare for crisis rather than repeat mistakes. Research suggests we are fast approaching disastrous effects of this sixth Anthropocene extinction. However, we can successfully surmount the challenges of biodiversity loss and climate change and dramatically alter the trajectory if we can pinpoint and remediate problems within a near future. With our planet “in crisis”, evidence demonstrates widespread ecological collapse and biodiversity loss. We know that as average temperatures rise and the frequency of extremely warm years increases, the impacts of habitat loss and fragmentation become even more increasingly apparent. We are with without a doubt entering a sixth mass extinction event because of the rapid decline in biodiversity. The majority of these species inhabit environmentally delicate tropical and subtropical areas susceptible to human impacts. This refers to a situation where the extinction of one species affects other species that rely on it for survival, thereby also placing them at a ‘domino effect’ risk of extinction as part of a destructive chain reaction. Stop cutting and burn forests, stop global trade of wild species, study and protect, preserve, and conserve our planet’s biodiversity.

Continue reading ‘Chapter: Volcanic past cycles indicators: paleoclimatology and extinctions using benthic and planktonic forams community dynamics’

Chapter: Amplifying factors leading to the collapse of primary producers during the Chicxulub impact and Deccan Traps eruptions

The latest Cretaceous (Maastrichtian) through earliest Paleogene (Danian) interval was a time marked by one of the five major mass extinctions in Earth’s history. The synthesis of published data permits the temporal correlation of the Cretaceous-Paleogene boundary crisis with two major geological events: (1) the Chicxulub impact, discovered in the Yucatan Peninsula (Mexico), and (2) eruption of the Deccan Traps large igneous province, located on the west-central Indian plateau. In this study, environmental and biological consequences from the Chicxulub impact and emplacement of the Deccan continental flood basalts were explored using a climate-carbon-biodiversity coupled model called the ECO-GEOCLIM model. The novelty of this study was investigation into the ways in which abiotic factors (temperature, pH, and calcite saturation state) acted on various marine organisms to determine the primary productivity and biodiversity changes in response to a drastic environmental change. Results showed that the combination of Deccan volcanism with a 10-km-diameter impactor would lead to global warming (3.5 degrees C) caused by rising carbon dioxide (CO 2) concentration (+470 ppmv), interrupted by a succession of short-term cooling events, provided by a “shielding effect” due to the formation of sulfate aerosols. The consequences related to these climate changes were the decrease of the surface ocean pH by 0.2 (from 8.0 to 7.8), while the deep ocean pH dropped by 0.4 (from 7.8 to 7.4). Without requiring any additional perturbations, these environmental disturbances led to a drastic decrease of the biomass of calcifying species and their biodiversity by similar to 80%, while the biodiversity of noncalcifying species was reduced by similar to 60%. We also suggest that the short-lived acidification caused by the Chicxulub impact, when combined with eruption of the Deccan Traps, may explain the severity of the extinction among pelagic calcifying species.

Continue reading ‘Chapter: Amplifying factors leading to the collapse of primary producers during the Chicxulub impact and Deccan Traps eruptions’

Boron isotope records from Pacific microatolls: modifications in Porites lutea calcifying fluid composition under anthropogenic ocean acidification and natural pH variability

Anthropogenic ocean acidification (OA) has compromised the ability of marine organisms to calcify. However, many coastal environments naturally exhibit high variability in seawater pH (pHsw) and the impact of OA on these environments is unclear. For instance, sub-tropical corals can modify the pH of the calcifying fluid (pHcf) from which they precipitate their skeleton. This study examines the influence of OA on pHcf upregulation of Porites lutea microatolls inhabiting reef flat environments. Environmental measurements including pHsw and temperature were performed on reef flats and adjacent fore-reefs on Kiritimati Island (Kiribati), Arno Atoll (Marshall Islands), and Rarotonga (Cook Islands) to quantify the temporal and spatial variability of these parameters. Slabs were removed from microatolls to construct multi-decadal (1938 – 2018) records of their boron isotopic (δ11B) and geochemical composition. The sensitivity of microatoll pHcf upregulation to ambient pHsw was evaluated by comparing annual band δ11B with synchronously recorded pHsw and temperature, and microatoll records were compared to a fore-reef record of similar age. Although daily means in pHsw on reef flats and fore-reefs were relatively similar, large diurnal cycles in pHsw (ΔpHsw = 0.28) and temperature (ΔT = 2.0°C) were found on reef flats exceeding that on fore-reefs by far (ΔpHsw = 0.07, ΔT = 0.7°C). Furthermore, spatial variations in pHsw and temperature were observed that were linked to reef flat hydrodynamics. Microatoll pHcf revealed a higher correlation to ambient seawater temperatures than to pHsw and only the fore-reef core showed a long-term trend in pHcf (-0.0003±0.0009 year-1) that is indicative of OA, while microatoll records revealed variable long-term trends unlikely reflecting ocean conditions (-0.0030±0.0005 to +0.0007±0.0003 year-1). Corals from the three sites revealed similar mean pHcf ≈ 8.44 although the difference in pHsw between the locations (ΔpHsw = 0.17) noticeably exceeded the decline in pHsw due to OA (ΔpHsw = 0.10). In conclusion, Porites lutea microatoll pHcf appeared to be relatively insensitive to OA. This is likely a result of the large variability in seawater conditions on reef flats that supersede OA, and the strong modification of coral pHcf by physiological processes.

Continue reading ‘Boron isotope records from Pacific microatolls: modifications in Porites lutea calcifying fluid composition under anthropogenic ocean acidification and natural pH variability’

Subscribe to the RSS feed

Follow AnneMarin on Twitter


Powered by FeedBurner

Blog Stats

  • 1,451,119 hits


Ocean acidification in the IPCC AR5 WG II

OUP book