Paleoceanographic importance of tri- and di-unsaturated alkenones through the early phase of Cretaceous Oceanic Anoxic Event 2 from southern high latitudes of the proto-Indian Ocean

Alkenones are biomarkers derived exclusively from species of haptophyte algae. The relative abundance of di- to tri-unsaturated C37 alkenones expressed as UK’37 is widely applied as a sea surface paleotemperature proxy for Cenozoic marine sediments. However, the absence of alkatrienones prior to the Eocene has precluded application of the UK’37 proxy for assessment of Cretaceous paleoclimates. Herein, we report a C40 alkatrienone (tetraconta-9E, 16E, 23E-trien-3-one; C40:3 Et) in deep-sea sediments from southern high latitudes (International Ocean Discovery Program: IODP site U1516). This discovery extends the geologic record of alkatrienones to the late Cenomanian, ∼70 million years earlier than previous reports. The parallel occurrence of higher abundances of a C40 alkadienone (tetraconta-16E, 23E-dien-3-one; C40:2 Et) allowed calculation of the UK’40 unsaturation index, comparable to UK’37. Stratigraphic variations in the δ13C of C40:2 Et revealed an elevated (∼1.5 ‰) positive carbon isotope excursion (CIE) relative to those observed in carbonate from other OAE2 sequences likely reflecting a decrease in global pCO2. The UK’40 profile suggests a concurrent drop in sea surface temperature associated with the decline in pCO2 during the early phase of OAE2. The timing of these environmental perturbations in the southern high latitude of the proto-Indian Ocean suggests they were triggered by volcanism associated with large igneous province (LIP) formation.

Hasegawa T. & Goto A. S., 2024. Paleoceanographic importance of tri- and di-unsaturated alkenones through the early phase of Cretaceous Oceanic Anoxic Event 2 from southern high latitudes of the proto-Indian Ocean. Organic Geochemistry 188: 104722. doi: 10.1016/j.orggeochem.2023.104722. Article (subscription required).


Subscribe

Search

  • Reset

OA-ICC Highlights

Resources


Discover more from Ocean Acidification

Subscribe now to keep reading and get access to the full archive.

Continue reading