Posts Tagged 'Arctic'

The Arctic picoeukaryote Micromonas pusilla benefits synergistically from warming and ocean acidification (update)

In the Arctic Ocean, climate change effects such as warming and ocean acidification (OA) are manifesting faster than in other regions. Yet, we are lacking a mechanistic understanding of the interactive effects of these drivers on Arctic primary producers. In the current study, one of the most abundant species of the Arctic Ocean, the prasinophyte Micromonas pusilla, was exposed to a range of different pCO2 levels at two temperatures representing realistic current and future scenarios for nutrient-replete conditions. We observed that warming and OA synergistically increased growth rates at intermediate to high pCO2 levels. Furthermore, elevated temperatures shifted the pCO2 optimum of biomass production to higher levels. Based on changes in cellular composition and photophysiology, we hypothesise that the observed synergies can be explained by beneficial effects of warming on carbon fixation in combination with facilitated carbon acquisition under OA. Our findings help to understand the higher abundances of picoeukaryotes such as M. pusilla under OA, as has been observed in many mesocosm studies.

Continue reading ‘The Arctic picoeukaryote Micromonas pusilla benefits synergistically from warming and ocean acidification (update)’

Geographical CO2 sensitivity of phytoplankton correlates with ocean buffer capacity

Accumulation of anthropogenic CO2 is significantly altering ocean chemistry. A range of biological impacts resulting from this oceanic CO2 accumulation are emerging, however, the mechanisms responsible for observed differential susceptibility between organisms and across environmental settings remain obscure. A primary consequence of increased oceanic CO2 uptake is a decrease in the carbonate system buffer capacity, which characterizes the system’s chemical resilience to changes in CO2, generating the potential for enhanced variability in pCO2 and the concentration of carbonate [urn:x-wiley:13541013:media:gcb14324:gcb14324-math-0001], bicarbonate [urn:x-wiley:13541013:media:gcb14324:gcb14324-math-0002], and protons [H+] in the future ocean. We conducted a meta‐analysis of 17 shipboard manipulation experiments performed across three distinct geographical regions that encompassed a wide range of environmental conditions from European temperate seas to Arctic and Southern oceans. These data demonstrated a correlation between the magnitude of natural phytoplankton community biological responses to short‐term CO2 changes and variability in the local buffer capacity across ocean basin scales. Specifically, short‐term suppression of small phytoplankton (<10 μm) net growth rates were consistently observed under enhanced pCO2within experiments performed in regions with higher ambient buffer capacity. The results further highlight the relevance of phytoplankton cell size for the impacts of enhanced pCO2 in both the modern and future ocean. Specifically, cell size‐related acclimation and adaptation to regional environmental variability, as characterized by buffer capacity, likely influences interactions between primary producers and carbonate chemistry over a range of spatio‐temporal scales.

Continue reading ‘Geographical CO2 sensitivity of phytoplankton correlates with ocean buffer capacity’

Effects of high pCO2 on the northern krill Thysanoessa inermis in relation to carbonate chemistry of its collection area, Rijpfjorden

Polar oceans are predicted to be the first marine environments affected by ocean acidification (OA). Thysanoessa inermis is one of the most abundant krill species in northern waters of the Atlantic and a key species in the food web of this ecosystem. Yet, we know very little about potential OA effects on this species. We studied the effects of elevated pCO2 on T. inermis in a laboratory experiment by exposing individuals for 11 weeks to low and high pCO2 (450 and 1200 µatm, respectively, n = 12 per pCO2 treatment). Survival, growth, and moulting frequency was monitored during the experiment, and feeding and oxygen consumption rates (n = 3–5 per pCO2 treatment) were measured at the end of the experiment. No significant effects of high pCO2 on survival, growth, moulting, oxygen consumption, and feeding rate were observed, indicating that T. inermis is tolerant to predicted high OA levels. We also explored physical and chemical properties of waters near the collection area of krill, Rijpfjorden (Svalbard 80° North) during the polar summer (July–August). In situ measurements showed large temperature and salinity gradients from surface to bottom and pCO2 and pH ranged, respectively, 161–417 µatm and 7.99–8.37. Even though substantial spatial variability in pCO2 could be observed, krill in this area is not confronted yet with the investigated high pCO2 levels.

Continue reading ‘Effects of high pCO2 on the northern krill Thysanoessa inermis in relation to carbonate chemistry of its collection area, Rijpfjorden’

An assessment of MOSJ: the state of the marine climate system around Svalbard and Jan Mayen

Svalbard’s climate is strongly influenced by the adjacent seas. Late-summer measurements collected over the last 52 years show that the temperature of warm Atlantic water flowing into the Arctic Ocean via in the West Spitsbergen Current has increased by 1.4 – 1.7 °C during the measurement period, equivalent to a rate of 0.27 – 0.33 °C per decade. The rate of warming has remained rather constant over the 52-year measurement period, excepting two warm (2005-2006, 2016-2017) anomalies and onecool (1998) anomaly. The West Spitsbergen current is an extension of the North Atlantic drift system and the trends observed in Eastern Fram Strait are largely due to increases in the temperature of water transported northwards from the sub-polar and sub-tropical Atlantic. Similar warming trends have been observed at other observatories along the North Atlantic Current system. The causes of this warming trend are the subject of ongoing research, and relevant factors include: variations in subtropical Atlantic water temperature; the rate of advection along the North Atlantic Current and the extent of wind induced surface cooling on route.

The marine environment of many Svalbard fjords is strongly influenced by warm Atlantic water supplied by the West Spitsbergen Current or Barents Sea (at depth) and by glacial meltwater supplied from Svalbard glaciers (at the surface). Increased freshwater addition decreases aragonite and calcite saturation (Ω) and pH level, and increases the ocean acidification state to levels that are critical for calcium-carbonate forming marine organisms. Particularly sensitive to this change is the aragonite-shell forming pteropod Limacina helicina, living in fjords and areas that are already near critical limits (Ω< 1.4) for calcification.

Continue reading ‘An assessment of MOSJ: the state of the marine climate system around Svalbard and Jan Mayen’

Model constraints on the anthropogenic carbon budget of the Arctic Ocean

The Arctic Ocean is projected to experience not only amplified climate change but also amplified ocean acidification. Modeling future acidification depends on our ability to simulate baseline conditions and changes over the industrial era. Such centennial-scale changes require a global model to account for exchange between the Arctic and surrounding regions. Yet the coarse resolution of typical global models may poorly resolve that exchange as well as critical features of Arctic Ocean circulation. Here we assess how simulations of Arctic Ocean storage of anthropogenic carbon (Cant), the main driver of open- ocean acidification, differ when moving from coarse to eddy admitting resolution in a global ocean circulation-biogeochemistry model (NEMO-PISCES). The Arctic’s regional storage of Cant is enhanced as model resolution increases. While the coarse- resolution model configuration ORCA2 (2°) stores 2.0 Pg C in the Arctic Ocean between 1765 and 2005, the eddy-admitting versions ORCA05 and ORCA025 (1/2° and 1/4°) store 2.4 and 2.6 Pg C. That result from ORCA025 falls within the uncertainty range from a previous data-based Cant storage estimate (2.5 to 3.3 Pg C). Yet those limits may each need to be reduced by about 10 % because data-based Cant concentrations in deep waters remain at ∼ 6 μmol kg−1, while they should be almost negligible by analogy to the near-zero observed CFC-12 concentrations from which they are calculated. Across the three resolutions, there was roughly three times as much anthropogenic carbon that entered the Arctic Ocean through lateral transport than via the flux of CO2 across the air-sea interface. Wider comparison to nine earth system models that participated in the Coupled Model Intercomparison Project Phase 5 (CMIP5) reveals much larger diversity of stored anthropogenic carbon and lateral transport. Only the CMIP5 models with higher lateral transport obtain Cant inventories that are close to the data-based estimates. Increasing resolution also enhances acidification, e.g., with greater shoaling of the Arctic’s average depth of the aragonite saturation horizon during 1960–2012, from 50 m in ORCA2 to 210 m in ORCA025. To assess the potential to further refine modeled estimates of the Arctic Ocean’s Cant storage and acidification, sensitivity tests that adjust model parameters are needed given that century-scale global ocean biogeochemical simulations still cannot be run routinely at high resolution.

Continue reading ‘Model constraints on the anthropogenic carbon budget of the Arctic Ocean’

Formation and transport of corrosive water in the Pacific Arctic region

Ocean acidification (OA), driven by rising anthropogenic carbon dioxide (CO2), is rapidly advancing in the Pacific Arctic Region (PAR), producing conditions newly corrosive to biologically important carbonate minerals like aragonite. Naturally short linkages across the PAR food web mean that species-specific acidification stress can be rapidly transmitted across multiple trophic levels, resulting in widespread impacts. Therefore, it is critical to understand the formation, transport, and persistence of acidified conditions in the PAR in order to better understand and project potential impacts to this delicately balanced ecosystem. Here, we synthesize data from process studies across the PAR to show the formation of corrosive conditions in colder, denser winter-modified Pacific waters over shallow shelves, resulting from the combination of seasonal terrestrial and marine organic matter respiration with anthropogenic CO2. When these waters are subsequently transported off the shelf, they acidify the Pacific halocline. We estimate that Barrow Canyon outflow delivers ~2.24 Tg C yr-1 to the Arctic Ocean through corrosive winter water transport. This synthesis also allows the combination of spatial data with temporal data to show the persistence of these conditions in halocline waters. For example, one study in this synthesis indicated that 0.5 – 1.7 Tg C yr-1 may be returned to the atmosphere via air-sea gas exchange of CO2 during upwelling events along the Beaufort Sea shelf that bring Pacific halocline waters to the ocean surface. The loss of CO2 during these events is more than sufficient to eliminate corrosive conditions in the upwelled Pacific halocline waters. However, corresponding moored and discrete data records indicate that potentially corrosive Pacific waters are present in the Beaufort shelfbreak jet during 80% of the year, indicating that the persistence of acidified waters in the Pacific halocline far outweighs any seasonal mitigation from upwelling. Across the datasets in this large-scale synthesis, we estimate that the persistent corrosivity of the Pacific halocline is a recent phenomenon that appeared between 1975 and 1985. Over that short time, these potentially corrosive waters originating over the continental shelves have been observed as far as the entrances to Amundsen Gulf and M’Clure Strait in the Canadian Arctic Archipelago. The formation and transport of corrosive waters on the Pacific Arctic shelves may have widespread impact on the Arctic biogeochemical system and food web reaching all the way to the North Atlantic.

Continue reading ‘Formation and transport of corrosive water in the Pacific Arctic region’

Ocean acidification stimulates particulate organic carbon accumulation in two Antarctic diatom species under moderate and high natural solar radiation

Impacts of rising atmospheric CO2 concentrations and increased daily irradiances from enhanced surface water stratification on phytoplankton physiology in the coastal Southern Ocean remain still unclear. Therefore, in the two Antarctic diatoms Fragilariopsis curta and Odontella weissflogii the effects of moderate and high natural solar radiation combined with either ambient or future pCO2 on cellular particulate organic carbon (POC) contents and photophysiology were investigated. Results showed that increasing CO2 concentrations had greater impacts on diatom physiology than exposure to increasing solar radiation. Irrespective of the applied solar radiation regime, cellular POC quotas increased with future pCO2 in both diatoms. Lowered maximum quantum yields of photochemistry in PSII (Fv/Fm) indicated a higher photosensitivity under these conditions, being counteracted by increased cellular concentrations of functional photosynthetic reaction centers. Overall, our results suggest that both bloom‐forming Antarctic coastal diatoms might increase carbon contents under future pCO2 conditions despite reduced physiological fitness. This indicates a higher potential for primary productivity by the two diatom species with important implications for the CO2 sequestration potential of diatom communities in the future coastal Southern Ocean.

Continue reading ‘Ocean acidification stimulates particulate organic carbon accumulation in two Antarctic diatom species under moderate and high natural solar radiation’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,113,445 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book