Posts Tagged 'Arctic'

A review on the biodiversity, distribution and trophic role of cephalopods in the Arctic and Antarctic marine ecosystems under a changing ocean

Cephalopods play an important role in polar marine ecosystems. In this review, we compare the biodiversity, distribution and trophic role of cephalopods in the Arctic and in the Antarctic. Thirty-two species have been reported from the Arctic, 62 if the Pacific Subarctic is included, with only two species distributed across both these Arctic areas. In comparison, 54 species are known from the Antarctic. These polar regions share 15 families and 13 genera of cephalopods, with the giant squid Architeuthis dux the only species confirmed to occur in both the Arctic and Antarctic. Polar cephalopods prey on crustaceans, fish, and other cephalopods (including cannibalism), whereas predators include fish, other cephalopods, seabirds, seals and whales. In terms of differences between the cephalopod predators in the polar regions, more Antarctic seabird species feed on cephalopods than Arctic seabirds species, whereas more Arctic mammal species feed on cephalopods than Antarctic mammal species. Cephalopods from these regions are likely to be more influenced by climate change than those from the rest of the World: Arctic fauna is more subjected to increasing temperatures per se, with these changes leading to increased species ranges and probably abundance. Antarctic species are likely to be influenced by changes in (1) mesoscale oceanography (2) the position of oceanic fronts (3) sea ice extent, and (4) ocean acidification. Polar cephalopods may have the capacity to adapt to changes in their environment, but more studies are required on taxonomy, distribution, ocean acidification and ecology.

Continue reading ‘A review on the biodiversity, distribution and trophic role of cephalopods in the Arctic and Antarctic marine ecosystems under a changing ocean’

Shallow water carbonate sediments of the Galapagos archipelago: ecologically sensitive biofacies in a transitional oceanographic environment

Shallow water carbonate producing organisms are directly controlled by their local oceanography. As a result, long-term environmental signals—stemming from the breakdown of calcareous organisms—can be read from time-averaged carbonate sediments. To better understand these complex biophysical interactions, it is important to study carbonate development within oceanographic transition zones and environments affected by disturbances, such as the El Niño—Southern Oscillation (ENSO). This dissertation represents the first investigation into modern shallow water, soft sediment, carbonate environments of the Galápagos Archipelago, eastern tropical Pacific (ETP). This region is notable for straddling an oceanographic transition zone from tropical oligotrophic to temperate eutrophic—caused by high nutrient and low pH upwelling—and for being directly impacted by ENSO. A top-down approach is followed, which analyzes the biogenic structure of Galápagos sediments and their connection to local and regional oceanography and climate, and then explores how these findings relate to benthic foraminifera—sensitive environmental indicators contained within the sediments. Sediment point counting and statistical models revealed that while these carbonate environments span a biogenic and oceanographic transition comparable to similar settings in the ETP, the proximity of the Galápagos to the ENSO region directly influences its sedimentary structure and distribution. Point counting also revealed a near-absence of benthic foraminifera, which is unusual for ETP, and tropical shallow water carbonates in general. Statistically comparing foraminiferal species composition and diversity to dominant oceanographic parameters revealed the low abundances and distribution of these testate (shelled) single-celled protists to be negatively influenced by the combination of repeated Holocene ENSO events, and the effects of protracted exposure to high nutrient and low pH waters of the southern archipelago. Ultimately, the results of this study may serve as a template for investigating the interaction of carbonates and oceanography within similar atypical tropical assemblages in the fossil record.

Continue reading ‘Shallow water carbonate sediments of the Galapagos archipelago: ecologically sensitive biofacies in a transitional oceanographic environment’

Phytoplankton do not produce carbon‐rich organic matter in high CO2 oceans

The ocean is a substantial sink for atmospheric carbon dioxide (CO2) released as a result of human activities. Over the coming decades the dissolved inorganic C concentration in the surface ocean is predicted to increase, which is expected to have a direct influence on the efficiency of C utilization (consumption and production) by phytoplankton during photosynthesis. Here, we evaluated the generality of C‐rich organic matter production by examining the elemental C:N ratio of organic matter produced under conditions of varying pCO2. The data used in this analysis were obtained from a series of pelagic in situ pCO2 perturbation studies that were performed in the diverse ocean regions and involved natural phytoplankton assemblages. The C:N ratio of the resulting particulate and dissolved organic matter did not differ across the range of pCO2 conditions tested. In particular, the ratio for particulate organic C and N was found to be 6.58 ± 0.05, close to the theoretical value of 6.6.

Continue reading ‘Phytoplankton do not produce carbon‐rich organic matter in high CO2 oceans’

Compensation of ocean acidification effects in Arctic phytoplankton assemblages

The Arctic and subarctic shelf seas, which sustain large fisheries and contribute to global biogeochemical cycling, are particularly sensitive to ongoing ocean acidification (that is, decreasing seawater pH due to anthropogenic CO2 emissions). Yet, little information is available on the effects of ocean acidification on natural phytoplankton assemblages, which are the main primary producers in high-latitude waters. Here we show that coastal Arctic and subarctic primary production is largely insensitive to ocean acidification over a large range of light and temperature levels in different experimental designs. Out of ten CO2-manipulation treatments, significant ocean acidification effects on primary productivity were observed only once (at temperatures below 2 °C), and shifts in the species composition occurred only three times (without correlation to specific experimental conditions). These results imply a high capacity to compensate for environmental variability, which can be understood in light of the environmental history, tolerance ranges and intraspecific diversity of the dominant phytoplankton species.

Continue reading ‘Compensation of ocean acidification effects in Arctic phytoplankton assemblages’

Rapid changes in anthropogenic carbon storage and ocean acidification in the intermediate layers of the Eurasian Arctic Ocean: 1996‐2015

The extended multiple linear regression (eMLR) technique is used to determine changes in anthropogenic carbon in the intermediate layers of the Eurasian Basin based on occupations from four cruises between 1996 and 2015. The results show a significant increase in basin‐wide anthropogenic carbon storage in the Nansen Basin (0.44‐0.73 ± 0.14 mol C m−2 yr−1) and the Amundsen Basin (0.63‐1.04 ± 0.09 mol C m−2 yr−1). Over the last two decades, inferred changes in ocean acidification (0.020‐0.055 pH units) and calcium carbonate desaturation (0.05‐0.18 units) are pronounced and rapid. These results, together with results from carbonate‐dynamic box model simulations and 129I tracer distribution simulations, suggest that the accumulation of anthropogenic carbon in the intermediate layers of the Eurasian Basin are consistent with increasing concentrations of anthropogenic carbon in source waters of Atlantic origin entering the Arctic Ocean followed by interior transport. The dissimilar distributions of anthropogenic carbon in the interior Nansen and Amundsen Basins are likely due to differences in the lateral ventilation of the intermediate layers by the return flows and ramifications of the boundary current along the topographic boundaries in the Eurasian Basin.

Continue reading ‘Rapid changes in anthropogenic carbon storage and ocean acidification in the intermediate layers of the Eurasian Arctic Ocean: 1996‐2015’

Plankton responses to ocean acidification: the role of nutrient limitation

Highlights

• Ocean acidification increases phytoplankton standing stock.
• This increase is more pronounced in smaller-sized taxa.
• Primary consumers reac differently depending on nutrient availability.
• Bacteria and micro-heterotrophs benefited under limiting conditions.
• In general, heterotrophs are negatively affected at nutrient replete periods.

Abstract

In situ mesocosm experiments on the effect of ocean acidification (OA) are an important tool for investigating potential OA-induced changes in natural plankton communities. In this study we combined results from various in-situ mesocosm studies in two different ocean regions (Arctic and temperate waters) to reveal general patterns of plankton community shifts in response to OA and how these changes are modulated by inorganic nutrient availability. Overall, simulated OA caused an increase in phytoplankton standing stock, which was more pronounced in smaller-sized taxa. This effect on primary producers was channelled differently into heterotroph primary consumers depending on the inorganic nutrient availability. Under limiting conditions, bacteria and micro-heterotrophs benefited with inconsistent responses of larger heterotrophs. During nutrient replete periods, heterotrophs were in general negatively affected, although there was an increase of some mesozooplankton developmental stages (i.e. copepodites). We hypothesize that changes in phytoplankton size distribution and community composition could be responsible for these food web responses.

Continue reading ‘Plankton responses to ocean acidification: the role of nutrient limitation’

Influence of ocean acidification on elemental mass balances and particulate organic matter stoichiometry in natural plankton communities  

The oceanic uptake of anthropogenic CO2 leads to a gradual acidification of the ocean. Ocean acidification (OA) is known to affect marine biota from the organism to the ecosystem level but with largely unknown consequences for the cycling of key elements such as carbon, nitrogen, and phosphorus. However, the ocean’s ability to absorb anthropogenic carbon or to provide sufficient food for humankind depends on these oceanic material cycles. This doctoral dissertation thus aimed to assess the influence of OA on biogeochemical cycles of elements in natural pelagic food webs of several trophic levels (up to fish larvae) over extended time scales of weeks to months. Large-scale pelagic mesocosms (up to 75 m3 per unit) were deployed in different marine ecosystems and new methods were developed to quantify the downward flux of particulate organic matter under simulated OA. This thesis reports on the potential influence of OA on element pool partitioning and particulate organic matter stoichiometry with consequences for biogeochemical cycling of elements in the ocean. Furthermore the potential and limitations of biogeochemical measurements inside pelagic mesocosms that host entire plankton communities are elucidated.

Continue reading ‘Influence of ocean acidification on elemental mass balances and particulate organic matter stoichiometry in natural plankton communities  ‘


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,083,817 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book