Posts Tagged 'salinity'

Short-term exposure of Mytilus coruscus to decreased pH and salinity change impacts immune parameters of their haemocytes

With the release of large amounts of CO2, ocean acidification is intensifying and affecting aquatic organisms. In addition, salinity also plays an important role for marine organisms and fluctuates greatly in estuarine and coastal ecosystem, where ocean acidification frequently occurs. In present study, flow cytometry was used to investigate immune parameters of haemocytes in the thick shell mussel Mytilus coruscus exposed to different salinities (15, 25, and 35‰) and two pH levels (7.3 and 8.1). A 7-day in vivo and a 5-h in vitro experiments were performed. In both experiments, low pH had significant effects on all tested immune parameters. When exposed to decreased pH, total haemocyte count (THC), phagocytosis (Pha), esterase (Est), and lysosomal content (Lyso) were significantly decreased, whereas haemocyte mortality (HM) and reactive oxygen species (ROS) were increased. High salinity had no significant effects on the immune parameters of haemocytes as compared with low salinity. However, an interaction between pH and salinity was observed in both experiments for most tested haemocyte parameters. This study showed that high salinity, low salinity and low pH have negative and interactive effects on haemocytes of mussels. As a consequence, it can be expected that the combined effect of low pH and changed salinity will have more severe effects on mussel health than predicted by single exposure.

Continue reading ‘Short-term exposure of Mytilus coruscus to decreased pH and salinity change impacts immune parameters of their haemocytes’

DISCO – Drivers and impacts of coastal ocean acidification

Ocean acidification, mainly attributed to the increasing anthropogenic CO2 in the atmosphere, is characterised by a lowering pH together with a shift in the sea water carbonate chemistry toward lower concentration of carbonate ions. On the coasts, where the environmental variability is high due to natural and human impacts, ocean acidification mainly affects the frequency, magnitude, and duration of lower pH and lower calcium carbonate saturation events. Coastal ecosystems are adapted to environmental variability such as frequent changes in salinity, temperature, pH, oxygen levels and organic matter content. However, the effects of an increase of the range of this variability on coastal species, and especially on calcifiers, are still not clear. In this context, this thesis explores the impacts of coastal ocean acidification combined with other environmental stressors on benthic foraminifera.

In the Skagerrak-Baltic Sea region, foraminifera faunas varied along a strong gradient in terms of salinity, pH, and dissolved oxygen concentration, and species were adapted to local environmental stressors. However, the specimens of Ammonia spp. and Elphidium spp. observed in the south Baltic Sea were partially to completely dissolved, probably due to a combination of different stressors affecting the required energy for biomineralisation.

In a culture study, the coastal species Ammonia spp. and E. crispum were found to be resistant to dissolution under varying salinity and pH, which reflects the environmental variations in their natural habitats. However, their resistance to lower pH is decreased when cultured in brackish water conditions, and living decalcified specimens were also observed under a salinity of 5. This underlines the importance of a high salinity in the calcification process of foraminifera.

At the entrance of the Baltic Sea, environmental changes during the last 200 years were reconstructed using foraminiferal faunas. Four periods were identified with varying oxygen levels, salinity, organic matter content, and pollution with lower pH. This highlights that foraminiferal faunas were able to adapt to multiple environmental stressors.

This thesis concludes that, even if coastal species of foraminifera can tolerate extremely varying conditions in their environment on the short term, it is likely that tolerance thresholds will be passed for benthic ecosystems under the future increase in anthropogenic impacts such as coastal ocean acidification.

Further studies of micro-organisms such as foraminifera will be necessary to improve our understanding of past environmental changes and to put present and future changes into a larger context.

Continue reading ‘DISCO – Drivers and impacts of coastal ocean acidification’

Effects of alkalinity and salinity at low and high light intensity on hydrogen isotope fractionation of long-chain alkenones produced by Emiliania huxleyi

Over the last decade, hydrogen isotope fractionation of long-chain alkenones have been shown to be a promising proxy for reconstructing paleo sea surface salinity due to a strong hydrogen isotope fractionation response to salinity across different environmental conditions. However, to date, the decoupling of the effects of alkalinity and salinity, parameters that co-vary in the surface ocean, on hydrogen isotope fractionation of alkenones has not been assessed. Furthermore, as the alkenone-producing haptophyte, Emiliania huxleyi, is known to grow in large blooms under high light intensities, the effect of salinity on hydrogen isotope fractionation under these high irradiances is important to constrain before using hydrogen isotope fractionation to reconstruct paleosalinity. Batch cultures of the marine haptophyte E. huxleyi strain CCMP 1516 were grown to investigate the hydrogen isotope fractionation response to salinity at high light intensity and independently assess the effects of salinity and alkalinity. Our results suggest that alkalinity does not significantly influence hydrogen isotope fractionation of alkenones, but salinity does have a strong effect. Additionally, no significant difference was observed between the fractionation responses to salinity recorded in alkenones grown under both high and low light conditions. Comparison with previous studies suggests that the fractionation response to salinity in culture is similar under different environmental conditions, strengthening the applicability of hydrogen isotope fractionation as a paleosalinity proxy.

Continue reading ‘Effects of alkalinity and salinity at low and high light intensity on hydrogen isotope fractionation of long-chain alkenones produced by Emiliania huxleyi’

The future for microplankton in the Baltic Sea – Effects of SWS and climate change

The Baltic Sea is located between 53°N to 66°N and from 10°E to 30°E and is the second largest brackish water body in the world. It consists of several basins where the Baltic Proper is the major water mass. Around 85 million people live in the catchment area of the Baltic Sea, which subjects it to a range of environmental pressures, such as increased nutrient inputs from human activities (eutrophication), shipping, over-fishing, acid rain and trace metals released from anti-fouling paint. All these stressors, combined with low alkalinity, variable salinity and limited water exchange, makes the Baltic Sea a very sensitive area that may be less resilient to future stressors such as climate change or increased shipping activities. Microplankton communities consist of small heterotrophic bacteria, picoplankton, phytoplankton, cyanobacteria and smaller grazers, such as ciliates and zooplankton. In the Baltic Proper, there is a succession of blooms, within the microplankton community, from diatoms and dinoflagellates in the early spring to cyanobacteria during summer and ending with a second diatom and dinoflagellate bloom in the autumn. The cyanobacteria of the Baltic Proper bloom every summer and are dominated by Aphanizomenon sp. and Nodularia spumigena. Dolichospermum spp. is present but is less abundant. The effects of climate change were tested on a natural microplankton community, as well as on isolated cyanobacteria species from the Baltic Sea. To simulate effects of climate change, the temperature was increased from 12°C to 16°C, salinity decreased from 6-7 to 3-4 and atmospheric pCO2-levels was increased from 380 ppm to 960 ppm. The biovolume of Aphanizomenon sp. and N. spumigena increased when temperature was increased by 4°C. When salinity was decreased by three units, both the growth and photosynthetic activity of N. spumigena were reduced while Aphanizomenon sp. was unaffected, and the growth of Dolichospermum sp. was increased. Furthermore, present-day salinities were beneficial, in terms of increased biovolumes, of diatoms, dinoflagellates and ciliates, compared to reduced future salinity. Increased atmospheric pCO2 had no effect on any of the species in the microplankton community. These results show that the future microplankton community may be positive, in terms of increased biovolume, for the cyanobacteria species Aphanizomenon sp. and Dolichospermum spp. An increase of cyanobacteria blooms may open up to the possibility to grow and/or harvest these species as a source of biofuel or fatty acids (FA). Dolichospermum sp. yielded higher total FA content per biovolume, compared to the other two cyanobacteria species in phosphorus-depleted medium and Aphanizomenon sp. in nitrogen-depleted medium. Natural nutrient levels in the Baltic Proper are low both in nitrogen and phosphorus, which indicates a possible future market for biofuel and FA technologies. Additionally, the effects of seawater scrubbing (SWS) were tested on a natural summer-bloom microplankton community. Three different concentrations of scrubber water were added; 1%, 3% and 10%. To elucidate effects of decreased pH alone, water acidified with H2SO4 was added in equal concentrations. The six treatments were compared to a control without acidifying substances. SWS or the corresponding pH treatments, did not have a direct effect on microplankton species composition and biovolume. However, the increased amount of Cu and Zn in the scrubber water, combined with significant decrease in pH and alkalinity already at the 1% scrubber water treatment calls for precaution when implementing scrubber units on the shipping fleet of the Baltic Sea. The accumulated effects of long-term repeated addition constantly throughout the year, i.e. in a shipping lane, are yet to be elucidated.

Continue reading ‘The future for microplankton in the Baltic Sea – Effects of SWS and climate change’

A combination of salinity and pH affects the recruitment of Gladioferens pectinatus (Brady) (Copepoda; Calanoida)

Carbon dioxide levels in many estuaries fluctuate and, in several cases, reach extremes much higher than those predicted for oceans by the end of the century. Moreover, estuaries are characterized by natural fluctuations in salinity, and reduced pH, from increased pCO2, exposes estuarine organisms to multiple stresses. Although the effects of low pH on the reproduction of several marine copepod species have been assessed, studies examining effects of pH in estuarine copepod species are extremely scarce. Here, we aim at understanding the reproductive response of Gladioferens pectinatus to the stress posed by both salinity and pH. G. pectinatus was exposed to salinities 2 and 10, at four different pH levels each. Our results show no impairment in the brood size, embryonic development time and hatching success under low pH levels at either salinities. However, at salinity 2, the percentage of nauplii growing into adults significantly decreased at low pH, whereas at salinity 10, no major effect was observed. We argue that the combination of osmoregulation and acidity induced stress response can affect the development of nauplii and copepodites, as well as adult recruitment, likely due to energy reallocation and molting impairment. We also argue that resilience and phenotypic plasticity highly influence the ability of different copepod species and populations to reproduce and grow under stressful combinations of environmental parameters. This study points out the importance of understanding the effects of multiple stresses or parameters on the adaptability of organisms to water acidification.

Continue reading ‘A combination of salinity and pH affects the recruitment of Gladioferens pectinatus (Brady) (Copepoda; Calanoida)’

The effects of salinity and pH on fertilization, early development, and hatching in the crown-of-thorns seastar

Understanding the influence of environmental factors on the development and dispersal of crown-of-thorns seastars is critical to predicting when and where outbreaks of these coral-eating seastars will occur. Outbreaks of crown-of-thorns seastars are hypothesized to be driven by terrestrial runoff events that increase nutrients and the phytoplankton food for the larvae. In addition to increasing larval food supply, terrestrial runoff may also reduce salinity in the waters where seastars develop. We investigated the effects of reduced salinity on the fertilization and early development of seastars. We also tested the interactive effects of reduced salinity and reduced pH on the hatching of crown-of-thorns seastars. Overall, we found that reduced salinity has strong negative effects on fertilization and early development, as shown in other echinoderm species. We also found that reduced salinity delays hatching, but that reduced pH, in isolation or in combination with lower salinity, had no detectable effects on this developmental milestone. Models that assess the positive effects of terrestrial runoff on the development of crown-of-thorns seastars should also consider the strong negative effects of lower salinity on early development including lower levels of fertilization, increased frequency of abnormal development, and delayed time to hatching.

Continue reading ‘The effects of salinity and pH on fertilization, early development, and hatching in the crown-of-thorns seastar’

Adult exposure to ocean acidification is maladaptive for larvae of the Sydney rock oyster Saccostrea glomerata in the presence of multiple stressors

Parental effects passed from adults to their offspring have been identified as a source of rapid acclimation that may allow marine populations to persist as our surface oceans continue to decrease in pH. Little is known, however, whether parental effects are beneficial for offspring in the presence of multiple stressors. We exposed adults of the oyster Saccostrea glomerata to elevated CO2 and examined the impacts of elevated CO2 (control = 392; 856 µatm) combined with elevated temperature (control = 24; 28°C), reduced salinity (control = 35; 25) and reduced food concentration (control = full; half diet) on their larvae. Adult exposure to elevated CO2 had a positive impact on larvae reared at elevated CO2 as a sole stressor, which were 8% larger and developed faster at elevated CO2 compared with larvae from adults exposed to ambient CO2. These larvae, however, had significantly reduced survival in all multistressor treatments. This was particularly evident for larvae reared at elevated CO2 combined with elevated temperature or reduced food concentration, with no larvae surviving in some treatment combinations. Larvae from CO2-exposed adults had a higher standard metabolic rate. Our results provide evidence that parental exposure to ocean acidification may be maladaptive when larvae experience multiple stressors.

Continue reading ‘Adult exposure to ocean acidification is maladaptive for larvae of the Sydney rock oyster Saccostrea glomerata in the presence of multiple stressors’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,066,623 hits


Ocean acidification in the IPCC AR5 WG II

OUP book