Posts Tagged 'salinity'

Effects of alkalinity and salinity at low and high light intensity on hydrogen isotope fractionation of long-chain alkenones produced by Emiliania huxleyi

Over the last decade, hydrogen isotope fractionation of long-chain alkenones have been shown to be a promising proxy for reconstructing paleo sea surface salinity due to a strong hydrogen isotope fractionation response to salinity across different environmental conditions. However, to date, the decoupling of the effects of alkalinity and salinity, parameters that co-vary in the surface ocean, on hydrogen isotope fractionation of alkenones has not been assessed. Furthermore, as the alkenone-producing haptophyte, Emiliania huxleyi, is known to grow in large blooms under high light intensities, the effect of salinity on hydrogen isotope fractionation under these high irradiances is important to constrain before using hydrogen isotope fractionation to reconstruct paleosalinity. Batch cultures of the marine haptophyte E. huxleyi strain CCMP 1516 were grown to investigate the hydrogen isotope fractionation response to salinity at high light intensity and independently assess the effects of salinity and alkalinity. Our results suggest that alkalinity does not significantly influence hydrogen isotope fractionation of alkenones, but salinity does have a strong effect. Additionally, no significant difference was observed between the fractionation responses to salinity recorded in alkenones grown under both high and low light conditions. Comparison with previous studies suggests that the fractionation response to salinity in culture is similar under different environmental conditions, strengthening the applicability of hydrogen isotope fractionation as a paleosalinity proxy.

Continue reading ‘Effects of alkalinity and salinity at low and high light intensity on hydrogen isotope fractionation of long-chain alkenones produced by Emiliania huxleyi’

The future for microplankton in the Baltic Sea – Effects of SWS and climate change

The Baltic Sea is located between 53°N to 66°N and from 10°E to 30°E and is the second largest brackish water body in the world. It consists of several basins where the Baltic Proper is the major water mass. Around 85 million people live in the catchment area of the Baltic Sea, which subjects it to a range of environmental pressures, such as increased nutrient inputs from human activities (eutrophication), shipping, over-fishing, acid rain and trace metals released from anti-fouling paint. All these stressors, combined with low alkalinity, variable salinity and limited water exchange, makes the Baltic Sea a very sensitive area that may be less resilient to future stressors such as climate change or increased shipping activities. Microplankton communities consist of small heterotrophic bacteria, picoplankton, phytoplankton, cyanobacteria and smaller grazers, such as ciliates and zooplankton. In the Baltic Proper, there is a succession of blooms, within the microplankton community, from diatoms and dinoflagellates in the early spring to cyanobacteria during summer and ending with a second diatom and dinoflagellate bloom in the autumn. The cyanobacteria of the Baltic Proper bloom every summer and are dominated by Aphanizomenon sp. and Nodularia spumigena. Dolichospermum spp. is present but is less abundant. The effects of climate change were tested on a natural microplankton community, as well as on isolated cyanobacteria species from the Baltic Sea. To simulate effects of climate change, the temperature was increased from 12°C to 16°C, salinity decreased from 6-7 to 3-4 and atmospheric pCO2-levels was increased from 380 ppm to 960 ppm. The biovolume of Aphanizomenon sp. and N. spumigena increased when temperature was increased by 4°C. When salinity was decreased by three units, both the growth and photosynthetic activity of N. spumigena were reduced while Aphanizomenon sp. was unaffected, and the growth of Dolichospermum sp. was increased. Furthermore, present-day salinities were beneficial, in terms of increased biovolumes, of diatoms, dinoflagellates and ciliates, compared to reduced future salinity. Increased atmospheric pCO2 had no effect on any of the species in the microplankton community. These results show that the future microplankton community may be positive, in terms of increased biovolume, for the cyanobacteria species Aphanizomenon sp. and Dolichospermum spp. An increase of cyanobacteria blooms may open up to the possibility to grow and/or harvest these species as a source of biofuel or fatty acids (FA). Dolichospermum sp. yielded higher total FA content per biovolume, compared to the other two cyanobacteria species in phosphorus-depleted medium and Aphanizomenon sp. in nitrogen-depleted medium. Natural nutrient levels in the Baltic Proper are low both in nitrogen and phosphorus, which indicates a possible future market for biofuel and FA technologies. Additionally, the effects of seawater scrubbing (SWS) were tested on a natural summer-bloom microplankton community. Three different concentrations of scrubber water were added; 1%, 3% and 10%. To elucidate effects of decreased pH alone, water acidified with H2SO4 was added in equal concentrations. The six treatments were compared to a control without acidifying substances. SWS or the corresponding pH treatments, did not have a direct effect on microplankton species composition and biovolume. However, the increased amount of Cu and Zn in the scrubber water, combined with significant decrease in pH and alkalinity already at the 1% scrubber water treatment calls for precaution when implementing scrubber units on the shipping fleet of the Baltic Sea. The accumulated effects of long-term repeated addition constantly throughout the year, i.e. in a shipping lane, are yet to be elucidated.

Continue reading ‘The future for microplankton in the Baltic Sea – Effects of SWS and climate change’

A combination of salinity and pH affects the recruitment of Gladioferens pectinatus (Brady) (Copepoda; Calanoida)

Carbon dioxide levels in many estuaries fluctuate and, in several cases, reach extremes much higher than those predicted for oceans by the end of the century. Moreover, estuaries are characterized by natural fluctuations in salinity, and reduced pH, from increased pCO2, exposes estuarine organisms to multiple stresses. Although the effects of low pH on the reproduction of several marine copepod species have been assessed, studies examining effects of pH in estuarine copepod species are extremely scarce. Here, we aim at understanding the reproductive response of Gladioferens pectinatus to the stress posed by both salinity and pH. G. pectinatus was exposed to salinities 2 and 10, at four different pH levels each. Our results show no impairment in the brood size, embryonic development time and hatching success under low pH levels at either salinities. However, at salinity 2, the percentage of nauplii growing into adults significantly decreased at low pH, whereas at salinity 10, no major effect was observed. We argue that the combination of osmoregulation and acidity induced stress response can affect the development of nauplii and copepodites, as well as adult recruitment, likely due to energy reallocation and molting impairment. We also argue that resilience and phenotypic plasticity highly influence the ability of different copepod species and populations to reproduce and grow under stressful combinations of environmental parameters. This study points out the importance of understanding the effects of multiple stresses or parameters on the adaptability of organisms to water acidification.

Continue reading ‘A combination of salinity and pH affects the recruitment of Gladioferens pectinatus (Brady) (Copepoda; Calanoida)’

The effects of salinity and pH on fertilization, early development, and hatching in the crown-of-thorns seastar

Understanding the influence of environmental factors on the development and dispersal of crown-of-thorns seastars is critical to predicting when and where outbreaks of these coral-eating seastars will occur. Outbreaks of crown-of-thorns seastars are hypothesized to be driven by terrestrial runoff events that increase nutrients and the phytoplankton food for the larvae. In addition to increasing larval food supply, terrestrial runoff may also reduce salinity in the waters where seastars develop. We investigated the effects of reduced salinity on the fertilization and early development of seastars. We also tested the interactive effects of reduced salinity and reduced pH on the hatching of crown-of-thorns seastars. Overall, we found that reduced salinity has strong negative effects on fertilization and early development, as shown in other echinoderm species. We also found that reduced salinity delays hatching, but that reduced pH, in isolation or in combination with lower salinity, had no detectable effects on this developmental milestone. Models that assess the positive effects of terrestrial runoff on the development of crown-of-thorns seastars should also consider the strong negative effects of lower salinity on early development including lower levels of fertilization, increased frequency of abnormal development, and delayed time to hatching.

Continue reading ‘The effects of salinity and pH on fertilization, early development, and hatching in the crown-of-thorns seastar’

Adult exposure to ocean acidification is maladaptive for larvae of the Sydney rock oyster Saccostrea glomerata in the presence of multiple stressors

Parental effects passed from adults to their offspring have been identified as a source of rapid acclimation that may allow marine populations to persist as our surface oceans continue to decrease in pH. Little is known, however, whether parental effects are beneficial for offspring in the presence of multiple stressors. We exposed adults of the oyster Saccostrea glomerata to elevated CO2 and examined the impacts of elevated CO2 (control = 392; 856 µatm) combined with elevated temperature (control = 24; 28°C), reduced salinity (control = 35; 25) and reduced food concentration (control = full; half diet) on their larvae. Adult exposure to elevated CO2 had a positive impact on larvae reared at elevated CO2 as a sole stressor, which were 8% larger and developed faster at elevated CO2 compared with larvae from adults exposed to ambient CO2. These larvae, however, had significantly reduced survival in all multistressor treatments. This was particularly evident for larvae reared at elevated CO2 combined with elevated temperature or reduced food concentration, with no larvae surviving in some treatment combinations. Larvae from CO2-exposed adults had a higher standard metabolic rate. Our results provide evidence that parental exposure to ocean acidification may be maladaptive when larvae experience multiple stressors.

Continue reading ‘Adult exposure to ocean acidification is maladaptive for larvae of the Sydney rock oyster Saccostrea glomerata in the presence of multiple stressors’

Plasticity and inter-population variability in physiological and life-history traits of the mussel Mytilus chilensis: A reciprocal transplant experiment

Geographically widespread species must cope with environmental differences between habitats. Information concerning geographic variations in response to climate variability is critical because many morphological, life-history and physiological traits show variation across space. Reciprocal transplant experiments have shown to be relevant to evaluate the role of phenotypic plasticity and potential local adaptation in ecophysiological responses when coping with environmental variability. In this study, we characterize through reciprocal transplant experiments the reaction norms of morphological, biochemical, physiological and life-history traits between two intertidal populations of the socioeconomically important mussel Mytilus chilensis, inhabiting contrasting local environments (estuarine vs coastal habitats). We found a gradient in phenotypic plasticity with plastic trait responses in metabolic, ingestion and clearance rates, and in HsP70 gene expression, and some traits with responses more canalized as growth and calcification rates. This emphasizes that responses not only vary across different local populations but also in different traits in M. chilensis, thus it is difficult to establish an overall trend of the responses at integrated organismal level. Moreover, the synergistic interaction of factors such as salinity and carbonate system parameters evaluated make it necessary to study the response at the population level with emphasis on benthic species important in aquaculture. Finally, field studies such as this one are useful for documenting the patterns of traits variation that occur in nature, identifying possible causes of such variation, and generating testable hypotheses for future controlled experiments.

Continue reading ‘Plasticity and inter-population variability in physiological and life-history traits of the mussel Mytilus chilensis: A reciprocal transplant experiment’

Environmental drivers of coccolithophore abundance and calcification across Drake Passage (Southern Ocean) (update)

Although coccolithophores are not as numerically common or as diverse in the Southern Ocean as they are in subpolar waters of the North Atlantic, a few species, such as Emiliania huxleyi, are found during the summer months. Little is actually known about the calcite production (CP) of these communities or how their distribution and physiology relate to environmental variables in this region. In February 2009, we made observations across Drake Passage (between South America and the Antarctic Peninsula) of coccolithophore distribution, CP, primary production, chlorophyll a and macronutrient concentrations, irradiance and carbonate chemistry. Although CP represented less than 1 % of total carbon fixation, coccolithophores were widespread across Drake Passage. The B/C morphotype of E. huxleyi was the dominant coccolithophore, with low estimates of coccolith calcite (∼ 0.01 pmol C coccolith−1) from biometric measurements. Both cell-normalised calcification (0.01–0.16 pmol C cell−1 d−1) and total CP (< 20 µmol C m−3 d−1) were much lower than those observed in the subpolar North Atlantic where E. huxleyi morphotype A is dominant. However, estimates of coccolith production rates were similar (0.1–1.2 coccoliths cell−1 h−1) to previous measurements made in the subpolar North Atlantic. A multivariate statistical approach found that temperature and irradiance together were best able to explain the observed variation in species distribution and abundance (Spearman’s rank correlation ρ =  0.4, p < 0.01). Rates of calcification per cell and coccolith production, as well as community CP and E. huxleyi abundance, were all positively correlated (p < 0.05) to the strong latitudinal gradient in temperature, irradiance and calcite saturation states across Drake Passage. Broadly, our results lend support to recent suggestions that coccolithophores, especially E. huxleyi, are advancing polewards. However, our in situ observations indicate that this may owe more to sea-surface warming and increasing irradiance rather than increasing CO2 concentrations.

Continue reading ‘Environmental drivers of coccolithophore abundance and calcification across Drake Passage (Southern Ocean) (update)’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,025,944 hits


Ocean acidification in the IPCC AR5 WG II

OUP book