Posts Tagged 'salinity'

Adult exposure to ocean acidification is maladaptive for larvae of the Sydney rock oyster Saccostrea glomerata in the presence of multiple stressors

Parental effects passed from adults to their offspring have been identified as a source of rapid acclimation that may allow marine populations to persist as our surface oceans continue to decrease in pH. Little is known, however, whether parental effects are beneficial for offspring in the presence of multiple stressors. We exposed adults of the oyster Saccostrea glomerata to elevated CO2 and examined the impacts of elevated CO2 (control = 392; 856 µatm) combined with elevated temperature (control = 24; 28°C), reduced salinity (control = 35; 25) and reduced food concentration (control = full; half diet) on their larvae. Adult exposure to elevated CO2 had a positive impact on larvae reared at elevated CO2 as a sole stressor, which were 8% larger and developed faster at elevated CO2 compared with larvae from adults exposed to ambient CO2. These larvae, however, had significantly reduced survival in all multistressor treatments. This was particularly evident for larvae reared at elevated CO2 combined with elevated temperature or reduced food concentration, with no larvae surviving in some treatment combinations. Larvae from CO2-exposed adults had a higher standard metabolic rate. Our results provide evidence that parental exposure to ocean acidification may be maladaptive when larvae experience multiple stressors.

Continue reading ‘Adult exposure to ocean acidification is maladaptive for larvae of the Sydney rock oyster Saccostrea glomerata in the presence of multiple stressors’

Plasticity and inter-population variability in physiological and life-history traits of the mussel Mytilus chilensis: A reciprocal transplant experiment

Geographically widespread species must cope with environmental differences between habitats. Information concerning geographic variations in response to climate variability is critical because many morphological, life-history and physiological traits show variation across space. Reciprocal transplant experiments have shown to be relevant to evaluate the role of phenotypic plasticity and potential local adaptation in ecophysiological responses when coping with environmental variability. In this study, we characterize through reciprocal transplant experiments the reaction norms of morphological, biochemical, physiological and life-history traits between two intertidal populations of the socioeconomically important mussel Mytilus chilensis, inhabiting contrasting local environments (estuarine vs coastal habitats). We found a gradient in phenotypic plasticity with plastic trait responses in metabolic, ingestion and clearance rates, and in HsP70 gene expression, and some traits with responses more canalized as growth and calcification rates. This emphasizes that responses not only vary across different local populations but also in different traits in M. chilensis, thus it is difficult to establish an overall trend of the responses at integrated organismal level. Moreover, the synergistic interaction of factors such as salinity and carbonate system parameters evaluated make it necessary to study the response at the population level with emphasis on benthic species important in aquaculture. Finally, field studies such as this one are useful for documenting the patterns of traits variation that occur in nature, identifying possible causes of such variation, and generating testable hypotheses for future controlled experiments.

Continue reading ‘Plasticity and inter-population variability in physiological and life-history traits of the mussel Mytilus chilensis: A reciprocal transplant experiment’

Environmental drivers of coccolithophore abundance and calcification across Drake Passage (Southern Ocean) (update)

Although coccolithophores are not as numerically common or as diverse in the Southern Ocean as they are in subpolar waters of the North Atlantic, a few species, such as Emiliania huxleyi, are found during the summer months. Little is actually known about the calcite production (CP) of these communities or how their distribution and physiology relate to environmental variables in this region. In February 2009, we made observations across Drake Passage (between South America and the Antarctic Peninsula) of coccolithophore distribution, CP, primary production, chlorophyll a and macronutrient concentrations, irradiance and carbonate chemistry. Although CP represented less than 1 % of total carbon fixation, coccolithophores were widespread across Drake Passage. The B/C morphotype of E. huxleyi was the dominant coccolithophore, with low estimates of coccolith calcite (∼ 0.01 pmol C coccolith−1) from biometric measurements. Both cell-normalised calcification (0.01–0.16 pmol C cell−1 d−1) and total CP (< 20 µmol C m−3 d−1) were much lower than those observed in the subpolar North Atlantic where E. huxleyi morphotype A is dominant. However, estimates of coccolith production rates were similar (0.1–1.2 coccoliths cell−1 h−1) to previous measurements made in the subpolar North Atlantic. A multivariate statistical approach found that temperature and irradiance together were best able to explain the observed variation in species distribution and abundance (Spearman’s rank correlation ρ =  0.4, p < 0.01). Rates of calcification per cell and coccolith production, as well as community CP and E. huxleyi abundance, were all positively correlated (p < 0.05) to the strong latitudinal gradient in temperature, irradiance and calcite saturation states across Drake Passage. Broadly, our results lend support to recent suggestions that coccolithophores, especially E. huxleyi, are advancing polewards. However, our in situ observations indicate that this may owe more to sea-surface warming and increasing irradiance rather than increasing CO2 concentrations.

Continue reading ‘Environmental drivers of coccolithophore abundance and calcification across Drake Passage (Southern Ocean) (update)’

Effects of pH and salinity on juvenile hatchery-reared red drum

Climate change with concomitant ocean acidification presents a problem to coastal ecosystems, including estuaries. It is well-documented that fish growth, development, and survival are dependent on environmental factors such as temperature and salinity. Considering the economic and recreational importance of red drum (Sciaenops ocellatus), it is important to understand both acute and long-term effects of environmental change on juveniles released into native waters as part of stock enhancement programs. Experiments were designed to compare survival, growth and body composition of juvenile red drum grown under different salinity and pH treatments.

Research was conducted in a closed recirculating system with juvenile red drum (42±9.9 mm) randomly stocked at a density of 13 fish/tank and fed daily to satiation (∼6% body weight). Fish were subjected to salinity treatments of 40 or 30 and a pH of either7.5, 8.1, 8.5, or 9.0 (n = 8 replicates per treatment). Each trial was conducted for 14 days.

Results show that at a salinity of 40, there was a significant difference between survival of the juvenile red drum at pH 7.5 and 9.0 (p=0.03). Survival was not significant between pH levels at salinity of 30. Results indicated pH had no significant effect on specific growth rate (SGR, p ≥ 0.05); however, increased salinity significantly decreased growth (p< 0.05), and there was a significant interaction between pH and salinity. There was no significant impact from pH or salinity on protein retention (p≥0.05). At 40 the whole body ash increased as pH increased (p=0.003). Ash was also significantly different between pH values at salinity 30 (p=0.02). Whole body energy was not significantly affected by pH (p ≥ 0.05); but increased salinity caused a significant decrease in energy retention (p < 0.05), and there was no significant interaction between pH and salinity affecting energy retention.

These results indicate that salinity is a more critical factor to consider than pH when engaging in stock enhancement efforts, especially at high salinity. The results of this study will help fisheries managers increase the rate of survival of hatchery-reared red drum when released into the wild. The results indicate that research should be conducted to investigate the effects of hypersalinity (>40) and pH on juvenile red drum as related to growth rates, and growth hormone production. Future research should also focus on the long term effects of low and high pH exposure of juveniles to adult life stages, and should examine otolith development, behavior and the effects on reproduction of red drum.

Continue reading ‘Effects of pH and salinity on juvenile hatchery-reared red drum’

Quantitative analysis of oyster larval proteome provides new insights into the effects of multiple climate change stressors

The metamorphosis of planktonic larvae of the Pacific oyster (Crassostrea gigas) underpins their complex life-history strategy by switching on the molecular machinery required for sessile life and building calcite shells. Metamorphosis becomes a survival bottleneck, which will be pressured by different anthropogenically induced climate change-related variables. Therefore, it is important to understand how metamorphosing larvae interact with emerging climate change stressors. To predict how larvae might be affected in a future ocean, we examined changes in the proteome of metamorphosing larvae under multiple stressors: decreased pH (pH 7.4), increased temperature (30 °C), and reduced salinity (15 psu). Quantitative protein expression profiling using iTRAQ-LC-MS/MS identified more than 1300 proteins. Decreased pH had a negative effect on metamorphosis by down-regulating several proteins involved in energy production, metabolism, and protein synthesis. However, warming switched on these down-regulated pathways at pH 7.4. Under multiple stressors, cell signaling, energy production, growth, and developmental pathways were up-regulated, although metamorphosis was still reduced. Despite the lack of lethal effects, significant physiological responses to both individual and interacting climate change related stressors were observed at proteome level. The metamorphosing larvae of the C. gigas population in the Yellow Sea appear to have adequate phenotypic plasticity at the proteome level to survive in future coastal oceans, but with developmental and physiological costs.

Continue reading ‘Quantitative analysis of oyster larval proteome provides new insights into the effects of multiple climate change stressors’

Effects of multiple climate change stressors: ocean acidification interacts with warming, hyposalinity, and low food supply on the larvae of the brooding flat oyster Ostrea angasi

Ocean acidification, rising temperatures, and increased intensity of rain events are occurring due to climate change. Individually, each of these stressors has the potential to influence the growth and survival of many marine organisms, particularly during early development. Together the interactive and multiple impacts of elevated pCO2, temperature, and salinity may be exacerbated by a lack of food. Life history traits are important in determining the response of organisms to climate change. Larvae that develop within a brood chamber, such as the flat oyster, Ostrea angasi, may be pre-exposed to living a higher CO2 environment. This study determined the pH of the fluid surrounding the gills of adult oysters where larvae are brooded and investigated the interactive effects of the multiple climate-related stressors: ocean acidification, warming, hyposalinity, and reduced food availability, on development of O. angasi larvae. The fluid surrounding the larvae was of pH 7.88 ± 0.04, lower than that of surrounding sea water, and was significantly reduced (to pH 7.46 ± 0.05) when oysters remained closed as occurs in nature during periods of stress caused by low salinity. Elevated pCO2 [853–1194 µatm (pHNBS 7.79)] resulted in larvae being 3 % smaller, but it had no effect on the timing of progression through developmental stages, percentage of abnormalities, or survival of larvae. Exposure to elevated pCO2 together with increased temperature (+4 °C) or reduced salinity (20) had a negative effect on the time to the eyed larval stage and with an increase in the percentage of abnormal larvae. Unexpectedly, larvae did not meet their higher metabolic requirements to survive under elevated pCO2 by eating more. In a sublethal effect of elevated pCO2, larval feeding was impaired. We found that O. angasi larva were relatively resilient to elevated pCO2, a trait that may be due to the acclimatisation of hypercapnic conditions in the brood cavity or because they are released from the brood cavity at an older, possibly less sensitive stage. This result contrasts with the larvae of broadcast spawning oysters which are extremely sensitive to elevated pCO2.

Continue reading ‘Effects of multiple climate change stressors: ocean acidification interacts with warming, hyposalinity, and low food supply on the larvae of the brooding flat oyster Ostrea angasi’

Combined effects of seawater acidification and salinity changes in Ruditapes philippinarum

Due to human activities, predictions for the coming years indicate increasing frequency and intensity of extreme weather events (rainy and drought periods) and pollution levels, leading to salinity shifts and ocean acidification. Therefore, several authors have assessed the effects of seawater salinity shifts and pH decrease on marine bivalves, but most of the studies evaluated the impacts of both factors independently. Since pH and salinity may act together in the environment, and their impacts may differ from their effects when acting alone, there is an urgent need to increase our knowledge when these environmental changes act in combination. Thus, the present study assessed the effects of seawater acidification and salinity changes, both acting alone and in combination, on the physiological (condition index, Na and K concentrations) and biochemical (oxidative stress related biomarkers) performance of R. philippinarum. For that, specimens of R. philippinarum were exposed for 28 days to the combination of different pH levels (7.8 and 7.3) and salinities (14, 28 and 35). The results obtained showed that under control pH (7.8) and low salinity (14) the physiological status and biochemical performance of clams was negatively affected, revealing oxidative stress. However, under the same pH but at salinities 28 and 35 clams were able to maintain/regulate their physiological status and biochemical performance. Moreover, our findings showed that clams under low pH (7.3) and different salinities were able to maintain their physiological status and biochemical performance, suggesting that the low pH tested may mask the negative effects of salinity. Our results further demonstrated that, in general, at each salinity, similar physiological and biochemical responses were found in clams under both tested pH levels. Also, individuals under low pH (salinities 14, 28 and 25) and exposed to pH 7.8 and salinity 28 (control) tend to present a similar response pattern. These results indicate that pH may have less impact on clams than salinity. Thus, our findings point out that the predicted increase of CO2 in seawater and consequently seawater acidification will have fewer impacts on physiological and biochemical performance of R. philippinarum clams than salinity shifts.

Continue reading ‘Combined effects of seawater acidification and salinity changes in Ruditapes philippinarum’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 976,475 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book