Posts Tagged 'light'

Increased CO2 exacerbates the stress of ultraviolet radiation on photosystem II function in the diatom Thalassiosira weissflogii

Highlights

• Increased CO2 and UVR synergistically reduce photosystem II activity.
• Increased CO2 increases PsbA removal rate but reduces PsbD’s.
• Both increased CO2 and UVR enhance nonphotochemical quenching.
• Increased CO2 decreases the ratio of Rubisco large subunit (RbcL) to PsbA.

Abstract

Diatoms usually dominate phytoplankton community in coastal waters and experience rapid changes of underwater light. However, little is known regarding how increased CO2 would affect diatoms’ capacity in dealing with changing photosynthetically active radiation (PAR) and ultraviolet radiation (UVR). Here, we cultured a globally abundant diatom Thalassiosira weissflogii under two levels of CO2 (400, 1000 ppmv), and then analysed its PSII function during an increase in PAR and UVR to mimic an upward mixing event. UVR noticeably reduced photosystem II (PSII) activity (FV/FM) during the high light exposure, which was more significant for cells grown at the higher CO2 condition. The PsbA removal rate (KPsbA) was synergistically increased by high CO2 and UVR, while the PsbD removal rate (KPsbD) was decreased under higher CO2. Both CO2 and UVR had an inducible effect on sustained phase of nonphotochemical quenching (NPQs). The higher CO2 decreased the ratio of Rubisco large subunit (RbcL) to PsbA regardless of the radiation treatments. It seems that the increased NPQs and turnover of PsbA induced by higher CO2 were not enough to offset the stressful effect it brought about, particularly when higher CO2 was combined with UVR. These findings indicate that increased CO2 may exacerbate the harmful effect of UVR on PSII function in the T. weissflogii through reducing PsbD removal rate and the ratio of RbcL to PsbA during UVR exposure, and thus would affect its abundance and distribution in future ocean environment.

Continue reading ‘Increased CO2 exacerbates the stress of ultraviolet radiation on photosystem II function in the diatom Thalassiosira weissflogii’

The response of three Southern Ocean phytoplankton species to ocean acidification and light availability: a transcriptomic study

Ocean acidification (OA) and high light was found to negatively affect the Antarctic key species Phaeocystis antarctica, Fragilariopsis kerguelensis and Chaetoceros debilis. To unravel the underlying physiological response at the transcriptomic level, these species were grown under ambient and elevated pCO2 combined with low or high light. RNA sequencing revealed that the haptophyte was much more tolerant towards OA than the two diatoms as only these showed distinct OA-dependent gene regulation patterns. Under ambient pCO2, high light resulted in decreased glycolysis in P. antarctica. Contrastingly, upregulation of genes related to cell division and transcription as well as reduced expression of both cata- and anabolic carbon related pathways were seen in C. debilis. OA in combination with low light led to reduced respiration, but also surprisingly to higher expression of genes involved in light protection, transcription and translation in C. debilis. Though not affecting P. antarctica, OA combined with high light caused also photosensitivity in both diatoms. As additional response reallocation of carbon to lipids was found in C. debilis under these conditions. Overall, we conclude that P. antarctica is better adapted than the two diatoms to OA and high light.

Continue reading ‘The response of three Southern Ocean phytoplankton species to ocean acidification and light availability: a transcriptomic study’

Assessing the effects of climate change on Baltic Sea macroalgae – implications for the foundation species Fucus vesiculosus L.

Marine macroalgae are important foundation species on rocky shores. The large, habitat-forming species, in particular support a variety of associated flora and fauna. The Baltic Sea is naturally species-poor due to brackish water, and perennial, large macroalgae such as Fucus vesiculosus have high ecological importance and are characterized as foundation species in hard substrate bottoms. In the Baltic Sea, climate change has been predicted to result in elevated seawater temperatures, declining salinity, caused by increases in rainfall, coastal eutrophication and ocean acidification (OA). These changes may be harmful for macroalgae either directly or through interacting effects. This thesis investigates the potential effects of climate change on the Baltic macroalgae, focusing on the foundation species Fucus vesiculosus.

Continue reading ‘Assessing the effects of climate change on Baltic Sea macroalgae – implications for the foundation species Fucus vesiculosus L.’

Coral responses to temperature, irradiance and acidification stress: linking physiology to satellite remote sensing

The success of the symbiosis of scleractinian corals with dinoflagellates of the genus Symbiodinium is highly dependent on the availability of sufficient, but not excess, light for photosynthesis. After decades of fundamental research into the effect of light on the coral-dinoflagellate symbiosis, an important practical application is emerging in remote monitoring of bleaching at coral reefs. Coral bleaching that originates with the dysfunction of photosynthesis can be either photoacclimatory, a controlled adjustment in response to environmental change, or it can be associated with photodamage, an uncontrolled response to environmental change. It is the latter that tends to lead to severe bleaching events that decrease the rate of carbon fixation, generate excessive oxygen radicals and may ultimately lead to coral death if unfavourable conditions persist. Current best practice methods for the prediction of coral bleaching use water temperature as detected via satellite, and predict the onset of coral bleaching accurately, but not the percent of corals bleached at a reef or the extent of the ensuing mortality.

Continue reading ‘Coral responses to temperature, irradiance and acidification stress: linking physiology to satellite remote sensing’

Calcification of an estuarine coccolithophore increases with ocean acidification when subjected to diurnally fluctuating carbonate chemistry

Ocean acidification has the capacity to impact future coccolithophore growth, photosynthesis, and calcification, but experimental culture work with coccolithophores has produced seemingly contradictory results and has focused on open-ocean species. We investigated the influence of pCO2 (between 250 and 750 µatm) on the growth, photosynthetic, and calcification rates of the estuarine coccolithophore Pleurochrysis carterae using a CO2 manipulation system that allowed for natural carbonate chemistry variability, representing the highly variable carbonate chemistry of coastal and estuarine waters. We further considered the influence of pCO2 on dark calcification. Increased pCO2 conditions had no significant impact on P. carterae growth rate or photosynthetic rate. However, P. carterae calcification rates significantly increased at elevated mean pCO2 concentrations of 750 µatm. P. carterae calcification was somewhat, but not completely, light-dependent, with increased calcification rates at elevated mean pCO2 conditions in both light and dark incubations. This trend of increased calcification at higher pCO2 conditions fits into a recently developed substrate-inhibitor concept, which demonstrates a calcification optima concept that broadly fits the experimental results of many studies on the impact of increased pCO2 on coccolithophore calcification.

Continue reading ‘Calcification of an estuarine coccolithophore increases with ocean acidification when subjected to diurnally fluctuating carbonate chemistry’

Juveniles of the Atlantic coral, Favia fragum (Esper, 1797) do not invest energy to maintain calcification under ocean acidification

Highlights

• Fed corals produce larger and heavier skeletons than unfed corals.
• Corals maintained under elevated light conditions have greater energetic reserves.
• Acidification reduces coral calcification, regardless of nutritional enhancement.
• Acidification does not reduce coral size or energetic (total lipid) reserves.
• Metabolic resources are not used to mitigate acidification impact on calcification.

Abstract

Ocean acidification (OA) threatens coral reef ecosystems by slowing calcification and enhancing dissolution of calcifying organisms and sediments. Nevertheless, multiple factors have been shown to modulate OA’s impact on calcification, including the nutritional status of the coral host. In three separate experiments, we exposed juveniles of the Atlantic golf ball coral, Favia fragum, to elevated CO2 and varied nutritional (light or feeding) conditions. Juveniles reared from planulae larvae were significantly larger and produced more CaCO3 when fed, regardless of CO2 level. However, corals subjected to elevated CO2 produced less CaCO3 per mm2 regardless of feeding condition. Additionally, unfed corals reared under elevated light levels exhibited lower chlorophyll a and higher total lipid content, but light had no significant effect on coral calcification. Conversely, elevated CO2 had a significant, negative affect on calcification, regardless of light condition but no detectable effect on physiological tissue parameters. Our results indicate that the sensitivity of juvenile F. fragum calcification to OA was neither modulated by light nor by feeding, despite physiological indications of enhanced nutritional status. This suggests that corals do not necessarily divert energy to maintain calcification under high CO2, even when they have the energetic resources to do so.

Continue reading ‘Juveniles of the Atlantic coral, Favia fragum (Esper, 1797) do not invest energy to maintain calcification under ocean acidification’

Effects of CO2 supply on growth and photosynthetic ability of young sporophytes of the economic seaweed Sargassum fusiforme (Sargassaceae, Phaeophyta)

Young sporophytes of Sargassum fusiforme were cultured at decreased CO2 (20 μatm), ambient CO2 (400 μatm), and high CO2 (1000 μatm), and then the quantum efficiency of open photosystem II (Fv′/Fm′), initial slope of the rapid light curves (α), and relative maximum photosynthetic electron transport rate (rETRm) of the algae under different temperatures and light levels were measured. The study aimed to investigate how the decreased CO2 and high CO2 supply affected the growth and photosynthetic functions of S. fusiforme young sporophytes. While both lowered and increased CO2 supply significantly reduced the growth rates of the alga, greater declines were observed under decreased CO2. The Fv′/Fm′, α, and rETRm of alga remained stable after short-term (120 min) exposures to 18, 22, and 26 °C, as well as to highlight (300 μmol photons m−2 s−1), with no significant difference among the three CO2 supply treatments. Hence, neither decreased nor increased CO2 affected the photosynthetic responses of S. fusiforme young sporophytes to temperature and high light. However, the Fv′/Fm′ of the three CO2 treatments declined by 72% under 60 μmol photons m−2 s−1, suggesting its sensitivity to short-term low light. These observations are crucial for the improved management of S. fusiforme for commercial farming, while ensuring its sustainable production and supply amid seawater pH shifts brought about by global climate change.

Continue reading ‘Effects of CO2 supply on growth and photosynthetic ability of young sporophytes of the economic seaweed Sargassum fusiforme (Sargassaceae, Phaeophyta)’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,113,444 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book