Posts Tagged 'light'

Combined effects of ocean acidification and warming on physiological response of the diatom Thalassiosira pseudonana to light challenges

Highlights

• Photoinactivation was induced by multiple environmental changes.
• Higher pCO2 alleviates the negative effect of temperature rise on PSII.
• Ocean acidification stimulates much faster PsbA removal.
• NPQ and SOD induction showed different response to temperature.

Abstract

Diatoms are one of the most important groups of phytoplankton in terms of abundance and ecological functionality in the ocean. They usually dominate the phytoplankton communities in coastal waters and experience frequent and large fluctuations in light. In order to evaluate the combined effects of ocean warming and acidification on the diatom’s exploitation of variable light environments, we grew a globally abundant diatom Thalassiosira pseudonana under two levels of temperature (18, 24 °C) and pCO2 (400, 1000 μatm) to examine its physiological performance after light challenge. It showed that the higher temperature increased the photoinactivation rate in T. pseudonana at 400 μatm pCO2, while the higher pCO2 alleviated the negative effect of the higher temperature on PSII photoinactivation. Higher pCO2 stimulated much faster PsbA removal, but it still lagged behind the photoinactivation of PSII under high light. Although the sustained phase of nonphotochemical quenching (NPQs) and activity of superoxide dismutase (SOD) were provoked during the high light exposure in T. pseudonana under the combined pCO2 and temperature conditions, it could not offset the damage caused by these multiple environmental changes, leading to decreased maximum photochemical yield.

Continue reading ‘Combined effects of ocean acidification and warming on physiological response of the diatom Thalassiosira pseudonana to light challenges’

Calcification moderates the increased susceptibility to UV radiation of the coccolithophorid Gephryocapsa oceanica grown under elevated CO2 concentration: evidence based on calcified and non‐calcified cells

The physiological performance of calcified and non‐calcified cells of Gephyrocapsa oceanica (NIES‐1318) and their short‐term responses to UV radiation were compared for cultures grown under present‐day (LC, 400 μatm) and high pCO2 (HC, 1000 μatm) conditions. Similar growth rates and Fv / Fm values were observed in both types of cell under LC conditions, indicating that the loss of calcification in the non‐calcified cell did not lead to a competitive disadvantage under such conditions. Detrimental effects of elevated pCO2 were observed in both cell types, with the growth rate of non‐calcified cells decreasing more markedly, which might reflect a negative impact of higher cytoplasmic H+. When exposed to short‐term UV radiation, similar trends in effective quantum yield were observed in both cell types acclimated to LC conditions. Elevated pCO2 and associated seawater chemical changes strongly reduced effective quantum yield in non‐calcified cells but no significant influence was observed in calcified cells. Based on these findings and comparisons with previous studies, we suggest that the negative impact of elevated cytoplasmic H+ would exacerbate the detrimental effects of UV radiation while the possession of calcification attenuated this influence.

Continue reading ‘Calcification moderates the increased susceptibility to UV radiation of the coccolithophorid Gephryocapsa oceanica grown under elevated CO2 concentration: evidence based on calcified and non‐calcified cells’

Compensation of ocean acidification effects in Arctic phytoplankton assemblages

The Arctic and subarctic shelf seas, which sustain large fisheries and contribute to global biogeochemical cycling, are particularly sensitive to ongoing ocean acidification (that is, decreasing seawater pH due to anthropogenic CO2 emissions). Yet, little information is available on the effects of ocean acidification on natural phytoplankton assemblages, which are the main primary producers in high-latitude waters. Here we show that coastal Arctic and subarctic primary production is largely insensitive to ocean acidification over a large range of light and temperature levels in different experimental designs. Out of ten CO2-manipulation treatments, significant ocean acidification effects on primary productivity were observed only once (at temperatures below 2 °C), and shifts in the species composition occurred only three times (without correlation to specific experimental conditions). These results imply a high capacity to compensate for environmental variability, which can be understood in light of the environmental history, tolerance ranges and intraspecific diversity of the dominant phytoplankton species.

Continue reading ‘Compensation of ocean acidification effects in Arctic phytoplankton assemblages’

An integrated response of Trichodesmium erythraeum IMS101 growth and photo-physiology to iron, CO2, and light intensity

We have assessed how varying CO2 (180, 380, and 720 μatm) and growth light intensity (40 and 400 μmol photons m−2 s−1) affected Trichodesmium erythraeum IMS101 growth and photophysiology over free iron (Fe′) concentrations between 20 and 9,600 pM. We found significant iron dependencies of growth rate and the initial slope and maximal relative PSII electron transport rates (rPm). Under iron-limiting concentrations, high-light increased growth rates and rPm; possibly indicating a lower allocation of resources to iron-containing photosynthetic proteins. Higher CO2 increased growth rates across all iron concentrations, enabled growth to occur at lower Fe′ concentrations, increased rPm and lowered the iron half saturation constants for growth (Km). We attribute these CO2 responses to the operation of the CCM and the ATP spent/saved for CO2 uptake and transport at low and high CO2, respectively. It seems reasonable to conclude that T. erythraeum IMS101 can exhibit a high degree of phenotypic plasticity in response to CO2, light intensity and iron-limitation. These results are important given predictions of increased dissolved CO2 and water column stratification (i.e., higher light exposures) over the coming decades.

Continue reading ‘An integrated response of Trichodesmium erythraeum IMS101 growth and photo-physiology to iron, CO2, and light intensity’

Effects of seawater acidification and alkalization on the farmed seaweed, Pyropia haitanensis (Bangiales, Rhodophyta), grown under different irradiance conditions

Highlights

• Either seawater acidification and alkalization or reduced light inhibited nitrogen metabolism of Pyropia haitanensis
• Reduced irradiance alleviate negative effects of seawater alkalization on the algal growth and photosynthesis
• Lowered irradiance aggravated adverse impacts of seawater acidification on the growth and photosynthesis of P. haitanensis

Abstract

The thalli of Pyropia haitanensis were cultured under different pH levels (7.8, 8.2, and 9.0) and under decreased (60 μmol photons mm−2 s−1) and ambient (300 μmol photons m−2 s−1) levels of light irradiance conditions, aiming to examine the influence of different pH and decreased light irradiance on this farmed seaweed species in Southern China. Either the decreased (7.8) or increased (9.0) pH values in seawater inhibited nitrogen uptake rates and nitrate reductase activity of P. haitanensis. The capacity of nitrogen uptake and maximum inorganic carbon (Ci)-saturated photosynthetic rate (Vmax) were reduced in P. haitanensis grown at decreased irradiance compared with the algae grown at ambient irradiance. Decreased pH had no significant effect on the algal growth and photosynthesis under ambient light conditions, but it significantly inhibited growth and photosynthesis under decreased light conditions. Increased seawater pH resulted in decreased relative growth rate (RGR), maximal quantum yield of photosystem II ((Fv/Fm), and non-photochemical quenching (NPQ) of P. haitanensis when the algae were grown under ambient light conditions. However, a slight decrease was observed with decreasing growth irradiances. Collectively, our results indicated that either the changed pH (acidification and alkalization) or reduced irradiance displayed a disadvantageous influence on nitrogen metabolism of P. haitanensis. We suggested that, during P. haitanensis mariculture, the decreased light irradiance resulting from increasing algal mats density alleviates the negative effects of seawater alkalization, but it aggravates the adverse effects of seawater acidification on the growth and photosynthesis of the algae.

Continue reading ‘Effects of seawater acidification and alkalization on the farmed seaweed, Pyropia haitanensis (Bangiales, Rhodophyta), grown under different irradiance conditions’

A niche comparison of Emiliania huxleyi and Gephyrocapsa oceanica and potential effects of climate change

Coccolithophore responses to changes in carbonate chemistry speciation such as CO2 and H+ are highly modulated by light intensity and temperature. Here we fit an analytical equation, accounting for simultaneous changes in carbonate chemistry speciation, light and temperature, to published and original data for Emiliania huxleyi, and compare the projections with those for Gephyrocapsa oceanica. Based on our analysis, the two most abundant coccolithophores in today’s oceans appear to be adapted for a similar fundamental light niche but slightly different ones for temperature and CO2, with E. huxleyi having a tolerance to lower temperatures and higher CO2 levels than G. oceanica. Based on growth rates, a dominance of E. huxleyi over G. oceanica is projected below temperatures of 22 °C at current atmospheric CO2 levels. This is similar to a global surface sediment compilation of E. huxleyi and G. oceanica coccolith abundances suggesting temperature dependent dominance shifts. For a future RCP 8.5 climate change scenario (1000 μatm fCO2 and +4.8 °C) we project a niche contraction for G. oceanica then being restricted to regions of even higher temperatures. Finally, we compare satellite derived particulate inorganic carbon estimates in the surface ocean with a recently proposed metric for potential coccolithophore success on the community level i.e. the temperature, light and carbonate chemistry dependent CaCO3 production potential (CCPP). Excluding the Antarctic province from the analysis we found a good correlation between CCPP and satellite derived PIC in the other regions with an R2 of 0.73 for Austral winter/Boreal summer and 0.85 for Austral summer/Boreal winter.

Continue reading ‘A niche comparison of Emiliania huxleyi and Gephyrocapsa oceanica and potential effects of climate change’

Interactive effects of seawater carbonate chemistry, light intensity and nutrient availability on physiology and calcification of the coccolithophore Emiliania huxleyi

Rising atmospheric carbonate dioxide (CO2) levels lead to increasing CO2 concentration and declining pH in seawater, as well as ocean warming. This enhances stratification and shoals the upper mixed layer (UML), hindering the transport of nutrients from deeper waters and exposing phytoplankton to increased light intensities. In the present study, we investigated combined impacts of CO2 levels (410 μatm (LC) and 925 μatm (HC)), light intensities (80–480 μmol photons m−2 s−1) and nutrient concentrations [101 μmol L−1 dissolved inorganic nitrogen (DIN) and 10.5 μmol L−1 dissolved inorganic phosphate (DIP) (HNHP); 8.8 μmol L−1 DIN and 10.5 μmol L−1 DIP (LN); 101 μmol L−1 DIN and 0.4 μmol L−1 DIP (LP)] on growth, photosynthesis and calcification of the coccolithophore Emiliania huxleyi. HC and LN synergistically decreased growth rates of E. huxleyi at all light intensities. High light intensities compensated for inhibition of LP on growth rates at LC, but exacerbated inhibition of LP at HC. These results indicate that the ability of E. huxleyi to compete for nitrate and phosphate may be reduced in future oceans with high CO2 and high light intensities. Low nutrient concentrations increased particulate inorganic carbon quotas and the sensitivity of maximum electron transport rates to light intensity. Light-use efficiencies for carbon fixation and calcification rates were significantly larger than that of growth. Our results suggest that interactive effects of multiple environmental factors on coccolithophores need to be considered when predicting their contributions to the biological carbon pump and feedbacks to climate change.

Continue reading ‘Interactive effects of seawater carbonate chemistry, light intensity and nutrient availability on physiology and calcification of the coccolithophore Emiliania huxleyi’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,083,817 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book