Macroalgae, playing a crucial role in coastal marine ecosystems, are subject to multiple environmental challenges due to tidal and seasonal alterations. In this work, we investigated the physiological responses of Pyropia yezoensis to ocean acidification (ambient CO2 (AC: 400 μatm) and elevated CO2 (HC: 1000 μatm)) under changing salinity (20, 30 psu) and light intensities (50, 100 μmol photons m−2 s−1) by measuring the growth, pigment content, chlorophyll fluorescence, and soluble sugar content. The key results are the following: (1) P. yezoensis exhibited better growth under normal salinity (30 psu) compared to hyposaline conditions (20 psu). (2) Intermediate light intensity increased phycoerythrin content, ultimately enhancing thalli growth without significant changes to the contents of chlorophyll a and carotenoids. (3) Ocean acidification alleviated hyposaline stress by enhancing pigment production in P. yezoensis only at a salinity of 20 psu, highlighting the complex interplay of these environmental factors. These findings indicate that higher light intensities and elevated pCO2 levels could mitigate the stress caused by low salinity.
Continue reading ‘High light intensity and CO2 enrichment synergistically mitigated the stress caused by low salinity in Pyropia yezoensis’Posts Tagged 'light'
High light intensity and CO2 enrichment synergistically mitigated the stress caused by low salinity in Pyropia yezoensis
Published 30 November 2023 Science Leave a CommentTags: algae, biological response, growth, laboratory, light, multiple factors, North Pacific, photosynthesis, physiology, salinity
Optimizing marine macrophyte capacity to locally ameliorate ocean acidification under variable light and flow regimes: insights from an experimental approach
Published 19 October 2023 Science ClosedTags: biological response, chemistry, communityMF, communitymodeling, flow, laboratory, light, modeling, multiple factors, North Atlantic, photosynthesis
The urgent need to remediate ocean acidification has brought attention to the ability of marine macrophytes (seagrasses and seaweeds) to take up carbon dioxide (CO2) and locally raise seawater pH via primary production. This physiological process may represent a powerful ocean acidification mitigation tool in coastal areas. However, highly variable nearshore environmental conditions pose uncertainty in the extent of the amelioration effect. We developed experiments in aquaria to address two interconnected goals. First, we explored the individual capacities of four species of marine macrophytes (Ulva lactuca, Zostera marina, Fucus vesiculosus and Saccharina latissima) to ameliorate seawater acidity in experimentally elevated pCO2. Second, we used the most responsive species (i.e., S. latissima) to assess the effects of high and low water residence time on the amelioration of seawater acidity in ambient and simulated future scenarios of climate change across a gradient of irradiance. We measured changes in dissolved oxygen, pH, and total alkalinity, and derived resultant changes to dissolved inorganic carbon (DIC) and calcium carbonate saturation state (Ω). While all species increased productivity under elevated CO2, S. latissima was able to remove DIC and alter pH and Ω more substantially as CO2 increased. Additionally, the amelioration of seawater acidity by S. latissima was optimized under high irradiance and high residence time. However, the influence of water residence time was insignificant under future scenarios. Finally, we applied predictive models as a function of macrophyte biomass, irradiance, and residence time conditions in ambient and future climatic scenarios to allow projections at the ecosystem level. This research contributes to understanding the biological and physical drivers of the coastal CO2 system.
Continue reading ‘Optimizing marine macrophyte capacity to locally ameliorate ocean acidification under variable light and flow regimes: insights from an experimental approach’Role of culture solution pH in balancing CO2 input and light intensity for maximising microalgae growth rate
Published 4 October 2023 Science ClosedTags: algae, biological response, growth, laboratory, light, multiple factors, primary production, South Pacific
Highlights
- Microalgae growth is governed by CO2 input and light intensity.
- CO2 input & light intensity have an opposing impact on the culture pH.
- Microalgae growth can be inhibited by excessive lighting or CO2 input.
- Balancing CO2 input and light intensity is essential for CO2 fixation by microalgae.
- CO2 fixation rate of 4.2 g/L by Scenedesmus sp. at optimised condition.

Abstract
The interplay between CO2 input and light intensity is investigated to provide new insight to optimise microalgae growth rate in photobioreactors for environmental remediation, carbon capture, and biomass production. Little is known about the combined effect of carbon metabolism and light intensity on microalgae growth. In this study, carbonated water was transferred to the microalgae culture at different rates and under different light intensities for observing the carbon composition and growth rate. Results from this study reveal opposing effects from CO2 input and light intensity on the culture solution pH and ultimately microalgae growth rate. Excessive CO2 concentration can inhibit microalgae growth due to acidification caused by CO2 dissolution. While increasing light intensity can increase pH because the carboxylation process consumes photons and transfers hydrogen ions into the cell. This reaction is catalysed by the enzyme RuBisCO, which functions optimally within a specific pH range. By balancing CO2 input and light intensity, high microalgae growth rate and carbon capture could be achieved. Under the intermittent CO2 transfer mode, at the optimal condition of 850 mg/L CO2 input and 1089 μmol/m2/s light intensity, leading to the highest microalgae growth rate and carbon fixation of 4.2 g/L as observed in this study.
Continue reading ‘Role of culture solution pH in balancing CO2 input and light intensity for maximising microalgae growth rate’Ocean acidification affects the response of the coastal coccolithophore Pleurochrysis carterae to irradiance
Published 21 September 2023 Science ClosedTags: biological response, growth, laboratory, light, multiple factors, North Pacific, photosynthesis, physiology, phytoplankton, primary production
The ecologically important marine phytoplankton group coccolithophores have a global distribution. The impacts of ocean acidification on the cosmopolitan species Emiliania huxleyi have received much attention and have been intensively studied. However, the species-specific responses of coccolithophores and how these responses will be regulated by other environmental drivers are still largely unknown. To examine the interactive effects of irradiance and ocean acidification on the physiology of the coastal coccolithophore species Pleurochrysis carterae, we carried out a semi-continuous incubation experiment under a range of irradiances (50, 200, 500, 800 μmol photons m−2 s−1) at two CO2 concentration conditions of 400 and 800 ppm. The results suggest that the saturation irradiance for the growth rate was higher at an elevated CO2 concentration. Ocean acidification weakened the particulate organic carbon (POC) production of Pleurochrysis carterae and the inhibition rate was decreased with increasing irradiance, indicating that ocean acidification may affect the tolerating capacity of photosynthesis to higher irradiance. Our results further provide new insight into the species-specific responses of coccolithophores to the projected ocean acidification under different irradiance scenarios in the changing marine environment.
Continue reading ‘Ocean acidification affects the response of the coastal coccolithophore Pleurochrysis carterae to irradiance’Seasonal production dynamics of high latitude seaweeds in a changing ocean: implications for bottom-up effects on temperate coastal food webs
Published 10 August 2023 Science ClosedTags: algae, biological response, BRcommunity, calcification, chemistry, dissolution, field, growth, laboratory, light, morphology, multiple factors, North Pacific, otherprocess, phanerogams, photosynthesis, physiology, primary production, temperature
As the oceans absorb excess heat and CO2 from the atmosphere, marine primary producers face significant changes to their abiotic environments and their biotic interactions with other species. Understanding the bottom-up consequences of these effects on marine food webs is essential to informing adaptive management plans that can sustain ecosystem and cultural services. In response to this need, this dissertation provides an in-depth consideration of the effects of global change on foundational macroalgal (seaweed) species in a poorly studied, yet highly productive region of our world’s oceans. To explore how seaweeds within seasonally dynamic giant kelp forest ecosystems will respond to ocean warming and acidification, I employ a variety of methods: year-round environmental monitoring using an in situ sensor array, monthly subtidal community surveys, and a series of manipulative experiments. I find that a complementary phenology of macroalgal production currently characterizes these communities, providing complex habitat and a nutritionally diverse energy supply to support higher trophic levels throughout the year. I also find that future ocean warming and acidification will lead to substantial shifts in the phenology, quantity and quality of macroalgal production in these systems. My results suggest that the giant kelp Macrocystis pyrifera may be relatively resilient to the effects of global change in future winter and summer seasons at high latitudes. In contrast, the calcifying coralline algae Bossiella orbigniana and Crusticorallina spp. and the understory kelps Hedophyllum nigripes and Neoagarum fimbriatum will experience a suite of negative impacts, especially in future winter conditions. The resulting indirect effects on macroalgal-supported coastal food webs will be profound, with projected reductions in habitat and seasonal food supply on rocky reefs. Coming at a time of heightened interest in seaweed production potential at high latitudes, this dissertation provides a comprehensive evaluation of the future of these foundational organisms in a changing environment.
Continue reading ‘Seasonal production dynamics of high latitude seaweeds in a changing ocean: implications for bottom-up effects on temperate coastal food webs’Physiological response of an Antarctic cryptophyte to increasing temperature, CO2, and irradiance
Published 12 July 2023 Science ClosedTags: abundance, Antarctic, biogeochemistry, biological response, growth, laboratory, light, multiple factors, otherprocess, photosynthesis, phytoplankton, primary production, temperature
The Southern Ocean, a globally important CO2 sink, is one of the most susceptible regions in the world to climate change. Phytoplankton of the coastal shelf waters around the Western Antarctic Peninsula have been experiencing rapid warming over the past decades and current ongoing climatic changes will expose them to ocean acidification and high light intensities due to increasing stratification. We conducted a multiple-stressor experiment to evaluate the response of the still poorly studied key Antarctic cryptophyte species Geminigera cryophila to warming in combination with ocean acidification and high irradiance. Based on the thermal growth response of G. cryophila, we grew the cryptophyte at suboptimal (2°C) and optimal (4°C) temperatures in combination with two light intensities (medium light: 100 μmol photons m−2 s−1 and high light [HL]: 500 μmol photons m−2 s−1) under ambient (400 μatm pCO2) and high pCO2 (1000 μatm pCO2) conditions. Our results reveal that G. cryophila was not susceptible to high pCO2, but was strongly affected by HL at 2°C, as both growth and carbon fixation were significantly reduced. In comparison, warming up to 4°C stimulated the growth of the cryptophyte and even alleviated the previously observed negative effects of HL at 2°C. When grown, however, at temperatures above 4°C, the cryptophyte already reached its maximal thermal limit at 8°C, pointing out its vulnerability toward even higher temperatures. Hence, our results clearly indicate that warming and high light and not pCO2 control the growth of G. cryophila.
Continue reading ‘Physiological response of an Antarctic cryptophyte to increasing temperature, CO2, and irradiance’Interaction matters: bottom-up driver interdependencies alter the projected response of phytoplankton communities to climate change
Published 9 June 2023 Science ClosedTags: abundance, biological response, community composition, communitymodeling, globalmodeling, light, modeling, multiple factors, otherprocess, phytoplankton, regionalmodeling, temperature
Phytoplankton growth is controlled by multiple environmental drivers, which are all modified by climate change. While numerous experimental studies identify interactive effects between drivers, large-scale ocean biogeochemistry models mostly account for growth responses to each driver separately and leave the results of these experimental multiple-driver studies largely unused. Here, we amend phytoplankton growth functions in a biogeochemical model by dual-driver interactions (CO2 and temperature, CO2 and light), based on data of a published meta-analysis on multiple-driver laboratory experiments. The effect of this parametrization on phytoplankton biomass and community composition is tested using present-day and future high-emission (SSP5-8.5) climate forcing. While the projected decrease in future total global phytoplankton biomass in simulations with driver interactions is similar to that in control simulations without driver interactions (5%–6%), interactive driver effects are group-specific. Globally, diatom biomass decreases more with interactive effects compared with the control simulation (−8.1% with interactions vs. no change without interactions). Small-phytoplankton biomass, by contrast, decreases less with on-going climate change when the model accounts for driver interactions (−5.0% vs. −9.0%). The response of global coccolithophore biomass to future climate conditions is even reversed when interactions are considered (+33.2% instead of −10.8%). Regionally, the largest difference in the future phytoplankton community composition between the simulations with and without driver interactions is detected in the Southern Ocean, where diatom biomass decreases (−7.5%) instead of increases (+14.5%), raising the share of small phytoplankton and coccolithophores of total phytoplankton biomass. Hence, interactive effects impact the phytoplankton community structure and related biogeochemical fluxes in a future ocean. Our approach is a first step to integrate the mechanistic understanding of interacting driver effects on phytoplankton growth gained by numerous laboratory experiments into a global ocean biogeochemistry model, aiming toward more realistic future projections of phytoplankton biomass and community composition.
Continue reading ‘Interaction matters: bottom-up driver interdependencies alter the projected response of phytoplankton communities to climate change’Short-term responses of Corallina officinalis (rhodophyta) to global-change drivers in a stressful environment of Patagonia, Argentina
Published 28 April 2023 Science ClosedTags: biological response, corals, laboratory, light, multiple factors, nutrients, physiology, primary production, South Atlantic
Over the last two decades, an increasing interest has arisen in the responses of primary producers to global-change drivers and, more recently, in the need to consider how those various drivers may interact. To understand how Corallina officinalis (hereafter Corallina) can be affected by future changing conditions, we investigated the short-term direct effects of co-occurring increased nutrient loads, solar radiation, and lower pH, assessing how these clustered drivers affected Corallina‘s overall physiological performance in a harsh Patagonian coastal environment. To describe the seasonal trend of the physiological parameters in the field, we sampled subtidal Corallina to determine their net oxygen production (NOP), pigments, and carbonate content (CC). Furthermore, we conducted seasonal 10-days experiments, simulating the conditions predicted for the year 2100 by the IPCC (RCP 8.5) —manipulating pH, nutrients, and irradiance—along with the current conditions. The pigments and carotenoids/chlorophyll-a ratio were, in general, constant in the field over the seasons; but the NOP and CC dropped in spring, when the carotenoids peaked. After the experiment, the highest carotenoid/chlorophyll-a ratio was registered in summer under both the currentand the predictedconditions and in winter under the predictedcondition. This lower physiological status was also reflected in almost all other variables. Thus, Corallina may display an acclimatation strategy to cope with high ultraviolet-radiation levels by adjusting its pigment composition to avoid photoinhibition. An understanding of how Corallina, as a habitat-forming species, will respond to future global-change may provide clues about the extent of effects on the ecosystem functions and services.
Continue reading ‘Short-term responses of Corallina officinalis (rhodophyta) to global-change drivers in a stressful environment of Patagonia, Argentina’Anthropogenic changes to the nighttime environment
Published 19 April 2023 Science ClosedTags: biological response, BRcommunity, light, multiple factors, review
How the relative impacts of anthropogenic pressures on the natural environment vary between different taxonomic groups, habitats, and geographic regions is increasingly well established. By contrast, the times of day at which those pressures are most forcefully exerted or have greatest influence are not well understood. The impact on the nighttime environment bears particular scrutiny, given that for practical reasons (e.g., researchers themselves belong to a diurnal species), most studies on the impacts of anthropogenic pressures are conducted during the daytime on organisms that are predominantly day active or in ways that do not differentiate between daytime and nighttime. In the present article, we synthesize the current state of knowledge of impacts of anthropogenic pressures on the nighttime environment, highlighting key findings and examples. The evidence available suggests that the nighttime environment is under intense stress across increasing areas of the world, especially from nighttime pollution, climate change, and overexploitation of resources.
Continue reading ‘Anthropogenic changes to the nighttime environment’Long-term adaptation to elevated temperature but not CO2 alleviates the negative effects of ultraviolet-B radiation in a marine diatom
Published 18 April 2023 Science ClosedTags: adaptation, biological response, BRcommunity, laboratory, light, multiple factors, otherprocess, photosynthesis, physiology, phytoplankton, temperature
Multifaceted changes in marine environments as a result of anthropogenic activities are likely to have a compounding impact on the physiology of marine phytoplankton. Most studies on the combined effects of rising pCO2, sea surface temperature, and UVB radiation on marine phytoplankton were only conducted in the short-term, which does not allow to test the adaptive capacity of phytoplankton and associated potential trade-offs. Here, we investigated populations of the diatom Phaeodactylum tricornutum that were long-term (∼3.5 years, ∼3000 generations) adapted to elevated CO2 and/or elevated temperatures, and their physiological responses to short-term (∼2 weeks) exposure of two levels of ultraviolet-B (UVB) radiation. Our results showed that while elevated UVB radiation showed predominantly negative effects on the physiological performance of P. tricornutum regardless of adaptation regimes. Elevated temperature alleviated these effects on most of the measured physiological parameters (e.g., photosynthesis). We also found that elevated CO2 can modulate these antagonistic interactions, and conclude that long-term adaptation to sea surface warming and rising CO2 may alter this diatom’s sensitivity to elevated UVB radiation in the environment. Our study provides new insights into marine phytoplankton’s long-term responses to the interplay of multiple environmental changes driven by climate change.
Continue reading ‘Long-term adaptation to elevated temperature but not CO2 alleviates the negative effects of ultraviolet-B radiation in a marine diatom’Reallocation of elemental content and macromolecules in the coccolithophore Emiliania huxleyi to acclimate to climate change
Published 14 April 2023 Science ClosedTags: biological response, growth, laboratory, light, multiple factors, nutrients, photosynthesis, physiology, phytoplankton
Global climate change leads to simultaneous changes in multiple environmental drivers in the marine realm. Although physiological characterization of coccolithophores has been studied under climate change, there is limited knowledge on the biochemical responses of this biogeochemically important phytoplankton group to changing multiple environmental drivers. Here, we investigate the interactive effects of reduced phosphorus availability (4 to 0.4 µmol L−1), elevated pCO2 concentrations (426 to 946 µatm), and increasing light intensity (40 to 300 µmol photons m−2 s−1) on elemental content and macromolecules of the cosmopolitan coccolithophore Emiliania huxleyi. Reduced phosphorus availability reduces particulate organic nitrogen (PON) and protein contents per cell under 40 µmol photons m−2 s−1 but not under 300 µmol photons m−2 s−1. Reduced phosphorus availability and elevated pCO2 concentrations act synergistically to increase particulate organic carbon (POC) and carbohydrate contents per cell under 300 µmol photons m−2 s−1 but not under 40 µmol photons m−2 s−1. Reduced phosphorus availability, elevated pCO2 concentrations, and increasing light intensity act synergistically to increase the allocation of POC to carbohydrates. Under elevated pCO2 concentrations and increasing light intensity, enhanced carbon fixation could increase carbon storage in the phosphorus-limited regions of the oceans where E. huxleyi dominates the phytoplankton assemblages. In each type of light intensity, elemental-carbon-to-phosphorus (C:P) and nitrogen-to-phosphorus (N:P) ratios decrease with increasing growth rate. These results suggest that coccolithophores could reallocate chemical elements and energy to synthesize macromolecules efficiently, which allows them to regulate their elemental content and growth rate to acclimate to changing environmental conditions.
Continue reading ‘Reallocation of elemental content and macromolecules in the coccolithophore Emiliania huxleyi to acclimate to climate change’Photoinhibition of the picophytoplankter Synechococcus is exacerbated by ocean acidification
Published 11 April 2023 Science ClosedTags: adaptation, biological response, growth, laboratory, light, multiple factors, otherprocess, photosynthesis, physiology, phytoplankton, primary production
The marine picocyanobacterium Synechococcus accounts for a major fraction of the primary production across the global oceans. However, knowledge of the responses of Synechococcus to changing pCO2 and light levels has been scarcely documented. Hence, we grew Synechococcus sp. CB0101 at two CO2 concentrations (ambient CO2 AC:410 μatm; high CO2 HC:1000 μatm) under various light levels between 25 and 800 μmol photons m−2 s−1 for 10–20 generations and found that the growth of Synechococcus strain CB0101 is strongly influenced by light intensity, peaking at 250 μmol m−2 s−1 and thereafter declined at higher light levels. Synechococcus cells showed a range of acclimation in their photophysiological characteristics, including changes in pigment content, optical absorption cross section, and light harvesting efficiency. Elevated pCO2 inhibited the growth of cells at light intensities close to or greater than saturation, with inhibition being greater under high light. Elevated pCO2 also reduced photosynthetic carbon fixation rates under high light but had smaller effects on the decrease in quantum yield and maximum relative electron transport rates observed under increasing light intensity. At the same time, the elevated pCO2 significantly decreased particulate organic carbon (POC) and particulate organic nitrogen (PON), particularly under low light. Ocean acidification, by increasing the inhibitory effects of high light, may affect the growth and competitiveness of Synechococcus in surface waters in the future scenario.
Continue reading ‘Photoinhibition of the picophytoplankter Synechococcus is exacerbated by ocean acidification’Aquatic productivity under multiple stressors
Published 13 March 2023 Science ClosedTags: biological response, light, multiple factors, nutrients, oxygen, photosynthesis, phytoplankton, review, temperature
Aquatic ecosystems are responsible for about 50% of global productivity. They mitigate climate change by taking up a substantial fraction of anthropogenically emitted CO2 and sink part of it into the deep ocean. Productivity is controlled by a number of environmental factors, such as water temperature, ocean acidification, nutrient availability, deoxygenation and exposure to solar UV radiation. Recent studies have revealed that these factors may interact to yield additive, synergistic or antagonistic effects. While ocean warming and deoxygenation are supposed to affect mitochondrial respiration oppositely, they can act synergistically to influence the migration of plankton and N2-fixation of diazotrophs. Ocean acidification, along with elevated pCO2, exhibits controversial effects on marine primary producers, resulting in negative impacts under high light and limited availability of nutrients. However, the acidic stress has been shown to exacerbate viral attacks on microalgae and to act synergistically with UV radiation to reduce the calcification of algal calcifiers. Elevated pCO2 in surface oceans is known to downregulate the CCMs (CO2 concentrating mechanisms) of phytoplankton, but deoxygenation is proposed to enhance CCMs by suppressing photorespiration. While most of the studies on climate-change drivers have been carried out under controlled conditions, field observations over long periods of time have been scarce. Mechanistic responses of phytoplankton to multiple drivers have been little documented due to the logistic difficulties to manipulate numerous replications for different treatments representative of the drivers. Nevertheless, future studies are expected to explore responses and involved mechanisms to multiple drivers in different regions, considering that regional chemical and physical environmental forcings modulate the effects of ocean global climate changes.
Effects of elevated pCO2 on the response of coccolithophore Emiliania huxleyi to prolonged darkness
Published 3 March 2023 Science ClosedTags: abundance, biological response, laboratory, light, multiple factors, otherprocess, physiology, phytoplankton
Although numerous studies have examined the responses of coccolithophores to ocean acidification, less is known on the fate of those calcifying organisms when they sink to the ocean’s aphotic regions. In this study, the coccolithophore Emiliania huxleyi was first grown under a regular 12/12 light/dark cycle at 20°C, exposed to both high (1000 μatm) and ambient CO2 (410 μatm) levels. The cultures were then transferred to continuous darkness for 96 h at 20°C or 16°C. We found that elevated CO2 decreased the specific growth rate while increasing the cellular particulate organic carbon (POC) and nitrogen (PON) contents and the POC/PON ratio of E. huxleyi in the light/dark period. After 96 h of dark acclimation, the cell abundance decreased more obviously at 20°C than at 16°C but showed no significant difference between the two CO2 treatments. The decrease in volumetric POC concentration was most prominent in the high CO2/20°C treatment and least in the ambient CO2/16°C treatment. At 16°C, the PON concentration increased in the high CO2 cultures and exhibited no change in the ambient CO2 cultures. While at 20°C, the PON concentration decreased significantly both under high and ambient CO2 conditions. The final POC/PON ratio showed no significant differences among the different temperature and CO2 treatments. Overall, a higher percentage of POC relative to that of PON was lost in darkness with increasing CO2 concentration, with potential implications for the ocean’s nutrient cycle.
Continue reading ‘Effects of elevated pCO2 on the response of coccolithophore Emiliania huxleyi to prolonged darkness’Interaction of CO2 and light availability on photophysiology of tropical coccolithophorids (Emiliania huxleyi, Gephyrocapsa oceanica, and Ochosphaera sp.)
Published 28 February 2023 Science ClosedTags: biological response, calcification, growth, laboratory, light, morphology, multiple factors, photosynthesis, physiology, phytoplankton
The study to examine the calcification rate, adaptation, and the biotic response of three tropical coccolithophorids (Emiliania huxleyi, Gephyrocapsa oceanica, and Ochosphaera sp) to changes in CO2 concentration. Three selected calcifying coccolitophorids were grown at batch culture with CO2 system at two levels of CO2 (385 and 1000 ppm) and two light dark periods. The parameters measured and calculation including growth rate, particulate organic carbon content, particulate inorganic carbon content, chlorophyll a, cell size, photosynthetic, organic, inorganic carbon production, photosynthesis, and calcification rate. The results showed that there was a different response to carbonate chemistry changes and dark and light periods in any of the analyzed parameters. The growth rate of three selected calcifying microalgae tested was decreasing significantly at high concentrations of CO2 (1000 ppm) treatment on 14:10 hour light: dark periods. However, there was no significant difference between the two CO2 concentrations where they were illuminated by 24 hours light in growth rate. The increasing CO2 concentration and light-dark periods were species-specific responses to photosynthesis and calcification rate for three selected calcifying microalgae.
Continue reading ‘Interaction of CO2 and light availability on photophysiology of tropical coccolithophorids (Emiliania huxleyi, Gephyrocapsa oceanica, and Ochosphaera sp.)’Effects of global environmental change on microalgal photosynthesis, growth and their distribution
Published 6 February 2023 Science ClosedTags: biological response, growth, light, morphology, multiple factors, photosynthesis, physiology, phytoplankton, review, salinity, temperature
Global climate change (GCC) constitutes a complex challenge posing a serious threat to biodiversity and ecosystems in the next decades. There are several recent studies dealing with the potential effect of increased temperature, decrease of pH or shifts in salinity, as well as cascading events of GCC and their impact on human-environment systems. Microalgae as primary producers are a sensitive compartment of the marine ecosystems to all those changes. However, the potential consequences of these changes for marine microalgae have received relatively little attention and they are still not well understood. Thus, there is an urgent need to explore and understand the effects generated by multiple climatic changes on marine microalgae growth and biodiversity. Therefore, this review aimed to compare and contrast mechanisms that marine microalgae exhibit to directly respond to harsh conditions associated with GCC and the potential consequences of those changes in marine microalgal populations. Literature shows that microalgae responses to environmental stressors such as temperature were affected differently. A stress caused by salinity might slow down cell division, reduces size, ceases motility, and triggers palmelloid formation in microalgae community, but some of these changes are strongly species-specific. UV irradiance can potentially lead to an oxidative stress in microalgae, promoting the production of reactive oxygen species (ROS) or induce direct physical damage on microalgae, then inhibiting the growth of microalgae. Moreover, pH could impact many groups of microalgae being more tolerant of certain pH shifts, while others were sensitive to changes of just small units (such as coccolithophorids) and subsequently affect the species at a higher trophic level, but also total vertical carbon transport in oceans. Overall, this review highlights the importance of examining effects of multiple stressors, considering multiple responses to understand the complexity behind stressor interactions.
Continue reading ‘Effects of global environmental change on microalgal photosynthesis, growth and their distribution’Charge-dependent negative effects of polystyrene nanoplastics on Oryzias melastigma under ocean acidification conditions
Published 24 January 2023 Science ClosedTags: biological response, fish, laboratory, light, morphology, mortality, multiple factors, performance, reproduction, toxicants

Highlights
- PS-NH2 exhibited more aggregation than PS-COOH in acidified seawater.
- Ocean acidification reversed toxicity of positively and negatively charged NPs.
- Ocean acidification reversed the internalization of PS-NH2 and PS-COOH.
- PS-NPs at environmental level could transfer from embryos to larvae.
Abstract
Marine nanoplastics (NPs) have attracted increasing global attentions because of their detrimental effects on marine environments. A co-existing major environmental concern is ocean acidification (OA). However, the effects of differentially charged NPs on marine organisms under OA conditions are poorly understood. We therefore investigated the effects of OA on the embryotoxicity of both positively and negatively charged polystyrene (PS) NPs to marine medaka (Oryzias melastigma). Positively charged PS-NH2 exhibited slighter aggregation under normal conditions and more aggregation under OA conditions than negatively charged PS-COOH. According to the integrated biomarker approach, OA reversed the toxicity of positively and negatively charged NPs towards embryos. Importantly, at environmental relevant concentrations, both types of PS-NPs could enter the embryos through chorionic pores and then transfer to the larvae. OA reversed the internalization of PS-NH2 and PS-COOH in O. melastigma. Overall, the reversed toxicity of PS-NH2 and PS-COOH associated with OA could be caused by the reversed bioavailability of NPs to O. melastigma, which was attributed to altered aggregation of the NPs in acidified seawater. This finding demonstrates the charge-dependent toxicity of NPs to marine fish and provides new insights into the potential hazard of NPs to marine environments under OA conditions that could be encountered in the near future.
Continue reading ‘Charge-dependent negative effects of polystyrene nanoplastics on Oryzias melastigma under ocean acidification conditions’Impact of ultraviolet radiation nearly overrides the effects of elevated pCO2 on a prominent nitrogen-fixing cyanobacterium
Published 17 January 2023 Science ClosedTags: biological response, laboratory, light, morphology, multiple factors, photosynthesis, physiology, prokaryotes
Although the marine N2-fixers Trichodesmium spp. are affected by increasing pCO2 and by ultraviolet radiation (UVR) in their habitats, little is known on their potential responses to future ocean acidification in the presence of UVR. We grew Trichodesmium at two pCO2 levels (410 and 1000 μatm) under natural sunlight, documented the filament length, growth, and chlorophyll content after its acclimation to the pCO2 treatments, and measured its carbon and N2 fixation rates under different solar radiation treatments with or without UVR. We showed that the elevated pCO2 did not significantly alter the diazotroph’s growth, filament length, or pigment content, and its photosynthetic rate was only affected by solar radiation treatments rather than the pCO2 levels. The presence of UV-A and UV-B inhibited photosynthesis by 10–22% and 17–21%, respectively. Inhibition of N2 fixation by UV-B was proportional to its intensity, whereas UV-A stimulated N2 fixation at low, but inhibited it at high, intensities. Elevated pCO2 only stimulated N2 fixation under moderate levels of solar radiation. The simulated depth profile of N2 fixation in the water column showed that UV-induced inhibition dominated the combined effects of elevated pCO2 and UVR at 0–30 m depth and the combination of these factors enhanced N2 fixation at 30–60 m depth, but this effect diminished in deeper water. Our results suggest that Trichodesmium could be influenced more by UVR than by pCO2 and their combined action result in negative effects on N2 fixation under high solar radiation, but positive effects under low to moderate solar radiation.
Continue reading ‘Impact of ultraviolet radiation nearly overrides the effects of elevated pCO2 on a prominent nitrogen-fixing cyanobacterium’Natural photosynthetic microboring communities produce alkalinity in seawater whereas aragonite saturation state rises up to five
Published 12 January 2023 Science ClosedTags: biological response, BRcommunity, corals, dissolution, laboratory, light, multiple factors, photosynthesis, physiology, phytoplankton
Bioerosion, resulting from microbioerosion or biogenic dissolution, macrobioerosion and grazing, is one the main processes involved in reef carbonate budget and functioning. On healthy reefs, most of the produced carbonates are preserved and accumulate. But in the context of global change, reefs are increasingly degraded as environmental factors such as ocean warming and acidification affect negatively reef accretion and positively bioerosion processes. The recent 2019 SROCC report suggests that if CO2 emissions in the atmosphere are not drastically reduced rapidly, 70%–99% of coral reefs will disappear by 2,100. However, to improve projections of coral reef evolution, it is important to better understand dynamics of bioerosion processes. Among those processes, it was shown recently that bioeroding microflora which actively colonize and dissolve experimental coral blocks, release significant amount of alkalinity in seawater both by day and at night under controlled conditions. It was also shown that this alkalinity production is enhanced under ocean acidification conditions (saturation state of aragonite comprised between 2 and 3.5) suggesting that reef carbonate accumulation will be even more limited in the future. To better understand the conditions of production of alkalinity in seawater by boring microflora and its possible consequences on reef resilience, we conducted a series of experiments with natural rubble maintained under natural or artificial light, and various saturation states of aragonite. We show here that biogenic dissolution of natural reef rubble colonized by microboring communities dominated by the chlorophyte Ostreobium sp., and thus the production of alkalinity in seawater, can occur under a large range of saturation states of aragonite, from 2 to 6.4 under daylight and that this production is directly correlated to the photosynthetic activity of microboring communities. We then discuss the possible implications of such paradoxical activities on reef resilience.
Continue reading ‘Natural photosynthetic microboring communities produce alkalinity in seawater whereas aragonite saturation state rises up to five’Effects of seawater acidification and solar ultraviolet radiation on photosynthetic performances and biochemical compositions of Rhodosorus sp. SCSIO-45730
Published 6 January 2023 Science ClosedTags: algae, biological response, growth, laboratory, light, multiple factors, North Pacific, photosynthesis, physiology
Ocean acidification (OA) caused by rising atmospheric CO2 concentration and solar ultraviolet radiation (UVR) resulting from ozone depletion may affect marine organisms, but little is known regarding how unicellular Rhodosorus sp. SCSIO-45730, an excellent species resource containing various biological-active compounds, responds to OA and UVR. Therefore, we conducted a factorial coupling experiment to unravel the combined effects of OA and UVR on the growth, photosynthetic performances, biochemical compositions and enzyme activities of Rhodosorus sp. SCSIO-45730, which were exposed to two levels of CO2 (LC, 400 μatm, current CO2 level; HC, 1000 μatm, future CO2 level) and three levels of UVR (photosynthetically active radiation (PAR), PAR plus UVA, PAR plus UVB) treatments in all combinations, respectively. Compared to LC treatment, HC stimulated the relative growth rate (RGR) due to higher optimum and effective quantum yields, photosynthetic efficiency, maximum electron transport rates and photosynthetic pigments contents regardless of UVR. However, the presence of UVA had no significant effect but UVB markedly reduced the RGR. Additionally, higher carbohydrate content and lower protein and lipid contents were observed when Rhodosorus sp. SCSIO-45730 was cultured under HC due to the ample HCO−3HCO3− applications and active stimulation of metabolic enzymes of carbonic anhydrase and nitrate reductase, thus resulting in higher TC/TN. OA also triggered the production of reactive oxygen species (ROS), and the increase of ROS coincided approximately with superoxide dismutase and catalase activities, as well as phenols contents. However, UVR induced photochemical inhibition and damaged macromolecules, making algal cells need more energy for self-protection. Generally, these results revealed that OA counteracted UVR-related inhibition on Rhodosorus sp. SCSIO-45730, adding our understanding of the red algae responding to future global climate changes.
Continue reading ‘Effects of seawater acidification and solar ultraviolet radiation on photosynthetic performances and biochemical compositions of Rhodosorus sp. SCSIO-45730’