Posts Tagged 'light'

Elevated CO2 and associated seawater chemistry do not benefit a model diatom grown with increased availability of light

Elevated CO2 is leading to a decrease in pH in marine environments (ocean acidification [OA]), altering marine carbonate chemistry. OA can influence the metabolism of many marine organisms; however, no consensus has been reached on its effects on algal photosynthetic carbon fixation and primary production. Here, we found that when the diatom Phaeodactylum tricornutum was grown under different pCO2 levels, it showed different responses to elevated pCO2 levels under growth-limiting (20 µmol photons m-2 s-1, LL) compared with growth-saturating (200 µmol photons m-2 s-1, HL) light levels. With pCO2 increased up to 950 µatm, growth rates and primary productivity increased, but in the HL cells, these parameters decreased significantly at higher concentrations up to 5000 µatm, while no difference in growth was observed with pCO2 for the LL cells. Elevated CO2 concentrations reduced the size of the intracellular dissolved inorganic carbon (DIC) pool by 81% and 60% under the LL and HL levels, respectively, with the corresponding photosynthetic affinity for DIC decreasing by 48% and 55%. Little photoinhibition was observed across all treatments. These results suggest that the decreased growth rates under higher CO2 levels in the HL cells were most likely due to acid stress. Low energy demand of growth and energy saving from the down-regulation of the CO2 concentrating mechanisms (CCM) minimized the effects of acid stress on the growth of the LL cells. These findings imply that OA treatment, except for down-regulating CCM, caused stress on the diatom, reflected in diminished C assimilation and growth rates.

Continue reading ‘Elevated CO2 and associated seawater chemistry do not benefit a model diatom grown with increased availability of light’

Impact of ocean acidification on Arctic phytoplankton blooms and dimethyl sulfide concentration under simulated ice-free and under-ice conditions (update)

In an experimental assessment of the potential impact of Arctic Ocean acidification on seasonal phytoplankton blooms and associated dimethyl sulfide (DMS) dynamics, we incubated water from Baffin Bay under conditions representing an acidified Arctic Ocean. Using two light regimes simulating under-ice or subsurface chlorophyll maxima (low light; low PAR and no UVB) and ice-free (high light; high PAR + UVA + UVB) conditions, water collected at 38 m was exposed over 9 days to 6 levels of decreasing pH from 8.1 to 7.2. A phytoplankton bloom dominated by the centric diatoms Chaetoceros spp. reaching up to 7.5 µg chlorophyll a L−1 took place in all experimental bags. Total dimethylsulfoniopropionate (DMSPT) and DMS concentrations reached 155 and 19 nmol L−1, respectively. The sharp increase in DMSPT and DMS concentrations coincided with the exhaustion of NO3− in most microcosms, suggesting that nutrient stress stimulated DMS(P) synthesis by the diatom community. Under both light regimes, chlorophyll a and DMS concentrations decreased linearly with increasing proton concentration at all pH levels tested. Concentrations of DMSPT also decreased but only under high light and over a smaller pH range (from 8.1 to 7.6). In contrast to nano-phytoplankton (2–20 µm), pico-phytoplankton ( ≤  2 µm) was stimulated by the decreasing pH. We furthermore observed no significant difference between the two light regimes tested in term of chlorophyll a, phytoplankton abundance and taxonomy, and DMSP and DMS net concentrations. These results show that ocean acidification could significantly decrease the algal biomass and inhibit DMS production during the seasonal phytoplankton bloom in the Arctic, with possible consequences for the regional climate.

Continue reading ‘Impact of ocean acidification on Arctic phytoplankton blooms and dimethyl sulfide concentration under simulated ice-free and under-ice conditions (update)’

High levels of solar radiation offset impacts of ocean acidification on calcifying and non-calcifying strains of Emiliania huxleyi

Coccolithophores, a globally distributed group of marine phytoplankton, showed diverse responses to ocean acidification (OA) and to combinations of OA with other environmental factors. While their growth can be enhanced and calcification be hindered by OA under constant indoor light, fluctuation of solar radiation with ultraviolet irradiances might offset such effects. In this study, when a calcifying and a non-calcifying strain of Emiliania huxleyi were grown at 2 CO2 concentrations (low CO2 [LC]: 395 µatm; high CO2 [HC]: 1000 µatm) under different levels of incident solar radiation in the presence of ultraviolet radiation (UVR), HC and increased levels of solar radiation acted synergistically to enhance the growth in the calcifying strain but not in the non-calcifying strain. HC enhanced the particulate organic carbon (POC) and nitrogen (PON) productions in both strains, and this effect was more obvious at high levels of solar radiation. While HC decreased calcification at low solar radiation levels, it did not cause a significant effect at high levels of solar radiation, implying that a sufficient supply of light energy can offset the impact of OA on the calcifying strain. Our data suggest that increased light exposure, which is predicted to happen with shoaling of the upper mixing layer due to progressive warming, could counteract the impact of OA on coccolithophores distributed within this layer.

Continue reading ‘High levels of solar radiation offset impacts of ocean acidification on calcifying and non-calcifying strains of Emiliania huxleyi’

The influence of CO2 enrichment on net photosynthesis of seagrass Zostera marina in a brackish water environment

Seagrasses are distributed across the globe and their communities may play key roles in the coastal ecosystems. Seagrass meadows are expected to benefit from the increased carbon availability which might be used in photosynthesis in a future high CO2 world. The main aim of this study was to examine the effect of elevated pCO2 on the net photosynthesis of seagrass Zostera marina in a brackish water environment. The short-term mesocosm experiments were conducted in Kõiguste Bay (northern part of Gulf of Riga, the Baltic Sea) in June–July 2013 and 2014. As the levels of pCO2 naturally range from ca. 150 μatm to well above 1000 μatm under summer conditions in Kõiguste Bay we chose to operate in mesocosms with the pCO2 levels of ca. 2000, ca. 1000, and ca. 200 μatm. Additionally, in 2014 the photosynthesis of Z. marina was measured outside of the mesocosm in the natural conditions. In the shallow coastal Baltic Sea seagrass Z. marina lives in a highly variable environment due to seasonality and rapid changes in meteorological conditions. This was demonstrated by the remarkable differences in water temperatures between experimental years of ca. 8°C. Thus, the current study also investigated the effect of elevated pCO2 in combination with short-term natural fluctuations of environmental factors, i.e., temperature and PAR on the photosynthesis of Z. marina. Our results show that elevated pCO2 alone did not enhance the photosynthesis of the seagrass. The photosynthetic response of Z. marina to CO2 enrichment was affected by changes in water temperature and light availability.

Continue reading ‘The influence of CO2 enrichment on net photosynthesis of seagrass Zostera marina in a brackish water environment’

Light availability and temperature, not increased CO2, will structure future meadows of Posidonia oceanica

We evaluated the photosynthetic performance of Posidonia oceanica during short-term laboratory exposures to ambient and elevated temperatures (24–25 °C and 29–30 °C) warming and pCO2 (380, 750 and 1000 ppm pCO2) under normal and low light conditions (200 and 40 μmol photons m−2 s−1 respectively). Plant growth was measured at the low light regime and showed a negative response to warming. Light was a critical factor for photosynthetic performance, although we found no evidence of compensation of photosynthetic quantum efficiency in high light. Relative Electron Rate Transport (rETRmax) was higher in plants incubated in high light, but not affected by pCO2 or temperature. The saturation irradiance (Ik) was negatively affected by temperature. We conclude that elevated CO2 does not enhance photosynthetic activity and growth, in the short term for P. oceanica, while temperature has a direct negative effect on growth. Low light availability also negatively affected photosynthetic performance during the short experimental period examined here. Therefore increasing concentrations of CO2 may not compensate for predicted future conditions of warmer water and higher turbidity for seagrass meadows.

Continue reading ‘Light availability and temperature, not increased CO2, will structure future meadows of Posidonia oceanica’

Kelp and carbon: pathways and barriers to acquisition and transport

Large brown algae in the class Phaeophyceae (Heterokontophyta) form the structural and energetic foundation of temperate and subtropical nearshore marine forests of high productivity and ecological diversity. This dissertation examines the carbon uptake and transport physiology of large brown algae with a particular focus on the plastic or adaptive responses of these physiological traits to their abiotic environment. Chapter 1 takes an anatomical and modeling approach to investigate the structure and function of photosynthate transport networks (analogous to phloem) in diverse members of the Laminariales. To evaluate the existence of scaling and optimization of the kelp vascular system, a model of optimized transport anatomy was developed and tested with a  diverse suite of kelp species in the Laminariales. Results revealed a surprising lack of universal scaling in the kelps and the presence of optimized transport anatomy in the giant kelp (Macrocystis pyrifera) only. Chapter 2 focuses on the dynamics of carbon uptake in M. pyrifera, which can acquire both carbon dioxide and bicarbonate as carbon substrates for photosynthesis. To evaluate whether the proportion of carbon dioxide and bicarbonate utilized by M. pyrifera is constant or a variable function of their fluctuating environment, oxygen evolution experiments were carried out  n entire blades from several targeted populations in the Monterey Bay. Results indicated that M. pyrifera possesses a plastic carbon uptake physiology in which proportionally more bicarbonate is used in high irradiance and high flow conditions, but that local populations have not yet developed fixed genetic differences. Chapter 3 investigates the mechanism and patterns of carbon stable isotope discrimination in M. pyrifera. Results of a dual field and laboratory incubation approach indicate that 13C discrimination patterns are determined by a complex interaction of light intensity, dissolved inorganic carbon limitation, and fractionation occurring during transport of polysaccharides. Overall, this dissertation informs patterns and mechanisms of carbon uptake and transport in kelps, and highlights the many ways in which kelps may impact and structure their ecosystems.

Continue reading ‘Kelp and carbon: pathways and barriers to acquisition and transport’

Light and temperature control physiological responses of Halimeda to ocean acidification

The oceans have absorbed excess carbon dioxide (CO2) resulting from anthropogenic activities such as the burning of fossil fuels and deforestation. As a result, seawater chemistry has shifted causing an increase in bicarbonate ions (HCO32-) and hydrogen ions (H+) and leading to a reduction in carbonate (CO32-) concentration. This shift in seawater chemistry leads to a decrease in aragonite saturation state and pH. Eventually, the ocean will accumulate most of the extra CO2 produced over many years resulting in extreme acidified conditions where aragonite saturation levels will not support the chemical process of calcification that is vital to marine calcifiers. This thesis investigates the combined effects of elevated pCO2 with temperature and light on the calcification and photosynthesis of the green calcareous algae Halimeda. Halimeda, is a major contributor to sediment production for coral reef accretion and island reef formation. Based on carbonate data from biologists and geologists it is estimated that vertical accretion of CaCO3 by Halimeda ranges between 0.18 to 5.9 m in 1000 years. The role that light plays in the coupling between photosynthesis and calcification in Halimeda macroloba was investigated experimentally through a combination of two pCO2 levels (360 and 1200 uatm) and three irradiances (80, 150, and 595 μmol quanta m-2 s-1). A decrease in calcification at low light intensity and elevated pCO2 suggests that light is a limiting factor for the physiology of H. macroloba. The effects of elevated pCO2 and temperature on the photosynthesis and calcification of Halimeda incrassata were tested through two experiments using two pCO2 levels (390 and 900 uatm) and four temperatures (26, 29, 30 and 34 °C). Elevated temperature can mitigate the effects Ocean Acidification (OA) in H. incrassata. An estimate of current carbonate production by H. incrassata in Key Biscayne Florida Lagoon was obtained from biomass, CaCO3 content and turnover rate. Calcification rates from laboratory experiments were used to estimate future (200 years from now) seasonal carbonate production rates, which were then compared against current summer carbonate production. Future summer carbonate production rates were not affected by elevated pCO2 in relationship to current summer carbonate production. Elevated temperatures ~2 °C above summer maximum average could promote calcification of H. incrassata under ocean acidification conditions and, therefore, overall carbonate production of the reef. Results throughout the thesis revealed that the tolerance of the green calcareous algae Halimeda to OA could change depending on light and temperature conditions. In a more acidic future ocean, growth rates and sediment production of Halimeda will be affected under low light and temperature and will be enhanced under high light and and moderate elevated temperatures.

Continue reading ‘Light and temperature control physiological responses of Halimeda to ocean acidification’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,001,025 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book