Posts Tagged 'calcification'

Recent density decline in wild-collected subarctic crustose coralline algae reveals climate change signature

Warming surface ocean temperatures combined with the continued diffusion of atmospheric CO2 into seawater have been shown to have detrimental impacts on calcareous marine organisms in tropical and temperate localities. However, greater oceanic CO2 uptake in higher latitudes may present a higher oceanic acidification risk to carbonate organisms residing in Arctic and subarctic habitats. This is especially true for crustose coralline algae that build their skeletons using high-Mg calcite, which is among the least stable and most soluble of the carbonate minerals. Here we present a century-long annually resolved growth, density, and calcification rate record from the crustose coralline alga Clathromorphum nereostratum, a dominant calcifier in Pacific Arctic and subarctic benthic communities. Specimens were collected from the Aleutian Islands, Alaska (USA), a region that has undergone a long-term decline of 0.08 ± 0.01 pH units since the late 19th century. Growth and calcification rates remain relatively stable throughout the record, but skeletal densities have declined substantially since A.D. 1983. Strong correlations to warming sea-surface temperatures indicate that temperature stress may play a significant role in influencing the ability of corallines to calcify. Decreasing algal skeletal density may offset the benefits of continued growth and calcification due to a weakening in structural integrity, which could have detrimental consequences for the diverse reef-like communities associated with algal structures in mid-to-high latitudes.

Continue reading ‘Recent density decline in wild-collected subarctic crustose coralline algae reveals climate change signature’

An assessment of reef coral calcification over the late Cenozoic

Shallow-water reef-building corals have an extensive geological record and many aspects of their evolution, biodiversity, and biogeography are known in great details. In contrast, the adaptive potential and risk of extinction of coral reefs in response to excessive warming and ocean acidification remains largely undocumented. It is well established that anthropogenic CO2 emissions cause global warming and ocean acidification (lowering of pH), which increasingly impede the biomineralization process in many marine calcareous biota. The “light-enhanced” calcification machinery of the shallow-water reef corals is particularly threatened by this development through the combined effect of a lowering of the supersaturation of seawater with CaCO3 (aragonite) and an expulsion of the symbiotic zooxanthellae (bleaching). The bleaching is of prime importance, because it interrupts the supply of DIC and metabolites required for pH upregulation within the calcification fluid. The degree of calcification in scleractinian reef corals may therefore represent a suitable tracer to assess the state of the ocean carbonate system and the photosynthetic performance of the zooxanthellae during past episodes of natural environmental change. This study presents the first comprehensive set of calcification data from corals covering the early Miocene to early Pleistocene interval (20.8 to 1.2 million years, Ma). Various screening procedures ensured that the studied coral skeletons are pristine and suited to yield meaningful stable isotope data (δ18O, δ13C) and calcification records. δ18O and δ13C values document growth environments consistent with current tropical and subtropical settings. To assess fossil calcification rates, we use a reference dataset of recent corals from the Indo-Pacific (Porites) and an independent validation dataset from the Western Atlantic-Caribbean (Orbicella). Almost all fossil corals document very low annual rates of upward growth (“extension rate”) relative to present, and lower skeletal bulk density than predicted by established modern relationships. To allow for a quantitative assessment of coral calcification performance, we use a new approach that we term the calcification anomaly. It is insensitive to sea-surface temperature and well-suited for comparative assessments of calcification performance between reef sites and over time. Based on this approach, the majority of fossil corals in our dataset displays hypo-calcification, while a few show optimal calcification and none display hyper-calcification. Compared to present-day growth conditions, the fossil calcification data show that (1) skeletogenesis responded in a fully compatible way to known environmental stresses (e.g. turbid water, elevated salinity, eutrophy), and that (2) the calcification performance within the reef window (i.e. oligotrophic clear-water settings) remained below that of modern z-corals. Since fossil coral δ13C values are compatible with those of modern reef corals, we infer that the light-enhanced calcification system of symbiotic scleractinian corals was fully established by the beginning of the Neogene and that lower-than-present calcification performance was the likely response to a chronically low pH and/or low carbonate saturation state of the global ocean. If so, the present-day saturation state appears to be rather an exception than the norm and probably not a suitable starting point for predicting future calcification trends. In addition, using trends from the geological past does not include anthropogenic side-effects such as eutrophication and pollution.

Continue reading ‘An assessment of reef coral calcification over the late Cenozoic’

Meta-analysis reveals reduced coral calcification under projected ocean warming but not under acidification across the Caribbean Sea

Ocean acidification and warming are two of the many threats to coral reefs worldwide, and Caribbean reef-building corals are especially vulnerable. However, even within the Caribbean, experimental acidification and warming studies reveal a wide array of coral calcification responses across reef systems and among species, complicating efforts to predict how corals will respond to these global-scale stressors. We conducted a meta-analysis to investigate the calcification responses of Caribbean corals to experimentally induced seawater ocean acidification, ocean warming, and the combination of both stressors. Calcification rates were reduced for corals reared under warming alone, but acidification and the combination of both stressors did not clearly reduce calcification rates. Calcification responses of corals collected from the Florida Keys and Belize were compared for regional differences since a greater number of studies were performed on corals collected from these two regions. Notably, corals from the Florida Keys did not exhibit reduced calcification under acidification, warming, or the combination of both stressors, while corals from Belize exhibited reduced calcification under warming alone. Further investigation of these regional trends suggests that the warming and acidification treatments employed dictated calcification responses, rather than collection region. Results from this meta-analysis are constrained by the very few studies that have been conducted within the Caribbean to assess ocean acidification and warming and the large variation in experimental procedure among studies. This meta-analysis reveals existing gaps in our understanding of how corals will likely respond to projected acidification and warming and highlights ways to improve comparability among experimental studies conducted on corals within the same region to better predict coral calcification response under global change.

Continue reading ‘Meta-analysis reveals reduced coral calcification under projected ocean warming but not under acidification across the Caribbean Sea’

Year-long effects of high pCO2 on the community structure of a tropical fore reef assembled in outdoor flumes

In this study, fore reef coral communities were exposed to high pCO2 for a year to explore the relationship between net accretion (Gnet) and community structure (planar area growth). Coral reef communities simulating the fore reef at 17-m depth on Mo’orea, French Polynesia, were assembled in three outdoor flumes (each 500 l) that were maintained at ambient (396 µatm), 782 µatm, and 1434 µatm pCO2, supplied with seawater at 300 l h−1, and exposed to light simulating 17-m depth. The communities were constructed using corals from the fore reef, and the responses of massive Porites spp., Acropora spp., and Pocillopora verrucosa were assessed through monthly measurements of Gnet and planar area. High pCO2 depressed Gnet but did not affect colony area by taxon, although the areas of Acropora spp. and P. verrucosa summed to cause multivariate community structure to differ among treatments. These results suggest that skeletal plasticity modulates the effects of reduced Gnet at high pCO2 on planar growth, at least over a year. The low sensitivity of the planar growth of fore reef corals to the effects of ocean acidification (OA) on net calcification supports the counterintuitive conclusion that coral community structure may not be strongly affected by OA.

Continue reading ‘Year-long effects of high pCO2 on the community structure of a tropical fore reef assembled in outdoor flumes’

Shallow coral reef free ocean carbon enrichment: novel in situ flumes to manipulate pCO2 on shallow tropical coral reef communities

Given the severe implications of climate change and ocean acidification (OA) for marine ecosystems, there is an urgent need to quantify ecosystem function in present‐day conditions to determine the impacts of future changes in environmental conditions. For tropical coral reefs that are acutely threatened by these effects, the metabolism of benthic communities provides several metrics suitable for this purpose, but the application of infrastructure to manipulate conditions and measure community responses is not fully realized. To date, most studies of the effects of OA on coral reefs have been conducted ex situ, and while greater ecological relevance can be achieved through free ocean carbon enrichment (FOCE) experiments on undisturbed areas of reef, such approaches have been deterred by technical challenges (e.g., spatial scale and duration, stable maintenance of conditions). In this study, we describe novel experimental infrastructure called shallow coral reef (SCoRe) FOCE to overcome these challenges and present data from a proof of concept application in Mo’orea, French Polynesia. Our objectives were to (1) implement an autonomous system that could be deployed kilometers from shore, (2) regulate the chemical (pCO2) and physical properties of seawater over undisturbed, shallow (∼2–5‐m depth) coral reef over multiple weeks, and (3) measure the metabolic response of the coral community to the treatment conditions. We describe the design, function, and application of the SCoRe FOCE, and present data demonstrating its efficacy. This infrastructure has great potential for advancing ecologically relevant studies of the effects of changing environmental conditions on coral reefs.

Continue reading ‘Shallow coral reef free ocean carbon enrichment: novel in situ flumes to manipulate pCO2 on shallow tropical coral reef communities’

Recruits of the temperate coral Oculina arbuscula mimic adults in their resilience to ocean acidification

Ocean acidification has been investigated extensively in scleractinian corals, but studies on different life stages of the same species are lacking. We investigated the response of recruits of the temperate coral Oculina arbuscula to increased CO2 concentrations, a species whose adults show significant tolerance to elevated concentrations of CO2. Specifically, we exposed small colonies (5-12 mm diameter) to 475, 710, and 1261 ppm CO2 for 75 d in the laboratory to address the hypothesis that, like adults, the health of O. arbuscula recruits is not affected by increased CO2 concentrations. Calcification rates were monitored regularly during the experiment, while mortality, respiration rates, photosynthetic rates, algal symbiont densities, and soluble protein were quantified at the end. As predicted, CO2 concentration did not impact survival, algal densities, or soluble protein concentrations in O. arbuscula recruits. In contrast, both calcification rates and photosynthesis:respiration ratios tended to be lower at higher CO2. Comparing the results of this study on recruits with published studies on adults suggested that both life stages exhibit a similar non-linear response to CO2 concentration, whereby recruits may be unable to counter the increased energetic cost of calcification that occurs at the highest CO2. Based on these results and environmental monitoring showing that mean pCO2 is increasing by ~2.4% yr-1 in the waters off Georgia, USA, we conclude that O. arbuscula recruits may begin to exhibit depressed calcification rates within the current century if CO2 emissions are not reduced.

Continue reading ‘Recruits of the temperate coral Oculina arbuscula mimic adults in their resilience to ocean acidification’

Intercomparison of four methods to estimate coral calcification under various environmental conditions (update)

Coral reefs are constructed by calcifiers that precipitate calcium carbonate to build their shells or skeletons through the process of calcification. Accurately assessing coral calcification rates is crucial to determine the health of these ecosystems and their response to major environmental changes such as ocean warming and acidification. Several approaches have been used to assess rates of coral calcification, but there is a real need to compare these approaches in order to ascertain that high-quality and intercomparable results can be produced. Here, we assessed four methods (total alkalinity anomaly, calcium anomaly, 45Ca incorporation, and 13C incorporation) to determine coral calcification of the reef-building coral Stylophora pistillata. Given the importance of environmental conditions for this process, the study was performed under two starting pH levels (ambient: 8.05 and low: 7.2) and two light (light and dark) conditions. Under all conditions, calcification rates estimated using the alkalinity and calcium anomaly techniques as well as 45Ca incorporation were highly correlated. Such a strong correlation between the alkalinity anomaly and 45Ca incorporation techniques has not been observed in previous studies and most probably results from improvements described in the present paper. The only method which provided calcification rates significantly different from the other three techniques was 13C incorporation. Calcification rates based on this method were consistently higher than those measured using the other techniques. Although reasons for these discrepancies remain unclear, the use of this technique for assessing calcification rates in corals is not recommended without further investigations.

Continue reading ‘Intercomparison of four methods to estimate coral calcification under various environmental conditions (update)’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,336,422 hits


Ocean acidification in the IPCC AR5 WG II

OUP book