Posts Tagged 'calcification'

Porites’ coral calcifying fluid chemistry regulation under normal- and low-pH seawater conditions in Palau Archipelago: impacts on growth properties


  • •Palau’s reef has a long-term naturally acidified inshore seawater (pH ~ 7.85).
  • Porites corals up-regulate calcifying fluid pH (~8.41) at normal- and low-pH sites.
  • Porites corals adapt calcifying fluid chemistry to long-term low-pH conditions.
  • Porites shows 15 % lower skeletal density under low-pH (~7.85) vs. open-ocean (~8.03).


Ongoing ocean acidification is known to be a major threat to tropical coral reefs. To date, only few studies have evaluated the impacts of natural long-term exposure to low-pH seawater on the chemical regulation and growth of reef-building corals. This work investigated the different responses of the massive Porites coral living at normal (pHsw ~ 8.03) and naturally low-pH (pHsw ~ 7.85) seawater conditions at Palau over the last decades. Our results show that both Porites colonies maintained similar carbonate properties (pHcf, [CO32−]cf, DICcf, and Ωcf) within their calcifying fluid since 1972. However, the Porites skeleton of the more acidified conditions revealed a significantly lower density (~ 1.21 ± 0.09 g·cm−3) than the skeleton from the open-ocean site (~ 1.41 ± 0.07 g·cm−3). Overall, both Porites colonies exerted a strong biological control to maintain stable calcifying fluid carbonate chemistry that favored the calcification process, especially under low-pH conditions. However, the decline in skeletal density observed at low pH provides critical insights into Porites vulnerability to future global change.

Continue reading ‘Porites’ coral calcifying fluid chemistry regulation under normal- and low-pH seawater conditions in Palau Archipelago: impacts on growth properties’

Effects of ocean acidification on growth and photophysiology of two tropical reef macroalgae

Macroalgae can modify coral reef community structure and ecosystem function through a variety of mechanisms, including mediation of biogeochemistry through photosynthesis and the associated production of dissolved organic carbon (DOC). Ocean acidification has the potential to fuel macroalgal growth and photosynthesis and alter DOC production, but responses across taxa and regions are widely varied and difficult to predict. Focusing on algal taxa from two different functional groups on Caribbean coral reefs, we exposed fleshy (Dictyota spp.) and calcifying (Halimeda tuna) macroalgae to ambient and low seawater pH for 25 days in an outdoor experimental system in the Florida Keys. We quantified algal growth, calcification, photophysiology, and DOC production across pH treatments. We observed no significant differences in the growth or photophysiology of either species between treatments, except for lower chlorophyll b concentrations in Dictyota spp. in response to low pH. We were unable to quantify changes in DOC production. The tolerance of Dictyota and Halimeda to near-future seawater carbonate chemistry and stability of photophysiology, suggests that acidification alone is unlikely to change biogeochemical processes associated with algal photosynthesis in these species. Additional research is needed to fully understand how taxa from these functional groups sourced from a wide range of environmental conditions regulate photosynthesis (via carbon uptake strategies) and how this impacts their DOC production. Understanding these species-specific responses to future acidification will allow us to more accurately model and predict the indirect impacts of macroalgae on coral health and reef ecosystem processes.

Continue reading ‘Effects of ocean acidification on growth and photophysiology of two tropical reef macroalgae’

The modulating role of natural variability in the biological response to ocean acidification

Ocean acidification (OA) is the consequence of the uptake of excess carbon dioxide from the atmosphere. Along the coastal zone, ocean acidification is influenced by other processes such as biology and currents, leading to high levels of natural variability in pH. While the impact of pH on marine organisms is better resolved, the modulating role of this natural variability is poorly understood. This master’s thesis aimed at evaluating diel pH fluctuations using the larval stages of the brittle star Amphiura filiformis. Results revealed the importance of acknowledging pH variations with individuals exhibiting higher fitness. Diel analyses also underscored the existence of an intrinsic circadian cycle where larvae would grow more during the daytime than nighttime, possibly explained by better conditions encountered during the day. In addition, we demonstrated a carryover effect that could also be associated with a stage sensitivity. We suggest that future studies should integrate natural variations and delve into the different species’ adaptations as they have an important role in the biological responses to upcoming OA.

Continue reading ‘The modulating role of natural variability in the biological response to ocean acidification’

Complex dynamics of coral gene expression responses to low pH across species

Coral capacity to tolerate low pH affects coral community composition and, ultimately, reef ecosystem function. Low pH submarine discharges (‘Ojo’; Yucatán, México) represent a natural laboratory to study plasticity and acclimatization to low pH in relation to ocean acidification. A previous >2-year coral transplant experiment to ambient and low pH common garden sites revealed differential survivorship across species and sites, providing a framework to compare mechanistic responses to differential pH exposures. Here, we examined gene expression responses of transplants of three species of reef-building corals (Porites astreoidesPorites porites and Siderastrea siderea) and their algal endosymbiont communities (Symbiodiniaceae) originating from low pH (Ojo) and ambient pH native origins (Lagoon or Reef). Transplant pH environment had the greatest effect on gene expression of Porites astreoides hosts and symbionts and P. porites hosts. Host P. astreoides Ojo natives transplanted to ambient pH showed a similar gene expression profile to Lagoon natives remaining in ambient pH, providing evidence of plasticity in response to ambient pH conditions. Although origin had a larger effect on host S. siderea gene expression due to differences in symbiont genera within Reef and Lagoon/Ojo natives, subtle effects of low pH on all origins demonstrated acclimatization potential. All corals responded to low pH by differentially expressing genes related to pH regulation, ion transport, calcification, cell adhesion and stress/immune response. This study demonstrates that the magnitude of coral gene expression responses to pH varies considerably among populations, species and holobionts, which could differentially affect acclimatization to and impacts of ocean acidification.

Continue reading ‘Complex dynamics of coral gene expression responses to low pH across species’

Ocean acidification enhances primary productivity and nocturnal carbonate dissolution in intertidal rock pools (update)

Human CO2 emissions are modifying ocean carbonate chemistry, causing ocean acidification and likely already impacting marine ecosystems. In particular, there is concern that coastal, benthic calcifying organisms will be negatively affected by ocean acidification, a hypothesis largely supported by laboratory studies. The inter-relationships between carbonate chemistry and marine calcifying communities in situ are complex, and natural mesocosms such as tidal pools can provide useful community-level insights. In this study, we manipulated the carbonate chemistry of intertidal pools to investigate the influence of future ocean acidification on net community production (NCP) and calcification (NCC) at emersion. Adding CO2 at the start of the tidal emersion to simulate future acidification (+1500 µatm pCO2, target pH 7.5) modified net production and calcification rates in the pools. By day, pools were fertilized by the increased CO2 (+20 % increase in NCP, from 10 to 12 mmol O2 m−2 h−1), while there was no measurable impact on NCC. During the night, pools experienced net community dissolution (NCC < 0), even under present-day conditions, when waters were supersaturated with regard to aragonite. Adding CO2 to the pools increased nocturnal dissolution rates by 40 % (from −0.7 to −1.0 mmol CaCO3 m−2 h−1) with no consistent impact on nocturnal community respiration. Our results suggest that ocean acidification is likely to alter temperate intertidal community metabolism on sub-daily timescales, enhancing both diurnal community production and nocturnal calcium carbonate dissolution.

Continue reading ‘Ocean acidification enhances primary productivity and nocturnal carbonate dissolution in intertidal rock pools (update)’

Oyster reefs’ control of carbonate chemistry—Implications for oyster reef restoration in estuaries subject to coastal ocean acidification

Globally, oyster reef restoration is one of the most widely applied coastal restoration interventions. While reefs are focal points of processes tightly linked to the carbonate system such as shell formation and respiration, how these processes alter reef carbonate chemistry relative to the surrounding seawater is unclear. Moreover, coastal systems are increasingly impacted by coastal acidification, which may affect reef carbonate chemistry. Here, we characterized the growth of multiple constructed reefs as well as summer variations in pH and carbonate chemistry of reef-influenced seawater (in the middle of reefs) and ambient seawater (at locations ~50 m outside of reefs) to determine how reef chemistry was altered by the reef community and, in turn, impacts resident oysters. High frequency monitoring across three subtidal constructed reefs revealed reductions of daily mean and minimum pH (by 0.05–0.07 and 0.07–0.12 units, respectively) in seawater overlying reefs relative to ambient seawater (p < .0001). The proportion of pH measurements below 7.5, a threshold shown to negatively impact post-larval oysters, were 1.8×–5.2× higher in reef seawater relative to ambient seawater. Most reef seawater samples (83%) were reduced in total alkalinity relative to ambient seawater samples, suggesting community calcification was a key driver of modified carbonate chemistry. The net metabolic influence of the reef community resulted in reductions of CaCO3 saturation state in 78% of discrete samples, and juvenile oysters placed on reefs exhibited slower shell growth (p < .05) compared to oysters placed outside of reefs. While differences in survival were not detected, reef oysters may benefit from enhanced survival or recruitment at the cost of slowed growth rates. Nevertheless, subtidal restored reef communities modified seawater carbonate chemistry in ways that likely increased oyster vulnerability to acidification, suggesting that carbonate chemistry dynamics warrant consideration when determining site suitability for oyster restoration, particularly under continued climate change.

Continue reading ‘Oyster reefs’ control of carbonate chemistry—Implications for oyster reef restoration in estuaries subject to coastal ocean acidification’

The effect of total alkalinity on growth performance and calcification in juvenile Pacific abalone Haliotis discus hannai

A 45-day trial was conducted to study the effect of seawater total alkalinity (TA) level up- and downregulation on the growth performance and calcification of Haliotis discus hannai Ino, while seawater pH was maintained at pHNBS = 8.1. Although seawater was not acidified, the results showed that TA downregulation caused a significant reduction (P < 0.05) in the somatic tissue growth of juvenile abalone, while TA upregulation significantly increased growth performance (P < 0.05). Similar to the impacts of pH reduction, TA downregulation also induces a decline in CO2 buffering capacity, which may be the reason why somatic tissue growth was reduced, as lowered CO2 buffering capacity was reported to shift the acid-base balancing of abalone. Parts of the periostracum layer weremissing and exposed the inner shell layers of the individuals from the TA-downregulated group. Scanning electron microscopy (SEM) results showed calcium carbonate densely deposited onto the inner shell in the control and TA-upregulated groups, while sparsely deposited calcium carbonate was observed in the TA-downregulated group. The C: N ratio in the shell of individuals from the TA-downregulated group was significantly lower than that of the other two groups, indicating that less inorganic carbon was added to the shell. As a result, abalone grew lighter and thinner shells in TA-downregulated seawater. Although seawater was not acidified, TA downregulation also caused a reduction in the calcium carbonate saturation state (Ω), which induced the erosion of the surface shell and the interruption of calcium carbonate generation. In conclusion, although seawater pH remained at ambient levels, the lowered CO2 buffering capacity and Ω induced by seawater TA downregulation also showed a detrimental effect on the growth and calcification of Pacific abalone. The impact of ocean acidification on the growth of abalone should not be assessed using only seawater pH and/or pCO2 but rather taking into account all of carbonate chemistry, particularly the CO2 buffering capacity. Abalone cultivation is suggested to be carried out in seawater with a higher level of CO2 buffering capacity and Ω, which can be achieved through integrated culture with seaweed or increasing the seawater TA level.

Continue reading ‘The effect of total alkalinity on growth performance and calcification in juvenile Pacific abalone Haliotis discus hannai’

Decreased calcification to photosynthesis ratio in coccolithophores under reduced O2 and elevated CO2 environment

We examined the physiological performance in the most cosmopolitan coccolithophorid, Emiliania huxleyi, and Gephyrocapsa oceanica, which were treated with 8.3 (AO), 4.6 (MO) and 2.5 (LO) mg L–1 O2 under 400 (AC) and1000 (HC) ppm CO2 conditions. Elevated CO2 decreased the specific growth rate of cells cultured under AO and LO conditions in both species, but it increased the rate in the MO-grown E. huxleyi. Regardless of the CO2 levels, diminished O2 concentration inhibited the growth rate in E. huxleyi while accelerating the rate in G. oceanica. LO reduced the particulate organic carbon (POC) production rate compared to the AO treatment in both species. Additionally, the decrease was higher in the HC cultures than in the AC ones. LO also inhibited the production rate of particulate inorganic carbon (PIC) compared to the AO/AC treatment. Due to a higher reduction in the production rate of PIC than POC, the PIC/POC ratio was decreased in the LO treatment compared to the AO/AC treatment. The current study reveals that low O2 can, individually or in combination with high CO2, considerably affect the physiology of marine photoautotrophic organisms.

Continue reading ‘Decreased calcification to photosynthesis ratio in coccolithophores under reduced O2 and elevated CO2 environment’

Hidden impacts of climate change on biological responses of marine life

Conflicting results remain on how climate change affects the biological performance of different marine taxa, hindering our capacity to predict the future state of marine ecosystems. Using a novel meta-analytical approach, we tested for directional changes and deviations across biological responses of fish and invertebrates from exposure to warming (OW), acidification (OA), and their combination. In addition to the established effects of climate change on calcification, survival and metabolism, we found deviations in the physiology, reproduction, behavior, and development of fish and invertebrates, resulting in a doubling of responses significantly affected when compared to directional changes. Widespread deviations of responses were detected even under moderate (IPCC RCP6-level) OW and OA for 2100, while directional changes were mostly limited to more severe (RCP 8.5) exposures. Because such deviations may result in ecological shifts impacting ecosystem structure and processes, our results suggest that OW and OA will likely have stronger impacts than those previously predicted based on directional changes alone.

Continue reading ‘Hidden impacts of climate change on biological responses of marine life’

Impacts of ocean acidification on physiology and ecology of marine invertebrates: a comprehensive review

Ocean acidification (OA) arises as a consequence of excessive carbon dioxide (CO2) inputs into the ocean, a situation further exacerbated by anthropogenic gas emissions. Predictions indicate that seawater surface pH will decrease by 0.4 by the end of the twenty-first century. Notably, studies have observed significant alterations in molluscan assemblages due to OA, leading to a substantial decline of 43% in species richness and 61% in overall mollusc abundance. Moreover, OA has been associated with a 13 ± 3% reduction in the skeletal density of massive Porites corals on the Great Barrier Reef since 1950, particularly affecting marine invertebrates. Given these impacts, this review aims to comprehensively assess the research status and main effects of OA on the physiology and ecology of marine invertebrates over the past two decades, employing bibliometric analysis. Additionally, this review aims to offer valuable insights into potential future research directions. The analysis reveals that research on OA and its influence on marine invertebrates is predominantly conducted in Europe, America, and Australia, reflecting the local extent of acidification and the characteristics of species in these regions. OA significantly affects various physiological aspects of marine invertebrates, encompassing the calcification process, oxidative stress, immunity, energy budget, metabolism, growth, development, and genetics, consequently impacting their behaviour and causing disruptions in the population structure and marine ecosystem. As a result, future research should aim to intimately connect the different physiological mechanisms of marine invertebrates with comprehensive ecosystem evaluation, such as investigating the relationships between food webs, abiotic factors, energy, and matter flow. Furthermore, it is crucial to explore the interactive effects of OA with other stressors, assess the potential for adaptation and acclimation in marine invertebrates, and evaluate the broader ecological implications of OA on entire marine ecosystems. Emphasizing these aspects in future studies will contribute significantly to our understanding of OA’s impact on marine invertebrates and facilitate effective conservation and management strategies for these vital biological communities within marine ecosystems.

Continue reading ‘Impacts of ocean acidification on physiology and ecology of marine invertebrates: a comprehensive review’

Physiological and ecological tipping points caused by ocean acidification

Ocean acidification is predicted to cause profound shifts in many marine ecosystems by impairing the ability of calcareous taxa to calcify and grow, and by influencing the photo-physiology of many others. In both calcifying and non-calcifying taxa, ocean acidification could further impair the ability of marine life to regulate internal pH, and thus metabolic function and/or behaviour. Identifying tipping points at which these effects will occur for different taxa due to the direct impacts of ocean acidification on organism physiology is difficult and they have not adequately been determined for most taxa, nor for ecosystems at higher levels. This is due to the presence of both resistant and sensitive species within most taxa. However, calcifying taxa such as coralline algae, corals, molluscs, and sea urchins appear to be most sensitive to ocean acidification. Conversely, non-calcareous seaweeds, seagrasses, diatoms, cephalopods, and fish tend to be more resistant, or even benefit from the direct effects of ocean acidification. While physiological tipping points of the effects of ocean acidification either do not exist or are not well defined, their direct effects on organism physiology will have flow on indirect effects. These indirect effects will cause ecologically tipping points in the future through changes in competition, herbivory and predation. Evidence for indirect effects and ecological change is mostly taken from benthic ecosystems in warm temperate–tropical locations in situ that have elevated CO2. Species abundances at these locations indicate a shift away from calcifying taxa and towards non-calcareous at high CO2 concentrations. For example, lower abundance of corals and coralline algae, and higher covers of non-calcareous macroalgae, often turfing species, at elevated CO2. However, there are some locations where only minor changes, or no detectable change occurs. Where ecological tipping points do occur, it is usually at locations with naturally elevated pCO2 concentrations of 500 μatm or more, which also corresponds to just under that concentrations where the direct physiological impacts of ocean acidification are detectable on the most sensitive taxa in laboratory research (coralline algae and corals). Collectively, the available data support the concern that ocean acidification will most likely cause ecological change in the near future in most benthic marine ecosystems, with tipping points in some ecosystems at as low as 500 μatm pCO2. However, much more further research is required to more adequately quantify and model the extent of these impacts in order to accurately project future marine ecosystem tipping points under ocean acidification.

Continue reading ‘Physiological and ecological tipping points caused by ocean acidification’

Response of foraminifera Ammonia confertitesta (T6) to ocean acidification, warming, and deoxygenation – an experimental approach

Ocean acidification, warmer temperatures, and the expansion of hypoxic zones in coastal areas are direct consequences of the increase in anthropogenic activities. However, so far, the combined effects of these stressors on calcium carbonate-secreting marine microorganisms – foraminifera are complex and poorly understood. This study reports the foraminiferal survival behavior, and geochemical trace elements incorporation measured from the shells of living cultured benthic foraminifera from the Gullmar fjord (Sweden) after exposure to warming, acidification, and hypoxic conditions. An experimental set-up was designed with two different temperatures (fjord’s in-situ 9 ˚C and 14 ˚C), two different oxygen concentrations (oxic versus hypoxic), and three different pH (control, medium, and low pH based on the IPCC scenario for the year 2100). Duplicate aquariums, meaning aquariums displaying the same conditions and same number of species, were employed for the controls and the two lower pH conditions at both temperatures. The stability of the aquariums was ensured by regular measurement of the water parameters and confirmed by statistical analysis. The species Ammonia confertitesta’s (T6) survival (CTB-labeled), shell calcification (calcein-labeled), and geochemical analyses (laser-ablation ICP-MS) were investigated at the end of the experimental period (48 days). Investigated trace elements (TE) ratios were Mg/Ca, Mn/Ca, Ba/Ca, and Sr/ Ca. Results show that A. confertitesta (T6) calcified chambers in all the experimental conditions except for the most severe combination of stressors (i.e., warm, hypoxic, low pH). Survival rates varied by up to a factor of two between duplicates for all conditions suggesting that foraminiferal response may not solely be driven by environmental conditions but also by internal or confounding factors (e.g., physiological stress). A large variability of all the TE/Ca values of foraminifera growing at low pH is observed suggesting that A. confertitesta (T6) may struggle to calcify in these conditions. Thus, this study demonstrates the vulnerability of a resilient species to the triple-stressor scenario in terms of survival, calcification, and trace element incorporation. Overall, the experimental set-up yielded coherent results compared to previous studies in terms of ontogeny, trace elements ratios, and partition coefficient making it advantageous for environmental reconstructions. 

Continue reading ‘Response of foraminifera Ammonia confertitesta (T6) to ocean acidification, warming, and deoxygenation – an experimental approach’

From individual to ecosystem: multi-stressor effects of acidification and warming on the physiological responses of coastal marine invertebrates

Climate change is directly impacting the services humans derive from the sea at an accelerated rate. Ocean warming and acidification (i.e., a decrease in ocean pH) are leading to modifications in population sizes and ecosystem functioning. The observed shifts in these higher order processes are a direct result of individuals’ responses (i.e., physiology, including metabolism, growth, calcification, and survival) occurring within communities. Natural variation in past environmental exposure experienced by individuals may lead to greater population resilience, or it may push individuals past physiological thresholds leading to increased sensitivity and vulnerability to climate change. Thus, we need to determine how individual-level physiological responses to climate change scale up to influence marine ecosystems. Rocky intertidal habitats are an ideal study system for evaluating the relationships between individual physiological responses, ecosystem functioning, and climate change. Tide pools possess unique thermal and pH environments and can be monitored under natural conditions or manipulated with field-experiments over daily and seasonal time scales, creating natural “experimental mesocosms”. In addition, many species within rocky intertidal habitats are exposed to environmental conditions close to their tolerance limits, increasing their potential vulnerability to climate change. In Chapter 1, by utilizing the unique thermal environments of tide pools, I showed that across small spatial scales (pools), thermal history influences thermal sensitivity of marine invertebrates for short-term time intervals (1-week and 1-day) and that this relationship differs seasonally and between species with differing traits, including mobility. This suggests that variability in thermal responses among individuals may allow for a natural buffer at a population level in response to climate change. Multiple stressors may affect individuals independently or interactively, amplifying or mitigating effects. Thus, to determine the impacts of climate change, in Chapter 2, I used a 6-month long field manipulation of ocean warming and acidification in tide pools. I examined the combined effects of warming and acidification on the shell structure (shell thickness and corrosion) and functional properties (shell strength) of the ecologically critical species, the Pacific blue mussel (Mytilus trossulus). Acidification led to thinner, weaker, and more corroded shells whereas combined warming and acidification resulted in an increase in shell strength. My results suggest that to some degree, warming may mitigate the negative impacts of acidification on this mollusk species. Lastly, in Chapter 3, I characterize how warming and acidification, individually and interactively, impact net ecosystem calcification and the individual and population-level mechanisms driving impacts on net ecosystem calcification. Net ecosystem calcification tended to increase during the day and decrease at night; however, addition of CO2 during the hottest months led to decreased net ecosystem calcification and increased dissolution during both day and night. I found that individual mussel metabolic rates increased significantly in the presence of elevated CO2 and increased daily maximum of pool temperatures. Through this individual-level pathway, pH and temperature had a strong impact on the metabolic rates of individuals ultimately resulting in changes in net ecosystem calcification. On the other hand, greater mussel abundance was associated with increased net ecosystem calcification. Yet, with the addition of CO2, calcification decreased even in pools with the highest abundance of mussels, indicating that there are other pathways by which changes in pH can drive alterations in net ecosystem calcification. My dissertation reveals how species’ traits and natural thermal variation from short-term to seasonal time scales influence metabolic sensitivity to future warming among individuals (Ch. 1), independent climate stressors can negatively impact shellfish in situ, whereas the combined interactive effects between multiple stressors can lead to mitigation of the negative impacts of a single stressor alone (Ch. 2), and that ecosystem-level consequences of climate change are mediated by the abundance of dominant calcifiers and that this effect is dependent on the magnitude of acidification and warming (Ch. 3).

Continue reading ‘From individual to ecosystem: multi-stressor effects of acidification and warming on the physiological responses of coastal marine invertebrates’

Impact of dissolved CO2 on calcification in two large, benthic foraminiferal species

Rising atmospheric CO2 shifts the marine inorganic carbonate system and decreases seawater pH, a process often abbreviated to ‘ocean acidification’. Since acidification decreases the saturation state for crystalline calcium carbonate (e.g., calcite and aragonite), rising dissolved CO2 levels will either increase the energy demand for calcification or reduce the total amount of CaCO3 precipitated. Here we report growth of two large benthic photosymbiont-bearing foraminifera, Heterostegina depressa and Amphistegina lessonii, cultured at four different ocean acidification scenarios (400, 700, 1000 and 2200 ppm atmospheric pCO2). Using the alkalinity anomaly technique, we calculated the amount of calcium carbonate precipitated during the incubation and found that both species produced the most carbonate at intermediate CO2 levels. The chamber addition rates for each of the conditions were also determined and matched the changes in alkalinity. These results were complemented by micro-CT scanning of selected specimens to visualize the effect of CO2 on growth. The increased chamber addition rates at elevated CO2 concentrations suggest that both foraminifera species can take advantage of the increased availability of the inorganic carbon, despite a lower saturation state. This adds to the growing number of reports showing the variable response of foraminifera to elevated CO2 concentrations, which is likely a consequence of differences in calcification mechanisms.

Continue reading ‘Impact of dissolved CO2 on calcification in two large, benthic foraminiferal species’

Brown seaweed Nemacystus decipiens intensifies the effects of ocean acidification on coral Montipora digitata

Photosynthetic marine macrophytes such as seaweeds have been proposed to provide habitat refugia for marine calcifiers against ocean acidification (OA) by increasing the local pH. However, the effectiveness of seaweed as a potential habitat refugia for marine calcifiers such as corals remains to be investigated. This study focused on the seaweed Nemacystus decipiens, which are widely farmed in the shallow reef lagoon of Okinawa coral reefs, Japan, and aimed to evaluate their response to high pCO2 and whether they can mitigate the effect of high pCO2 on the coral Montipora digitata. Corals were cultured with and without seaweed under control (300–400 μatm) or high pCO2 conditions (OA, 900–1000 μatm) for 2 weeks. Results showed that all photo-physiological parameters examined in the seaweed N. decipiens were not affected by high pCO2, suggesting that OA will not positively affect their productivity. The calcification rate of the coral M. digitata was found to decrease under OA and the effect was further exaggerated by the presence of seaweed. The present study suggests that farming seaweeds will not act as a potential habitat refugia for adjacent corals under future OA, but instead can exaggerate the negative effect of OA on coral calcification.

Continue reading ‘Brown seaweed Nemacystus decipiens intensifies the effects of ocean acidification on coral Montipora digitata’

Seasonal production dynamics of high latitude seaweeds in a changing ocean: implications for bottom-up effects on temperate coastal food webs

As the oceans absorb excess heat and CO2 from the atmosphere, marine primary producers face significant changes to their abiotic environments and their biotic interactions with other species. Understanding the bottom-up consequences of these effects on marine food webs is essential to informing adaptive management plans that can sustain ecosystem and cultural services. In response to this need, this dissertation provides an in-depth consideration of the effects of global change on foundational macroalgal (seaweed) species in a poorly studied, yet highly productive region of our world’s oceans. To explore how seaweeds within seasonally dynamic giant kelp forest ecosystems will respond to ocean warming and acidification, I employ a variety of methods: year-round environmental monitoring using an in situ sensor array, monthly subtidal community surveys, and a series of manipulative experiments. I find that a complementary phenology of macroalgal production currently characterizes these communities, providing complex habitat and a nutritionally diverse energy supply to support higher trophic levels throughout the year. I also find that future ocean warming and acidification will lead to substantial shifts in the phenology, quantity and quality of macroalgal production in these systems. My results suggest that the giant kelp Macrocystis pyrifera may be relatively resilient to the effects of global change in future winter and summer seasons at high latitudes. In contrast, the calcifying coralline algae Bossiella orbigniana and Crusticorallina spp. and the understory kelps Hedophyllum nigripes and Neoagarum fimbriatum will experience a suite of negative impacts, especially in future winter conditions. The resulting indirect effects on macroalgal-supported coastal food webs will be profound, with projected reductions in habitat and seasonal food supply on rocky reefs. Coming at a time of heightened interest in seaweed production potential at high latitudes, this dissertation provides a comprehensive evaluation of the future of these foundational organisms in a changing environment.

Continue reading ‘Seasonal production dynamics of high latitude seaweeds in a changing ocean: implications for bottom-up effects on temperate coastal food webs’

Ontogenetic differences in the response of the cold-water coral Caryophyllia huinayensis to ocean acidification, warming and food availability


  • Response to multiple stressors differs between cold-water coral life stages.
  • Elevated temperature and reduced feeding have the strongest effect.
  • Highest mortality occurs in adult corals.
  • Calcification rates decrease the most in juvenile corals.
  • Three-month delay in response to changing environmental conditions.


Cold-water corals (CWCs) are considered vulnerable to environmental changes. However, previous studies have focused on adult CWCs and mainly investigated the short-term effects of single stressors. So far, the effects of environmental changes on different CWC life stages are unknown, both for single and multiple stressors and over long time periods. Therefore, we conducted a six-month aquarium experiment with three life stages of Caryophyllia huinayensis to study their physiological response (survival, somatic growth, calcification and respiration) to the interactive effects of aragonite saturation (0.8 and 2.5), temperature (11 and 15 °C) and food availability (8 and 87 μg C L−1). The response clearly differed between life stages and measured traits. Elevated temperature and reduced feeding had the greatest effects, pushing the corals to their physiological limits. Highest mortality was observed in adult corals, while calcification rates decreased the most in juveniles. We observed a three-month delay in response, presumably because energy reserves declined, suggesting that short-term experiments overestimate coral resilience. Elevated summer temperatures and reduced food supply are likely to have the greatest impact on live CWCs in the future, leading to reduced coral growth and population shifts due to delayed juvenile maturation and high adult mortality.

Continue reading ‘Ontogenetic differences in the response of the cold-water coral Caryophyllia huinayensis to ocean acidification, warming and food availability’

Constraining oceanic carbonate chemistry evolution during the Cretaceous-Paleogene transition: combined benthic and planktonic calcium isotope records from the equatorial Pacific Ocean

The Mesozoic-Cenozoic transition is a period of biogeochemical cycle perturbations. The strongest of them is the Cretaceous-Paleogene boundary (K-Pg) crisis, characterized by one of the most important extinctions of planktonic marine calcifiers in Earth’s history. One of the primary drivers of this biocalcification crisis is thought to be the increase in atmospheric CO2 concentration and ocean acidification triggered by the Chicxulub Impact, and/or Deccan volcanism. Because it reflects changes of the calcium cycle and/or depends on parameters of the carbonate system, the Ca isotope composition of carbonate minerals precipitated from seawater (44/40Ca) offers the potential to reconstruct some of the environmental changes that occurred. Here we present new high-resolution planktonic and benthic foraminiferal 44/40Ca, 18O, 13C, and Sr/Ca records across the K-Pg transition from Shatsky rise (Leg 198; ODP Site 1209, Hole C). The 44/40Ca record displays a succession of rapid shifts of ca. ‰−0.4‰ across the K-Pg transition. They are similar though not identical between the planktonic and benthic records. These shifts took place on a timescale significantly shorter than the residence time of Ca in the oceans and are therefore unlikely to result from global disequilibrium in the oceanic Ca budget. Instead, changes in the fractionation factor between carbonate minerals and seawater in response to changes in precipitation rates may explain the observed 44/40Ca and Sr/Ca record. The benthic and planktonic 44/40Ca records show a late Maastrichtian and an early Danian negative excursions best explained by a succession of episodes of ocean alkalinity increase related to increased continental weathering caused by CO2 emissions from Deccan volcanism and the aftermath of the K-Pg biocalcification crisis. Carbonate compensation via carbonate sediment dissolution, biological carbonate compensation via reduction of biocalcification, and/or an increase in continental weathering must have occurred to offset the excess CO2, ultimately resulting in rapid changes in ocean carbonate chemistry, in combination with reduced surface alkalinity export in response to the early Paleogene planktonic biomineralization crisis.

Continue reading ‘Constraining oceanic carbonate chemistry evolution during the Cretaceous-Paleogene transition: combined benthic and planktonic calcium isotope records from the equatorial Pacific Ocean’

Model development to assess carbon fluxes during shell formation in blue mussels

In order to quantify the amount of carbonate, precipitated as calcium-carbonate in the shells of blue mussel (Mytilus edulis) in a temperate climate, an existing Dynamic Energy Budget (DEB) model for the blue mussel was adapted by separating shell growth from soft tissue growth. Hereby, two parameters were added to the original DEB-model, a calcification cost [J/mgCaCO3] and an energy allocation fraction [-], which resulted in the energy allocated for structural growth being divided between shell and meat growth. As values for these new parameters were lacking, they were calibrated by fitting the model to field data. Calibration results showed that an Energy allocation fraction of 0.5 and a calcification cost of 0.9 J/mgCaCO3, resulted in the best fit when fitted on 2017 and 2018 field data separately. These values however, show the best fit for data obtained within the first couple of years of the shellfish life, and do not take later years into account. Also it could be discussed that some parameters vary throughout the lifespan of the species. The results were compared to a regular DEB model, where the shell output was calculated through a simple allometric relationship. It is sometimes assumed that the carbon storage in shell material as calcium carbonate could be regarded as a form of carbon sequestration, with a positive impact on the atmospheric CO2 concentrations. However, studies on the physical-chemical processes related to shell formation have shown that from an oceanographic perspective, shell formation should be regarded as a source of atmospheric CO2 rather than a sink. The removal of carbonates, through the biocalcification process, reduces the buffer capacity (alkalinity) of the water to store CO2. As a result CO2 is released from the water to the atmosphere when shell material is formed. The actual amount of CO2 that escapes from the water to the atmosphere as a result of biocalcification depends strongly on local water characteristics. In this study, the effect of calcification by mussels on the CO2 flux to the atmosphere is studied using an adapted DEB model where energy costs of calcification are modelled explicitly. The model was subsequently run under two future climate scenarios, (RCP 4.5 and RCP 8.3) with elevated temperature and decreased pH, and the total released CO2 as a result of shell formation was calculated with the SeaCarb model. This showed growth of mussels, under future climate conditions to be slower, and with that the cumulative shell mass and carbonate precipitated to CaCO3 to decrease. Yet the amount of CO2 released, due to biocalcification, increased. This is due to the fact that the amount of CO2 released/gr of CaCO3 precipitated will be higher, as a result of the decreased buffering capacity of seawater under future climatic environmental conditions.

In summary the conclusions of the project were:

  • Biocalcification (shell formation) of marine organisms, such as bivalves, cannot be regarded as a process resulting in negative CO2 emission to the atmosphere;
  • The actual amount of CO2 that, due to biocalcification, is released from the water to the atmosphere depends on the physicochemical characteristics of the water, which are influenced by (future) climate conditions;
  • Our first model calculations suggest that at future climate conditions mussel’s grow rate will be somewhat reduced. While the amount of CO2 that due to biocalcification, escapes to the atmosphere during its life-time will slightly increase. Making the ratio of g CO2 release/g CaCO3 precipitated slightly higher;
  • Our model calculations should be considered an exercise rather than a definite prediction of how mussels will respond to future climate scenarios. Additional information/experimentation is strongly needed to validate the model settings, and to test the validity of the above mentioned outcome of the model.
Continue reading ‘Model development to assess carbon fluxes during shell formation in blue mussels’

Differences in carbonate chemistry up-regulation of long-lived reef-building corals

With climate projections questioning the future survival of stony corals and their dominance as tropical reef builders, it is critical to understand the adaptive capacity of corals to ongoing climate change. Biological mediation of the carbonate chemistry of the coral calcifying fluid is a fundamental component for assessing the response of corals to global threats. The Tara Pacific expedition (2016–2018) provided an opportunity to investigate calcification patterns in extant corals throughout the Pacific Ocean. Cores from colonies of the massive Porites and Diploastrea genera were collected from different environments to assess calcification parameters of long-lived reef-building corals. At the basin scale of the Pacific Ocean, we show that both genera systematically up-regulate their calcifying fluid pH and dissolved inorganic carbon to achieve efficient skeletal precipitation. However, while Porites corals increase the aragonite saturation state of the calcifying fluid (Ωcf) at higher temperatures to enhance their calcification capacity, Diploastrea show a steady homeostatic Ωcf across the Pacific temperature gradient. Thus, the extent to which Diploastrea responds to ocean warming and/or acidification is unclear, and it deserves further attention whether this is beneficial or detrimental to future survival of this coral genus.

Continue reading ‘Differences in carbonate chemistry up-regulation of long-lived reef-building corals’

  • Reset


OA-ICC Highlights

%d bloggers like this: