Posts Tagged 'calcification'

Cessation of hardground accretion by the cold-water coralline algae Clathromorphum compactum and Clathromorphum nereostratum predicted within two centuries

Ocean acidification and warming are expected to disproportionately affect high-latitude calcifying species, such as crustose coralline algae. Clathromorphum nereostratum and Clathromorphum compactum are the primary builders of carbonate-hardgrounds in the Aleutians Islands of Alaska and North Atlantic shelf, respectively, providing habitat and settlement substrates for a large number of species. We exposed wild-collected specimens to 12 pCO2/T treatments (344–3322 μatm; 6.38–12.40°C) for 4 months in a factorially crossed, replicated laboratory experiment. Impacts of pCO2/T on algal calcification were quantified from linear extension and buoyant weight. Here we show that, despite belonging to the same genus, Cnereostratum exhibited greater sensitivity to thermal stress, while Ccompactum exhibited greater sensitivity to pH stress. Furthermore, multivariate models of algal calcification derived from the experiment indicate that both Cnereostratum and Ccompactum will commence net dissolution as early as 2120 and 2200 AD, respectively. Our results therefore indicate that near-term climate change may lead to substantial degradation of these species and loss of the critical hardground habitats that they form.

Continue reading ‘Cessation of hardground accretion by the cold-water coralline algae Clathromorphum compactum and Clathromorphum nereostratum predicted within two centuries’

Natural analogues in pH variability and predictability across the coastal Pacific estuaries: extrapolation of the increased oyster dissolution under increased pH amplitude and low predictability related to ocean acidification

Coastal-estuarine habitats are rapidly changing due to global climate change, with impacts influenced by the variability of carbonate chemistry conditions. However, our understanding of the responses of ecologically and economically important calcifiers to pH variability and temporal variation is limited, particularly with respect to shell-building processes. We investigated the mechanisms driving biomineralogical and physiological responses in juveniles of introduced (Pacific; Crassostrea gigas) and native (Olympia; Ostrea lurida) oysters under flow-through experimental conditions over a six-week period that simulate current and future conditions: static control and low pH (8.0 and 7.7); low pH with fluctuating (24-h) amplitude (7.7 ± 0.2 and 7.7 ± 0.5); and high-frequency (12-h) fluctuating (8.0 ± 0.2) treatment. The oysters showed physiological tolerance in vital processes, including calcification, respiration, clearance, and survival. However, shell dissolution significantly increased with larger amplitudes of pH variability compared to static pH conditions, attributable to the longer cumulative exposure to lower pH conditions, with the dissolution threshold of pH 7.7 with 0.2 amplitude. Moreover, the high-frequency treatment triggered significantly greater dissolution, likely because of the oyster’s inability to respond to the unpredictable frequency of variations. The experimental findings were extrapolated to provide context for conditions existing in several Pacific coastal estuaries, with time series analyses demonstrating unique signatures of pH predictability and variability in these habitats, indicating potentially benefiting effects on fitness in these habitats. These implications are crucial for evaluating the suitability of coastal habitats for aquaculture, adaptation, and carbon dioxide removal strategies.

Continue reading ‘Natural analogues in pH variability and predictability across the coastal Pacific estuaries: extrapolation of the increased oyster dissolution under increased pH amplitude and low predictability related to ocean acidification’

Understanding the impacts of environment and parasitism on Eastern oyster (Crassostrea virginica) vulnerability to ocean acidification

The global process of ocean acidification caused by the absorption of increased atmospheric carbon dioxide decreases the concentration of carbonate ions and reduces the associated seawater saturation state (ΩCaCO3) – making it more energetically costly for marine calcifying organisms to build their shells or skeletons. Bivalves are particularly vulnerable to the adverse effects of ocean acidification on calcification, and they inhabit estuaries and coastal zones – regions most susceptible to ocean acidification. However, the response of an individual to elevated pCO2 can depend on the carbonate chemistry dynamics of its current environment and the environment of its parents. Additionally, an organism’s response to ocean acidification can depend on its ability to control the chemistry at the site of calcification. Biotic and abiotic stressors can modify bivalves’ control of calcifying fluid chemistry – known as extrapallial fluid (EPF). Understanding the responses of bivalves – which are foundation species – to ocean acidification is essential for predicting the impacts of oceanic change on marine communities. This dissertation uses a culturally, ecologically, and economically important bivalve in the northwest Atlantic – the Eastern oyster (Crassostrea virginica) – to explore the effects of environment and species interactions on responses to elevated pCO2.

Chapter 2 describes a field study that characterized diurnal and seasonal carbonate chemistry dynamics of two estuaries in the Gulf of Maine that support Eastern oyster populations. The estuaries were monitored at high temporal resolution (half-hourly) over four years (2018-2021) using pH and conductivity loggers. Measured pH, salinity, and temperature were used to calculate carbonate chemistry parameters. Both estuaries exhibited strong seasonal and diurnal fluctuations in carbonate chemistry. They also experienced pCO2 values that greatly exceeded current atmospheric carbon dioxide levels and those projected for the year 2100.

Chapter 3 describes a laboratory experiment that examined the capacity of intergenerational exposure to mitigate the adverse effects of ocean acidification on larval growth, shell morphology, and survival. Adult oysters were cultured in control or elevated pCO2 conditions for 30 days then crossed using a North Carolina II cross design. Larvae were grown for three days under control and elevated pCO2 conditions. Intergenerational exposure to elevated pCO2 conditions benefited early larval growth and shell morphology, but not survival. However, parental exposure was insufficient to completely counteract the adverse effects of the elevated pCO2 treatment on shell formation and survival.

Chapter 4 describes a laboratory experiment that examined the interplay between ocean acidification and parasite-host dynamics. Eastern oysters infested and not infested with bioeroding sponge (Cliona sp.) were cultured under three pCO2 conditions (539, 1040, 3294 ppm) and two temperatures (23, 27˚C) for 70 days to assess oyster control of EPF chemistry, growth, and survival. Bioeroding sponge infestation and elevated pCO2 reduced oyster net calcification and EPF pH but did not affect condition or survival. Infested oyster EPF pH was consistently lower than seawater pH, while EPF dissolved inorganic carbon was consistently elevated relative to seawater. These findings suggested that infested oysters effectively precipitated repair shell to prevent seawater intrusion into extrapallial fluid through bore holes across all treatments.

Chapter 5 characterizes the concentration of a suite of 56 elements normalized to calcium in EPF and shell of Crassostrea virginica grown under three pCO2 conditions (570, 990, 2912 ppm) and sampled at four timepoints (days 2, 9, 79, 101) to assess effects of pCO2 on organismal control of EPF and shell elemental composition and EPF-to-shell elemental partitioning. Elevated pCO2 significantly influenced the relative abundance of elements in the EPF (29) and shell (13) and altered EPF-to-shell elemental partitioning for 45 elements. Importantly, elevated pCO2 significantly influenced the concentration of several elements in C. virginica shell that are used in other biogenic carbonates as paleo-proxies for other environmental parameters. This result suggests that elevated pCO2 could influence the accuracy of paleo reconstructions.

Overall, this dissertation provides insights that can help improve our understanding of past, present, and future ocean environments. Understanding current local carbonate chemistry dynamics and the capacity for C. virginica to acclimate intergenerationally to elevated pCO2 can inform site and stock selection for aquaculture and restoration efforts. Studying parasite-host environment interactions provides critical insights into the potential for parasitism to alter responses to future ocean acidification. Finally, exploring the impact of elevated pCO2 on elemental composition of EPF and shell allowed us to understand better biomineralization processes, identify potential proxies for seawater pCO2 in bivalves, and offer insights that could help improve the accuracy of paleo reconstructions.

Continue reading ‘Understanding the impacts of environment and parasitism on Eastern oyster (Crassostrea virginica) vulnerability to ocean acidification’

Effects of seawater pCO2 on the skeletal morphology of massive Porites spp. corals

Ocean acidification alters the dissolved inorganic carbon chemistry of seawater and can reduce the calcification rates of tropical corals. Here we explore the effect of altering seawater pCO2 on the skeletal morphology of 4 genotypes of massive Porites spp. which display widely different calcification rates. Increasing seawater pCO2 causes significant changes in in the skeletal morphology of all Porites spp. studied regardless of whether or not calcification was significantly affected by seawater pCO2. Both the median calyx size and the proportion of skeletal surface occupied by the calices decreased significantly at 750 µatm compared to 400 µatm indicating that polyp size shrinks in this genus in response to ocean acidification. The coenosteum, connecting calices, expands to occupy a larger proportion of the coral surface to compensate for this decrease in calyx area. At high seawater pCO2 the spines deposited at the skeletal surface became more numerous and the trabeculae (vertical skeletal pillars) became significantly thinner in 2 of the 4 genotypes. The effect of high seawater pCO2 is most pronounced in the fastest growing coral and the regular placement of trabeculae and synapticulae is disturbed in this genotype resulting in a skeleton that is more randomly organised. The study demonstrates that ocean acidification decreases the polyp size and fundamentally alters the architecture of the skeleton in this major reef building species from the Indo-Pacific Ocean.

Continue reading ‘Effects of seawater pCO2 on the skeletal morphology of massive Porites spp. corals’

Effect of low pH on growth and shell mechanical properties of the Peruvian scallop Argopecten purpuratus (Lamarck, 1819)


  • Argopecten purpuratus shell growth was reduced by 9% in low pH exposure.
  • A. purpuratus net calcification was reduced about 10% in low pH exposure.
  • Shell microhardness of A. purpuratus was positively affected by low pH.


Dissolution of anthropogenic CO2 modifies seawater pH, leading to ocean acidification, which might affect calcifying organisms such as bivalve mollusks. Along the Peruvian coast, however, natural conditions of low pH (7.6–8.0) are encountered in the habitat of the Peruvian scallop (Argopecten purpuratus), as a consequence of the nearby coastal upwelling influence. To understand the effects of low pH in a species adapted to these environmental conditions, an experiment was performed to test its consequences on growth, calcification, dissolution, and shell mechanical properties in juvenile Peruvian scallops. During 28 days, scallops (initial mean height = 14 mm) were exposed to two contrasted pH conditions: a control with unmanipulated seawater presenting pH conditions similar to those found in situ (pHT = 7.8) and a treatment, in which CO2 was injected to reduce pH to 7.4. At the end of the experiment, shell height and weight, and growth and calcification rates were reduced about 6%, 20%, 9%, and 10% respectively in the low pH treatment. Mechanical properties, such as microhardness were positively affected in the low pH condition and crushing force did not show differences between pH treatments. Final soft tissue weights were not significantly affected by low pH. This study provides evidence of low pH change shell properties increasing the shell microhardness in Peruvian scallops, which implies protective functions. However, the mechanisms behind this response need to be studied in a global change context.

Continue reading ‘Effect of low pH on growth and shell mechanical properties of the Peruvian scallop Argopecten purpuratus (Lamarck, 1819)’

The coral reef-dwelling Peneroplis spp. shows calcification recovery to ocean acidification conditions

Large Benthic Foraminifera are a crucial component of coral-reef ecosystems, which are currently threatened by ocean acidification. We conducted culture experiments to evaluate the impact of low pH on survival and test dissolution of the symbiont-bearing species Peneroplis spp., and to observe potential calcification recovery when specimens are placed back under reference pH value (7.9). We found that Peneroplis spp. displayed living activity up to 3 days at pH 6.9 (Ωcal < 1) or up to 1 month at pH 7.4 (Ωcal > 1), despite the dark and unfed conditions. Dissolution features were observed under low Ωcal values, such as changes in test density, peeled extrados layers, and decalcified tests with exposed organic linings. A new calcification phase started when specimens were placed back at reference pH. This calcification’s resumption was an addition of new chambers without reparation of the dissolved parts, which is consistent with the porcelaneous calcification pathway of Peneroplis spp. The most decalcified specimens displayed a strong survival response by adding up to 8 new chambers, and the contribution of food supply in this process was highlighted. These results suggest that porcelaneous LBF species have some recovery abilities to short exposure (e.g., 3 days to 1 month) to acidified conditions. However, the geochemical signature of trace elements in the new calcite was impacted, and the majority of the new chambers were distorted and resulted in abnormal tests, which might hinder the specimens’ reproduction and thus their survival on the long term.

Continue reading ‘The coral reef-dwelling Peneroplis spp. shows calcification recovery to ocean acidification conditions’

Effects of seawater acidification on echinoid adult stage: a review

The continuous release of CO2 in the atmosphere is increasing the acidity of seawater worldwide, and the pH is predicted to be reduced by ~0.4 units by 2100. Ocean acidification (OA) is changing the carbonate chemistry, jeopardizing the life of marine organisms, and in particular calcifying organisms. Because of their calcareous skeleton and limited ability to regulate the acid–base balance, echinoids are among the organisms most threatened by OA. In this review, 50 articles assessing the effects of seawater acidification on the echinoid adult stage have been collected and summarized, in order to identify the most important aspects to consider for future experiments. Most of the endpoints considered (i.e., related to calcification, physiology, behaviour and reproduction) were altered, highlighting how various and subtle the effects of pH reduction can be. In general terms, more than 43% of the endpoints were modified by low pH compared with the control condition. However, animals exposed in long-term experiments or resident in CO2-vent systems showed acclimation capability. Moreover, the latitudinal range of animals’ distribution might explain some of the differences found among species. Therefore, future experiments should consider local variability, long-term exposure and multigenerational approaches to better assess OA effects on echinoids.

Continue reading ‘Effects of seawater acidification on echinoid adult stage: a review’

Coral calcification mechanisms in a warming ocean and the interactive effects of temperature and light

Ocean warming is transforming the world’s coral reefs, which are governed by the growth of marine calcifiers, most notably branching corals. Critical to skeletal growth is the corals’ regulation of their internal chemistry to promote calcification. Here we investigate the effects of temperature and light on the calcifying fluid chemistry (using boron isotope systematics), calcification rates, metabolic rates and photo-physiology of Acropora nasuta during two mesocosm experiments simulating seasonal and static temperature and light regimes. Under the seasonal regime, coral calcification rates, calcifying fluid carbonate chemistry, photo-physiology and metabolic productivity responded to both changes in temperature and light. However, under static conditions the artificially prolonged exposure to summer temperatures resulted in heat stress and a heightened sensitivity to light. Our results indicate that temperature and light effects on coral physiology and calcification mechanisms are interactive and context-specific, making it essential to conduct realistic multi-variate dynamic experiments in order to predict how coral calcification will respond to ocean warming.

Continue reading ‘Coral calcification mechanisms in a warming ocean and the interactive effects of temperature and light’

The combined effects of ocean acidification and copper on the physiological responses of the tropical coral Stylophora pistillata


  • Exposure to increased Cu concentrations suppressed coral calcification.
  • Calcification was suppressed further when exposed to Cu under high pCO2.
  • Respiration decreased after two weeks when stressors were applied in combination.


A decrease in ocean pH of 0.3 units will likely double the proportion of dissolved copper (Cu) present as the free metal ion, Cu2+, the most bioavailable form of Cu, and one of the most common marine pollutants. We assess the impact of ocean acidification and Cu, separately and in combination, on calcification, photosynthesis and respiration of sub-colonies of a single tropical Stylophora pistillata colony. After 15 days of treatment, total calcification rates were significantly decreased in corals exposed to high seawater pCO2 (∼1000-μatm, 2100 scenario) and at both ambient (1.6–1.9 nmols) and high (2.5–3.6 nmols) dissolved Cu concentrations compared to controls. The effect was increased when both stressors were combined. Coral respiration rates were significantly reduced by the combined stressors after 2 weeks of exposure, indicating the importance of experiment duration. It is therefore likely rising atmospheric CO2 will exacerbate the negative effects of Cu pollution to S. pistillata.

Continue reading ‘The combined effects of ocean acidification and copper on the physiological responses of the tropical coral Stylophora pistillata’

Meta-analysis reveals variance in tolerance to climate change across marine trophic levels


  • First meta-analysis to determine climate change impacts on marine trophic levels
  • Extensive compilations of results from 1278 experiments, spanning 236 species and 18 phyla
  • Multi-level meta-analytic approach was used to deal with data non-independency.
  • Herbivore was the most sensitive level to climate change.
  • Higher trophic levels show stronger tolerance to climatic stressor.


Marine ecosystems are currently facing a variety of anthropogenic perturbations, including climate change. Trophic differences in response to climate change may disrupt ecological interactions and thereby threaten marine ecosystem function. Yet, we still do not have a comprehensive understanding of how different trophic levels respond to climate change stressors in marine ecosystems. By including 1278 experiments, comprising 236 different marine species from 18 different phyla in a meta-analysis of studies measuring the direct effect of ocean acidification and ocean warming on marine organisms, we found that higher trophic level species display greater tolerance to ocean acidification but greater sensitivity to warming. In contrast, marine herbivores were the most vulnerable trophic level to both acidification and warming. Such imbalances in the community and a general reduction of biodiversity and biomass in lower trophic levels can significantly disrupt the system and could drive negative bottom-up effects. In conclusion, with ocean acidification and elevated temperatures, there is an alarming risk that trophic disparity may disrupt species interactions, and thereby drive community destabilization under ocean climate change.

Continue reading ‘Meta-analysis reveals variance in tolerance to climate change across marine trophic levels’

Physiological acclimatization in Hawaiian corals following a 22-month shift in baseline seawater temperature and pH

Climate change poses a major threat to coral reefs. We conducted an outdoor 22-month experiment to investigate if coral could not just survive, but also physiologically cope, with chronic ocean warming and acidification conditions expected later this century under the Paris Climate Agreement. We recorded survivorship and measured eleven phenotypic traits to evaluate the holobiont responses of Hawaiian coral: color, Symbiodiniaceae density, calcification, photosynthesis, respiration, total organic carbon flux, carbon budget, biomass, lipids, protein, and maximum Artemia capture rate. Survivorship was lowest in Montipora capitata and only some survivors were able to meet metabolic demand and physiologically cope with future ocean conditions. Most M. capitata survivors bleached through loss of chlorophyll pigments and simultaneously experienced increased respiration rates and negative carbon budgets due to a 236% increase in total organic carbon losses under combined future ocean conditions. Porites compressa and Porites lobata had the highest survivorship and coped well under future ocean conditions with positive calcification and increased biomass, maintenance of lipids, and the capacity to exceed their metabolic demand through photosynthesis and heterotrophy. Thus, our findings show that significant biological diversity within resilient corals like Porites, and some genotypes of sensitive species, will persist this century provided atmospheric carbon dioxide levels are controlled. Since Porites corals are ubiquitous throughout the world’s oceans and often major reef builders, the persistence of this resilient genus provides hope for future reef ecosystem function globally.

Continue reading ‘Physiological acclimatization in Hawaiian corals following a 22-month shift in baseline seawater temperature and pH’

Global predictions of coral reef dissolution in the Anthropocene

Arising from K. Davis et al. Communications Earth & Environment (2021)

Coral reef frameworks are constructed by calcifying organisms and are highly sensitive to ocean acidification. Shifting baselines in seawater chemistry have already had measurable impacts on net ecosystem calcification (Gnet) on coral reefs1, and projections of ocean acidification portray a poor future for reefs in the Anthropocene2. While experimental approaches have revealed much about this trajectory, we lack a clear understanding of: i) the drivers and predictors of net calcification at ecosystem scales, and ii) accurate predictions of when ecosystem calcification will reach net dissolution in the 21st century.

Through a meta-analysis approach, the recent study in Communications Earth & Environment by Davis et al.3 provides important insights into ecosystem-scale calcification on coral reefs. Based upon 53 publications spanning 36 coral reef sites around the world, the study provides a more nuanced understanding of the global drivers of Gnet. Cover of reef calcifiers (predominantly corals) and depth are key predictors of global ecosystem calcification, with evidence of seasonality and wave action as additional factors influencing Gnet3. The meta-analysis outlines important knowledge gaps and research needs and highlights the limited data available for assessing changes in ecosystem calcification at the same reefs through time.

Under future projections, ocean acidification is expected to shift coral reefs from a state of net calcification to net dissolution through reductions in pH and aragonite saturation states (Ωa)4,5. The exact timing of this is unclear, in part due to methodological differences, but estimates of when coral reefs will cross a tipping point to net dissolution vary substantially from 2031 to 20826, 20707, and 2060 to 20804. Through the compilation of Gnet from a subset of sites with repeated measurements (6 of the 36 available coral reefs; n = 29 of the available 116 surveys), Davis et al.3 extrapolate linear predictions of Gnet decline (1975–2017) to conclude that average global net-zero calcification will occur around the year 2054, based on a decline in Gnet of 4.3 ± 1.9% yr−1.

Extrapolating estimates of Gnet into the 21st century based upon the available historical data is complex. We identify four issues with this approach:

Continue reading ‘Global predictions of coral reef dissolution in the Anthropocene’

Multiple-stressor effects of ocean acidification, warming and predation risk cues on the early ontogeny of a rocky-shore keystone gastropod


  • Snail feeding was reduced by Non-Consumptive Effects (NCEs) of a predatory crab.
  • Snail feeding was not reduced by ocean acidification (OA) and warming (OW).
  • Snail tenacity was reduced by OA but only under predatory crab NCEs.
  • Snail survival and growth were resilient to OA, OW and NCEs.


To understand how climate change stressors might affect marine organisms and support adequate projections it is important to know how multiple stressors may be modulated by the presence of other species. We evaluated the direct effects of ocean warming (OW) and ocean acidification (OA) together with non-consumptive effects (NCEs) of the predatory crab Acanthocyclus hassleri on early ontogeny fitness-related traits of the commercially important rocky-shore keystone gastropod Concholepas concholepas. We measured the response of nine traits to these stressors at either the organismal level (survival, growth, feeding rates, tenacity, metabolic rate, calcification rate) or sub-organismal level (nutritional status, ATP-supplying capacity, stress condition). C. concholepas survival was not affected by any of the stressors. Feeding rates were not affected by OW or OA; however, they were reduced in the presence of crab NCEs compared with control conditions. Horizontal tenacity was affected by the OA × NCEs interaction; in the presence of NCEs, OA reduced tenacity. The routine metabolic rate, measured by oxygen consumption, increased significantly with OW. Nutritional status assessment determined that carbohydrate content was not affected by any of the stressors. However, protein content was affected by the OA × NCEs interaction; in the absence of NCEs, OA reduced protein levels. ATP-supplying capacity, measured by citrate synthase (CS) activity, and cellular stress condition (HSP70 expression) were reduced by OA, with reduction in CS activity found particularly at the high temperature. Our results indicate C. concholepas traits are affected by OA and OW and the effects are modulated by predator risk (NCEs). We conclude that some C. concholepas traits are resilient to climate stressors (survival, growth, horizontal tenacity and nutritional status) but others are affected by OW (metabolic rate), OA (ATP-supplying capacity, stress condition), and NCEs (feeding rate). The results suggest that these negative effects can adversely affect the associated community.

Continue reading ‘Multiple-stressor effects of ocean acidification, warming and predation risk cues on the early ontogeny of a rocky-shore keystone gastropod’

Marginal reefs under stress: physiological limits render Galápagos corals susceptible to ocean acidification and thermal stress


Ocean acidification (OA) and thermal stress may undermine corals’ ability to calcify and support diverse reef communities, particularly in marginal environments. Coral calcification depends on aragonite supersaturation (Ω » 1) of the calcifying fluid (cf) from which the skeleton precipitates. Corals actively upregulate pHcf relative to seawater to buffer against changes in temperature and dissolved inorganic carbon, which together control Ωcf. Here we assess the buffering capacity of modern and fossil corals from the Galápagos Islands that have been exposed to sub-optimal conditions, extreme thermal stress, and OA. We demonstrate a significant decline in pHcf and Ωcf since the pre-industrial era, trends which are exacerbated during extreme warm years. These results suggest that there are likely physiological limits to corals’ pH buffering capacity, and that these constraints render marginal reefs particularly susceptible to OA.

Plain Language Summary

Reef-building corals regulate their internal environment to permit rapid growth, which is critical for creating the structure and function of coral reefs. However, we demonstrate that there are finite limits to the ability of corals to regulate their internal chemistry to optimize growth. This limitation will leave corals susceptible to ocean warming and acidification, particularly in sub-optimal environments. Galápagos corals already display signs of stress and an inability to maintain an optimal internal growth environment from the eighteenth century to today.

Continue reading ‘Marginal reefs under stress: physiological limits render Galápagos corals susceptible to ocean acidification and thermal stress’

Coupled changes in pH, temperature and dissolved oxygen impact the physiology and ecology of herbivorous kelp forest grazers

Understanding species’ responses to upwelling may be especially important in light of ongoing environmental change. Upwelling frequency and intensity are expected to increase in the future, while ocean acidification and deoxygenation are expected to decrease the pH and dissolved oxygen of upwelled waters. However, the acute effects of a single upwelling event and the integrated effects of multiple upwelling events on marine organisms are poorly understood. Here, we use in situ measurements of pH, temperature, and dissolved oxygen to characterize the covariance of environmental conditions within upwelling-dominated kelp forest ecosystems. We then test the effects of acute (0-3 days) and chronic (1-3 month) upwelling on the performance of two species of kelp forest grazers, the echinoderm, Mesocentrotus franciscanus, and the gastropod, Promartynia pulligo. We exposed organisms to static conditions in a regression design to determine the shape of the relationship between upwelling and performance and provide insights into the potential effects in a variable environment. We found that respiration, grazing, growth, and net calcification decline linearly with increasing upwelling intensity for M. francicanus over both acute and chronic timescales. Promartynia pulligo exhibited decreased respiration, grazing, and net calcification with increased upwelling intensity after chronic exposure, but we did not detect an effect over acute timescales or on growth after chronic exposure. Given the highly correlated nature of pH, temperature, and dissolved oxygen in the California Current, our results suggest the relationship between upwelling intensity and growth in the 3-month trial could potentially be used to estimate growth integrated over long-term dynamic oceanographic conditions for M. franciscanus. Together, these results indicate current exposure to upwelling may reduce species performance and predicted future increases in upwelling frequency and intensity could affect ecosystem function by modifying the ecological roles of key species.

Continue reading ‘Coupled changes in pH, temperature and dissolved oxygen impact the physiology and ecology of herbivorous kelp forest grazers’

The impact of oyster aquaculture on the estuarine carbonate system

Many studies have examined the vulnerability of calcifying organisms, such as the eastern oyster (Crassostrea virginica), to externally forced ocean acidification, but the opposite interaction whereby oysters alter their local carbonate conditions has received far less attention. We present an exploratory model for isolating the impact that net calcification and respiration of aquacultured eastern oysters can have on calcite and aragonite saturation states, in the context of varying temperature, ocean-estuary mixing, and air-sea gas exchange. We apply the model to the Damariscotta River Estuary in Maine which has experienced rapid expansion of oyster aquaculture in the last decade. Our model uses oyster shell growth over the summer season and a previously derived relationship between net calcification and respiration to quantify impacts of net oyster calcification and gross metabolism on carbonate saturation states in open tidal waters. Under 2018 industry size and climate conditions, we estimate that oysters can lower carbonate saturation states by up to 5% (i.e., 0.17 and 0.11 units on calcite and aragonite saturation states, respectively) per day in late summer, with an average of 3% over the growing season. Perturbations from temperature and air-sea exchange are similar in magnitude. Under 2050 climate conditions and 2018 industry size, calcite saturation state will decrease by up to an additional 0.54 units. If the industry expands 3-fold by 2050, the calcite and aragonite saturation states may decrease by 0.73 and 0.47 units, respectively, on average for the latter half of the growing season when compared to 2018 climate conditions and industry size. Collectively, our results indicate that dense aggregations of oysters can have a significant role on estuarine carbonate chemistry.

Continue reading ‘The impact of oyster aquaculture on the estuarine carbonate system’

Calcification moderates the biochemical responses of Gephyrocapsa oceanica to ocean acidification

We compared the physiological performance of two sub-strains of coccolithophore Gephyrocapsa oceanica NIES-1318, the originally well-calcified strain, and its low-calcified counterpart that significantly decreased the capacity to calcify under present (400 µatm, LC) and elevated pCO2 (1000 µatm, HC) conditions. There were no significant differences in the growth rates between the two sub-strains under LC condition. The growth rates of both sub-strains reduced under HC conditions and the decrease was significantly higher in the high-calcified cells than the low-calcified ones. The low-calcified cultures exhibited reduced production rates of particulate organic carbon (POC) and particulate organic nitrogen (PON), irrespective of CO2 conditions. The decrease in the PON production rates was considerably higher than that in the POC production rates. Compared with the high-calcified cells, a slight decrease was observed in cellular POC contents in the low-calcified cells, whereas cellular PON contents decreased more prominently. The POC/PON ratio showed no significant difference between the two pCO2 treatments in the high-calcified cultures, whereas elevated CO2 increased the rates in the low-calcified cells. We believe that the nitrogen acquisition by low-calcified cells was more susceptible to ocean acidification, probably due to a lack of stabilized microenvironment provided by coccoliths. Our results demonstrate that the calcification level can affect the biochemical responses of G. oceanica to ocean acidification, with likely consequences for marine biogeochemical cycling.

Continue reading ‘Calcification moderates the biochemical responses of Gephyrocapsa oceanica to ocean acidification’

Upper environmental pCO2 drives sensitivity to ocean acidification in marine invertebrates

Minimizing the impact of ocean acidification requires an understanding of species responses and environmental variability of population habitats. Whereas the literature is growing rapidly, emerging results suggest unresolved species- or population-specific responses. Here we present a meta-analysis synthesizing experimental studies examining the effects of pCO2 on biological traits in marine invertebrates. At the sampling locations of experimental animals, we determined environmental pCO2 conditions by integrating data from global databases and pCO2 measurements from buoys. Experimental pCO2 scenarios were compared with upper pCO2 using an index considering the upper environmental pCO2. For most taxa, a statistically significant negative linear relationship was observed between this index and mean biological responses, indicating that the impact of a given experimental pCO2 scenario depends on the deviation from the upper pCO2 level experienced by local populations. Our results highlight the importance of local biological adaptation and the need to consider present pCO2 natural variability while interpreting experimental results.

Continue reading ‘Upper environmental pCO2 drives sensitivity to ocean acidification in marine invertebrates’

Net ecosystem dissolution and respiration dominate metabolic rates at two western Atlantic reef sites

Ocean acidification is changing surface water chemistry, but natural variability due to nearshore processes can mask its effects on ecosystem responses. We present an approach of quantitatively resolving net ecosystem metabolism from an array of long-term time series stations, offering perhaps the longest record of such processes over a reef to date. We used 8 and 6 yr of in situ, high-quality frequency observations to characterize the changes in dissolved inorganic carbon and oxygen in La Parguera, Puerto Rico and Cheeca Rocks, Florida, respectively. Net respiration and net dissolution are the dominant metabolic processes at both systems, with a narrow window of ~ 4 months under net calcification. The annual mean net ecosystem calcification (NEC) rates for La Parguera (−0.68 ± 0.91 kg CaCO3 m−2 yr−1) and Cheeca Rocks (−0.48 ± 0.89 kg CaCO3 m−2 yr−1) were on the lower end of typical NEC ranges determined for other reef areas using chemistry- and census-based approaches. At Cheeca Rocks, 53% of the variance in NEC can be explained by net ecosystem production (NEP) and 30% by aragonite saturation state (Ωarag). At La Parguera, NEC is primarily driven by changes in NEP. The linear relationship between NEC and NEP showed a significant slope (± standard error) of 1.00 ± 0.005 and 0.88 ± 0.04 for La Parguera and Cheeca Rocks, respectively. These results suggest that NEP appears to play a prominent role on NEC, and Ωarag probably is not the most informative measure to monitor when attempting to resolve the long-term impacts of ocean acidification.

Continue reading ‘Net ecosystem dissolution and respiration dominate metabolic rates at two western Atlantic reef sites’

High-latitude calcified coralline algae exhibit seasonal vulnerability to acidification despite physical proximity to a non-calcified alga


  • High-latitude coralline algae face dissolution under future winter acidification.
  • Seasonal light exposure variation may be too low to impact coralline calcification.
  • Interaction with a fleshy alga may not benefit corallines’ response to acidification.


The emergent responses of vulnerable species to global change can vary depending on the relative quality of resources available to support their productivity under increased stress, as well as the biotic interactions with other species that may alter their access to these resources. This research tested how seawater pCO2 may interact with seasonal light availability to affect the photosynthesis and calcification of high-latitude coralline algae, and whether the responses of these calcified macroalgae are modified by physical association with a non-calcified seaweed. Through an in situ approach, our study first investigated how current seasonal environmental variation affects the growth of the understory coralline algae Crusticorallina spp. and Bossiella orbigniana in Southeast Alaska’s kelp forests. We then experimentally manipulated pH to simulate end-of-century acidification scenarios, light regime to simulate seasonal light availability at the benthos, and pairings of coralline algal species with and without a fleshy red alga to examine the interactive effects of these variables on coralline productivity and calcification. Our results indicate that: 1) coralline species may face net dissolution under projected future winter pH and carbonate saturation state conditions, 2) differences in seasonal light availability in productive, high-latitude waters may not be distinct enough to modify coralline algal net calcification, and 3) association with a non-calcified red alga does not alter the response of these coralline algal species to ocean acidification scenarios. This research highlights the necessity of incorporating locally informed scenarios of environmental variability and community interactions when predicting species’ vulnerability to global change.

Continue reading ‘High-latitude calcified coralline algae exhibit seasonal vulnerability to acidification despite physical proximity to a non-calcified alga’

  • Reset


OA-ICC Highlights

%d bloggers like this: