Posts Tagged 'calcification'

Contrasting changes in diel variations of net community calcification support that carbonate dissolution can be more sensitive to ocean acidification than coral calcification

Previous studies have found that calcification in coral reefs is generally stronger during the day, whereas dissolution is prevalent at night. On the basis of these contrasting patterns, the diel variations of net community calcification (NCC) were monitored to examine the relative sensitivity of CaCO3 production (calcification) and dissolution in coral reefs to ocean acidification (OA), using two mesocosms that replicated a typical subtropical coral reef ecosystem in southern Taiwan. The results revealed that the daytime NCC remained unchanged, whereas the nighttime NCC decreased between the control (ambient) and treatment (OA) conditions, suggesting that carbonate dissolution could be more sensitive to OA than coral calcification. The average sensitivity of the integrated daily NCC to changes in the seawater saturation state (Ωa) was estimated to be a reduction of 54% in NCC per unit change in Ωa, which is consistent with the global average. In summary, our results support the prevailing anticipation that OA would lead to a reduction in the overall accretion of coral reef ecosystems. However, increased CaCO3 dissolution rather than decreased coral calcification could be the dominant driving force responsible for this OA-induced reduction in NCC.

Continue reading ‘Contrasting changes in diel variations of net community calcification support that carbonate dissolution can be more sensitive to ocean acidification than coral calcification’

Biogenic acidification of Portuguese oyster Magallana angulata mariculture can be mediated through introducing brown seaweed Sargassum hemiphyllum


• Monoculture of oysters produces excess CO2, affecting carbon fluxes.

• Seaweed can eliminate CO2 released by oysters.

• Multi-trophic culture of oysters and seaweed can mitigate oysters monoculture negative impacts.


The physiological responses of aquaculture organisms (e.g., oyster and seaweed) have the potential to affect seawater carbon fluxes and subsequently are affected by these seawater changes. In this study, a laboratory experiment and a field mesocosm experiment were carried out in Daya Bay, southern China. In the laboratory experiment, Portuguese oyster Magallana angulata and the brown seaweed Sargassum hemiphyllum were mono-cultured in 20-L transparent glass bottles for 24 h. Water sample were collected at four incubation time points (i.e. 0 h, 4 h, 12 h and 24 h) to examine their physiological responses across the incubation period. The results showed that the oyster calcification rate was not significantly changed among 4 h, 12 h and 24 h. On the other hand, during the 24 h incubation time, the oyster respiration rate, seawater pH, dissolved oxygen (DO), and CO32– concentration were significantly declined, but the seawater CO2 concentration was increased. For the seaweed, from 0 h to 12 h, seawater CO2 and HCO3– concentrations were significantly declined. However, the seawater pH and DO concentration were increased. In the field experiment, oyster and seaweed were cultured in mesocosm bags. The effects of different culture models of M. angulata and S. hemiphyllum (i.e. oyster monoculture, seaweed monoculture and oyster-seaweed co-culture) on seawater CO2‑carbonate system and air-sea CO2 flux (FCO2) were investigated after 24 h incubation. The results showed that DIC, HCO3– and CO2 concentrations and the partial pressure of CO2 in co-culture bags were significantly lower than the control bags (without any culture organisms) and oyster bags, indicated that S. hemiphyllum can effectively absorb the CO2 released by the oysters. The negative values of air-sea FCO2 in the co-culture bags represent a CO2 sink from the atmosphere to the sea. These results demonstrated that aquaculture organism monoculture could result in a stress for itself, and there could be an interspecies mutual benefit for both M. angulata and S. hemiphyllum in the co-culture system. The negative environmental impacts of mono-trophic oyster aquaculture in this view could be mediated with the multi-trophic inclusion of seaweed.

Continue reading ‘Biogenic acidification of Portuguese oyster Magallana angulata mariculture can be mediated through introducing brown seaweed Sargassum hemiphyllum’

Combined effects of CO2 level, light intensity, and nutrient availability on the coccolithophore Emiliania huxleyi

Continuous accumulation of fossil CO2 in the atmosphere and increasingly dissolved CO2 in seawater leads to ocean acidification (OA), which is known to affect phytoplankton physiology directly and/or indirectly. Since increasing attention has been paid to the effects of OA under the influences of multiple drivers, in this study, we investigated effects of elevated CO2 concentration under different levels of light and nutrients on growth rate, particulate organic (POC) and inorganic (PIC) carbon quotas of the coccolithophorid Emiliania huxleyi. We found that OA treatment (pH 7.84, CO2 = 920 μatm) reduced the maximum growth rate at all levels of the nutrients tested, and exacerbated photo-inhibition of growth rate under reduced availability of phosphate (from 10.5 to 0.4 μmol l−1). Low nutrient levels, especially lower nitrate concentration (8.8 μmol l−1 compared with 101 μmol l−1), decreased maximum growth rates. Nevertheless, the reduced levels of nutrients increased the maximum PIC production rate. Decreased availability of nutrients influenced growth, POC and PIC quotas more than changes in CO2 concentrations. Our results suggest that reduced nutrient availability due to reduced upward advective supply because of ocean warming may partially counteract the negative effects of OA on calcification of the coccolithophorid.

Continue reading ‘Combined effects of CO2 level, light intensity, and nutrient availability on the coccolithophore Emiliania huxleyi’

Effects of low pH and feeding on calcification rates of the cold-water coral Desmophyllum dianthus

Cold-Water Corals (CWCs), and most marine calcifiers, are especially threatened by ocean acidification (OA) and the decrease in the carbonate saturation state of seawater. The vulnerability of these organisms, however, also involves other global stressors like warming, deoxygenation or changes in sea surface productivity and, hence, food supply via the downward transport of organic matter to the deep ocean. This study examined the response of the CWC Desmophyllum dianthus to low pH under different feeding regimes through a long-term incubation experiment. For this experiment, 152 polyps were incubated at pH 8.1, 7.8, 7.5 and 7.2 and two feeding regimes for 14 months. Mean calcification rates over the entire duration of the experiment ranged between −0.3 and 0.3 mg CaCO3 g−1d−1. Polyps incubated at pH 7.2 were the most affected and 30% mortality was observed in this treatment. In addition, many of the surviving polyps at pH 7.2 showed negative calcification rates indicating that, in the long term, CWCs may have difficulty thriving in such aragonite undersaturated waters. The feeding regime had a significant effect on skeletal growth of corals, with high feeding frequency resulting in more positive and variable calcification rates. This was especially evident in corals reared at pH 7.5 (ΩA = 0.8) compared to the low frequency feeding treatment. Early life-stages, which are essential for the recruitment and maintenance of coral communities and their associated biodiversity, were revealed to be at highest risk. Overall, this study demonstrates the vulnerability of D. dianthus corals to low pH and low food availability. Future projected pH decreases and related changes in zooplankton communities may potentially compromise the viability of CWC populations.

Continue reading ‘Effects of low pH and feeding on calcification rates of the cold-water coral Desmophyllum dianthus’

High heritability of coral calcification rates and evolutionary potential under ocean acidification

Estimates of heritability inform evolutionary potential and the likely outcome of many management actions, but such estimates remain scarce for marine organisms. Here, we report high heritability of calcification rate among the eight most dominant Hawaiian coral species under reduced pH simulating future ocean conditions. Coral colonies were sampled from up to six locations across a natural mosaic in seawater chemistry throughout Hawaiʻi and fragmented into clonal replicates maintained under both ambient and high pCO2 conditions. Broad sense heritability of calcification rates was high among all eight species, ranging from a low of 0.32 in Porites evermanni to a high of 0.61 in Porites compressa. The overall results were inconsistent with short-term acclimatization to the local environment or adaptation to the mean or ideal conditions. Similarly, in ‘local vs. foreign’ and ‘home vs. away’ tests there was no clear signature of local adaptation. Instead, the data are most consistent with a protected polymorphism as the mechanism which maintains differential pH tolerance within the populations. Substantial individual variation, coupled with high heritability and large population sizes, imply considerable scope for natural selection and adaptive capacity, which has major implications for evolutionary potential and management of corals in response to climate change.

Continue reading ‘High heritability of coral calcification rates and evolutionary potential under ocean acidification’

Effects of temperature and ocean acidification on the extrapallial fluid pH, calcification rate, and condition factor of the king scallop Pecten maximus

Increasing anthropogenic carbon dioxide is predicted to cause declines in ocean pH and calcium carbonate saturation state over the coming centuries, making it potentially harder for marine calcifiers to build their shells and skeletons. One mechanism of resilience to ocean acidification is an organism’s ability to regulate pH and, thus, calcium carbonate saturation state, at its site of calcification. This mechanism has received detailed study in scleractinian corals but is relatively understudied in other taxonomic groups that are vulnerable to ocean acidification, such as bivalves. Here, the results of a 74-day controlled laboratory experiment investigating the impact of ocean acidification on the extrapallial fluid (EPF; the bivalve calcifying fluid) pH, calcification rate, and condition factor of the king scallop Pecten maximus at their average spring and summer temperatures (362 ppm/9.0°C, 454 ppm/12.3°C; 860 ppm/9.0°C, 946 ppm/12.3°C; 2,639 ppm/8.9°C, 2,750 ppm/12.1°C) are presented. Scallop EPF pH was lower than seawater pH in all treatments and declined with increasing pCO2 under the spring temperature (9°C) but was uncorrelated with pCO2 under the summer temperature (12°C). Furthermore, king scallop calcification rate and EPF pH were inversely correlated at 9°C and uncorrelated at 12°C. This inverse correlation between EPF pH and scallop calcification rate, combined with the observation that scallop EPF pH is consistently lower than seawater pH, suggests that pH regulation is not the sole mechanism by which scallops concentrate carbonate ions for calcification within their EPF. Calcification trends contrasted most other published studies on bivalves, increasing with ocean acidification under spring temperature and exhibiting no response to ocean acidification under summer temperature. Scallop condition factor exhibited no response to ocean acidification under spring temperature but increased with ocean acidification under summer temperature—exactly the opposite of their calcification response to ocean acidification. These results suggest that king scallops are relatively resilient to CO2-induced ocean acidification, but that their allocation of resources between tissue and shell production in response to this stressor varies seasonally.

Continue reading ‘Effects of temperature and ocean acidification on the extrapallial fluid pH, calcification rate, and condition factor of the king scallop Pecten maximus’

Combined effects of global climate change and nutrient enrichment on the physiology of three temperate maerl species

Made up of calcareous coralline algae, maerl beds play a major role as ecosystem engineers in coastal areas throughout the world. They undergo strong anthropogenic pressures, which may threaten their survival. The aim of this study was to gain insight into the future of maerl beds in the context of global and local changes. We examined the effects of rising temperatures (+3°C) and ocean acidification (−0.3 pH units) according to temperature and pH projections (i.e., the RCP 8.5 scenario), and nutrient (N and P) availability on three temperate maerl species (Lithothamnion corallioides, Phymatolithon calcareum, and Lithophyllum incrustans) in the laboratory in winter and summer conditions. Physiological rates of primary production, respiration, and calcification were measured on all three species in each treatment and season. The physiological response of maerl to global climate change was species‐specific and influenced by seawater nutrient concentrations. Future temperature–pH scenario enhanced maximal gross primary production rates in P. calcareum in winter and in L. corallioides in both seasons. Nevertheless, both species suffered an impairment of light harvesting and photoprotective mechanisms in winter. Calcification rates at ambient light intensity were negatively affected by the future temperature–pH scenario in winter, with net dissolution observed in the dark in L. corallioides and P. calcareum under low nutrient concentrations. Nutrient enrichment avoided dissolution under future scenarios in winter and had a positive effect on L. incrustans calcification rate in the dark in summer. In winter conditions, maximal calcification rates were enhanced by the future temperature–pH scenario on the three species, but P. calcareum suffered inhibition at high irradiances. In summer conditions, the maximal calcification rate dropped in L. corallioides under the future global climate change scenario, with a potential negative impact on CaCO3 budget for maerl beds in the Bay of Brest where this species is dominant. Our results highlight how local changes in nutrient availability or irradiance levels impact the response of maerl species to global climate change and thus point out how it is important to consider other abiotic parameters in order to develop management policies capable to increase the resilience of maerl beds under the future global climate change scenario.

Continue reading ‘Combined effects of global climate change and nutrient enrichment on the physiology of three temperate maerl species’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,318,643 hits


Ocean acidification in the IPCC AR5 WG II

OUP book