Posts Tagged 'calcification'

The regulation of coralline algal physiology, an in situ study of Corallina officinalis (Corallinales, Rhodophyta) (update)

Calcified macroalgae are critical components of marine ecosystems worldwide, but face considerable threat both from climate change (increasing water temperatures) and ocean acidification (decreasing ocean pH and carbonate saturation). It is thus fundamental to constrain the relationships between key abiotic stressors and the physiological processes that govern coralline algal growth and survival. Here we characterize the complex relationships between the abiotic environment of rock pool habitats and the physiology of the geniculate red coralline alga, Corallina officinalis (Corallinales, Rhodophyta). Paired assessment of irradiance, water temperature and carbonate chemistry, with C. officinalis net production (NP), respiration (R) and net calcification (NG) was performed in a south-western UK field site, at multiple temporal scales (seasonal, diurnal and tidal). Strong seasonality was observed in NP and night-time R, with a Pmax of 22.35 µmol DIC (g DW)−1 h−1, Ek of 300 µmol photons m−2 s−1 and R of 3.29 µmol DIC (g DW)−1 h−1 determined across the complete annual cycle. NP showed a significant exponential relationship with irradiance (R2 = 0.67), although was temperature dependent given ambient irradiance  > Ek for the majority of the annual cycle. Over tidal emersion periods, dynamics in NP highlighted the ability of C. officinalis to acquire inorganic carbon despite significant fluctuations in carbonate chemistry. Across all data, NG was highly predictable (R2 = 0.80) by irradiance, water temperature and carbonate chemistry, providing a NGmax of 3.94 µmol CaCO3 (g DW)−1 h−1 and Ek of 113 µmol photons m−2 s−1. Light NG showed strong seasonality and significant coupling to NP (R2 = 0.65) as opposed to rock pool water carbonate saturation. In contrast, the direction of dark NG (dissolution vs. precipitation) was strongly related to carbonate saturation, mimicking abiotic precipitation dynamics. Data demonstrated that C. officinalis is adapted to both long-term (seasonal) and short-term (tidal) variability in environmental stressors, although the balance between metabolic processes and the external environment may be significantly impacted by future climate change.

Continue reading ‘The regulation of coralline algal physiology, an in situ study of Corallina officinalis (Corallinales, Rhodophyta) (update)’

Combined effects of ocean acidification with morphology, water flow, and algal acclimation on metabolic rates of tropical coralline algae

Coral reefs are currently facing multiple stressors that threaten their health and function, including ocean acidification (OA). OA has been shown to negatively affect many reef calcifiers, such as coralline algae that provide many critical contributions to reef systems. Past studies have focused on how OA independently influences coralline algae, but more research is necessary as it is expected that the effects of OA on coralline algae will vary depending on many other factors. To better understand how algal morphology, water flow, and algal acclimation interact with OA to affect coralline algae, three studies were conducted in Moorea, French Polynesia, from June 2015 to July 2016. In January 2016, I tested the hypothesis that algal individuals with higher morphological complexity would exhibit faster metabolic rates under ambient pCO2 conditions, but would also demonstrate higher sensitivity to OA conditions. For three species of crustose coralline algae, Lithophyllum kotschyanum, Neogoniolithon frutescens, and Hydrolithon reinboldii, algal individuals with more complex morphologies demonstrated faster rates of calcification, photosynthesis, and respiration in the ambient pCO2 treatment than individuals with simpler morphological forms. There also appeared to be a relationship between morphology and sensitivity to OA conditions, with calcification rates negatively correlated with higher morphological complexity. In the summers of 2015 and 2016, I conducted three experiments examining the effects of water flow and OA on different morphologies of coralline algae to test the hypotheses that increased flow would enhance metabolic rates and mitigate the effects of OA, and that algae with more complex morphologies would be more responsive to increased water flow and more sensitive to OA conditions. A field experiment investigating the effects of water flow on Amphiroa fragilissima, L. kotschyanum, N. frutescens, and H. reinboldii detected enhanced rates of calcification, photosynthesis, and respiration with increased flow, and this relationship appeared to be the strongest for the crustose algal species with the highest structural complexity. A flume manipulation examining the combined effects of water flow and OA on A. fragilissima, L. kotschyanum, N. frutescens, H. reinboldii, and Porolithon onkodes suggested that coralline algal species with high structural complexity were the most sensitive to OA conditions. Finally, A. fragilissima and L. kotschyanum were maintained in different pCO2 and water flow conditions in a long-term mesocosm experiment, which indicated that flow was unable to mitigate the effects of OA on coralline algae. In the summer of 2016, I investigated the acclimation potential of A. fragilissima and L. kotschyanum to OA, and predicted that the original treatment conditions would induce phenotypic modifications that would influence algal responses to the end treatment. There were negative effects of long-term exposure of coralline algae to elevated pCO2 conditions on calcification and photosynthesis, though partial acclimation in calcification to OA was observed. The instantaneous exposure of elevated pCO2 had negative impacts on algal calcification, but had a nominal effect on photosynthesis. No effects of long-term or instantaneous exposure to elevated pCO2 were observed for respiration. The results of these studies indicate that the coralline algal response to OA conditions will likely be complex and depend on numerous factors including water flow, morphology, and acclimation potential. Therefore, it is critical that future studies further investigate the effects of these factors; specifically examining the mechanisms that underlie these responses in order to better predict the future of coralline algae and thus coral reef ecosystems in a more acidic ocean.

Continue reading ‘Combined effects of ocean acidification with morphology, water flow, and algal acclimation on metabolic rates of tropical coralline algae’

In vivo pH measurement at the site of calcification in an octocoral

Calcareous octocorals are ecologically important calcifiers, but little is known about their biomineralization physiology, relative to scleractinian corals. Many marine calcifiers promote calcification by up-regulating pH at calcification sites against the surrounding seawater. Here, we investigated pH in the red octocoral Corallium rubrum which forms sclerites and an axial skeleton. To achieve this, we cultured microcolonies on coverslips facilitating microscopy of calcification sites of sclerites and axial skeleton. Initially we conducted extensive characterisation of the structural arrangement of biominerals and calcifying cells in context with other tissues, and then measured pH by live tissue imaging. Our results reveal that developing sclerites are enveloped by two scleroblasts and an extracellular calcifying medium of pH 7.97 ± 0.15. Similarly, axial skeleton crystals are surrounded by cells and a calcifying medium of pH 7.89 ± 0.09. In both cases, calcifying media are more alkaline compared to calcifying cells and fluids in gastrovascular canals, but importantly they are not pH up-regulated with respect to the surrounding seawater, contrary to what is observed in scleractinians. This points to a potential vulnerability of this species to decrease in seawater pH and is consistent with reports that red coral calcification is sensitive to ocean acidification.

Continue reading ‘In vivo pH measurement at the site of calcification in an octocoral’

Overcalcified forms of the coccolithophore Emiliania huxleyi in high CO2 waters are not pre-adapted to ocean acidification

Marine multicellular organisms inhabiting waters with natural high fluctuations in pH appear more tolerant to acidification than conspecifics occurring in nearby stable waters, suggesting that environments of fluctuating pH hold genetic reservoirs for adaptation of key groups to ocean acidification (OA). The abundant and cosmopolitan calcifying phytoplankton Emiliania huxleyi exhibits a range of morphotypes with varying degrees of coccolith mineralization. We show that E. huxleyi populations in the naturally acidified upwelling waters of the Eastern South Pacific, where pH drops below 7.8 as is predicted for the global surface ocean by the year 2100, are dominated by exceptionally overcalcified morphotypes whose distal coccolith shield can be almost solid calcite. Shifts in morphotype composition of E. huxleyi populations correlate with changes in carbonate system parameters. We tested if these correlations indicate that the hypercalcified morphotype is adapted to OA. In experimental exposures to present-day vs. future pCO2 (400 µatm vs. 1200 µatm), the overcalcified morphotypes showed the same growth inhibition (−29.1 ± 6.3 %) as moderately calcified morphotypes isolated from non-acidified water (−30.7 ± 8.8 %). Under OA conditions, production rates of particulate organic carbon (POC) increased, while production rates of particulate inorganic carbon (PIC) were maintained or decreased slightly (but not significantly), leading to lowered PIC/POC ratios in all strains. There were no consistent correlations of response intensity with strain origin. OA affected coccolith morphology equally or more strongly in overcalcified strains compared to moderately calcified strains. OA conditions appear not to directly select for exceptionally overcalcified morphotypes over other morphotypes directly, but perhaps indirectly by ecologically correlated factors. More generally, these results suggest that oceanic planktonic microorganisms, despite their rapid turn-over and large population sizes, do not necessarily exhibit adaptations to naturally high CO2 upwellings, and this ubiquitous coccolithophore may be near a limit of its capacity to adapt to ongoing ocean acidification.
Continue reading ‘Overcalcified forms of the coccolithophore Emiliania huxleyi in high CO2 waters are not pre-adapted to ocean acidification’

Measuring coral calcification under ocean acidification: methodological considerations for the 45Ca-uptake and total alkalinity anomaly technique

As the oceans become less alkaline due to rising CO2 levels, deleterious consequences are expected for calcifying corals. Predicting how coral calcification will be affected by on-going ocean acidification (OA) requires an accurate assessment of CaCO3 deposition and an understanding of the relative importance that decreasing calcification and/or increasing dissolution play for the overall calcification budget of individual corals. Here, we assessed the compatibility of the 45Ca-uptake and total alkalinity (TA) anomaly techniques as measures of gross and net calcification (GC, NC), respectively, to determine coral calcification at pHT 8.1 and 7.5. Considering the differing buffering capacity of seawater at both pH values, we were also interested in how strongly coral calcification alters the seawater carbonate chemistry under prolonged incubation in sealed chambers, potentially interfering with physiological functioning. Our data indicate that NC estimates by TA are erroneously ∼5% and ∼21% higher than GC estimates from 45Ca for ambient and reduced pH, respectively. Considering also previous data, we show that the consistent discrepancy between both techniques across studies is not constant, but largely depends on the absolute value of CaCO3 deposition. Deriving rates of coral dissolution from the difference between NC and GC was not possible and we advocate a more direct approach for the future by simultaneously measuring skeletal calcium influx and efflux. Substantial changes in carbonate system parameters for incubation times beyond two hours in our experiment demonstrate the necessity to test and optimize experimental incubation setups when measuring coral calcification in closed systems, especially under OA conditions.

Continue reading ‘Measuring coral calcification under ocean acidification: methodological considerations for the 45Ca-uptake and total alkalinity anomaly technique’

Amorphous calcium carbonate particles form coral skeletons

Whether coral skeleton crystals grow by attachment of ions from solution or particles from tissue determines (i) corals’ growth rate, (ii) how they survive acidifying oceans, and (iii) the isotopes in the crystals used for reconstructing ancient temperatures. Our data show that two amorphous precursors exist, one hydrated and one dehydrated amorphous calcium carbonate; that these are formed in the tissue as ∼400-nm particles; and that they attach to the surface of coral skeletons, remain amorphous for hours, and finally crystallize into aragonite. Since these particles are formed inside tissue, coral skeleton growth may be less susceptible to ocean acidification than previously assumed. Coral bleaching and postmortem dissolution of the skeleton will occur, but a calcification crisis may not.

Do corals form their skeletons by precipitation from solution or by attachment of amorphous precursor particles as observed in other minerals and biominerals? The classical model assumes precipitation in contrast with observed “vital effects,” that is, deviations from elemental and isotopic compositions at thermodynamic equilibrium. Here, we show direct spectromicroscopy evidence in Stylophora pistillata corals that two amorphous precursors exist, one hydrated and one anhydrous amorphous calcium carbonate (ACC); that these are formed in the tissue as 400-nm particles; and that they attach to the surface of coral skeletons, remain amorphous for hours, and finally, crystallize into aragonite (CaCO3). We show in both coral and synthetic aragonite spherulites that crystal growth by attachment of ACC particles is more than 100 times faster than ion-by-ion growth from solution. Fast growth provides a distinct physiological advantage to corals in the rigors of the reef, a crowded and fiercely competitive ecosystem. Corals are affected by warming-induced bleaching and postmortem dissolution, but the finding here that ACC particles are formed inside tissue may make coral skeleton formation less susceptible to ocean acidification than previously assumed. If this is how other corals form their skeletons, perhaps this is how a few corals survived past CO2 increases, such as the Paleocene–Eocene Thermal Maximum that occurred 56 Mya.

Continue reading ‘Amorphous calcium carbonate particles form coral skeletons’

Boron isotope sensitivity to seawater pH change in a species of Neogoniolithon coralline red alga

The increase in atmospheric carbon dioxide (CO2) observed since the industrial revolution has reduced surface ocean pH by ∼0.1 pH units, with further change in the oceanic system predicted in the coming decades. Calcareous organisms can be negatively affected by extreme changes in seawater pH (pHsw) such as this due to the associated changes in the oceanic carbonate system. The boron isotopic composition (δ11B) of biogenic carbonates has been previously used to monitor pH at the calcification site (pHcf) in scleractinian corals, providing mechanistic insights into coral biomineralisation and the impact of variable pHsw on this process. Motivated by these investigations, this study examines the δ11B of the high-Mg calcite skeleton of the coralline red alga Neogoniolithon sp. to constrain pHcf, and investigates how this taxon’s pHcf is impacted by ocean acidification. δ11B was measured in multiple algal replicates (n = 4 to 5) cultured at four different pCO2 scenarios – averaging (± 1σ) 409 (± 6), 606 (± 7), 903 (± 12) and 2856 (± 54) μatm, corresponding to average pHsw (± 1σ) of 8.19 (± 0.03), 8.05 (± 0.06), 7.91 (± 0.03) and 7.49 (± 0.02) respectively. Results show that skeletal δ11B is elevated relative to the δ11B of seawater borate at all pHsw treatments by up to 18 ‰. Although substantial variability in δ11B exists between replicate samples cultured at a given pHsw (smallest range = 2.32 ‰ at pHsw 8.19, largest range = 6.08 ‰ at pHsw 7.91), strong correlations are identified between δ11B and pHsw (R2 = 0.72, p < 0.0001, n = 16) and between δ11B and B/Ca (R2 = 0.72, p < 0.0001, n = 16). Assuming that skeletal δ11B reflects pHcf as previously observed for scleractinian corals, the average pHcf across all experiments was 1.20 pH units (0.79 to 1.56) higher than pHsw, with the magnitude of this offset varying parabolically with decreasing pHsw, with a maximum difference between pHsw and pHcf at a pHsw of 7.91. Observed relationships between pHsw and calcification rate, and between pHsw and pHcf, suggest that coralline algae exhibit some resilience to moderate ocean acidification via increase of pHcf relative to pHsw in a similar manner to scleractinian corals. However, these results also indicate that pHcf cannot be sufficiently increased by algae exposed to a larger reduction in pHsw, adversely impacting calcification rates of coralline red algae.

Continue reading ‘Boron isotope sensitivity to seawater pH change in a species of Neogoniolithon coralline red alga’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,030,789 hits


Ocean acidification in the IPCC AR5 WG II

OUP book