Posts Tagged 'calcification'

Seasonal net ecosystem metabolism of the near-shore reef system in La Parguera, Puerto Rico

Changes in ocean chemistry as a direct response to rising atmospheric carbon dioxide (CO2) concentrations is causing a reduction of pH in the surface ocean. While the dynamics and trends in carbonate chemistry are reasonably constrained for open ocean waters, the ways in which ocean acidification (OA) manifests within the shallow near-shore waters, where coral reefs reside, is less understood. Constraining near-reef variability in carbonate chemistry and net ecosystem metabolic processes across diel, seasonal, and annual scales is important in evaluating potential biogeochemical thresholds of OA that could result in ecological community changes. The OA Test-Bed at La Parguera Marine Reserve in Puerto Rico provides long-term carbonate chemistry observations at high-temporal resolution within a Caribbean near-shore coral reef ecosystem. A 1-D model was developed using the carbon mass balance approach to yield information about net ecosystem production and calcification processes occurring in the water column adjacent to the reef. We present results of nine years of sustained monitoring at the Enrique mid-shelf forereef, which provides for the characterization of temporal dynamics in carbonate chemistry and net ecosystem metabolic processes encompassing near-shore and upstream locations. Results indicate that net heterotrophy and net dissolution dominate over most of the year, while net autotrophic conditions coupled with calcification dominated from only January to mid-April. The average carbonate dissolution rate observed during summer is estimated at −2.19g CaCO3m−2 day−1 and net community dissolution persists 76% of the seasonal year despite the water column remaining super-saturated with respect to aragonite. This corresponds to −0.62 kg CaCO3m−2 year−1, classifying the Enrique fore-reef and off-reef areas in a net dissolutional state. The combination of thermodynamically-driven depressed aragonite saturation state and high rates of respiration during the summer cause conditions that jeopardize the most soluble carbonate minerals and the free energy in the system for calcification. These data suggest that the reef area and associated ecosystems upstream of the sampling location are experiencing a net loss of CaCO3, possibly compromising coral ecosystem health and reef accretion processes necessary for maintenance as sea level increases. Resiliency from other climate-scale stressors including rising sea surface temperatures and coral bleaching is likely to be compromised in a system exhibiting net carbonate loss.

Continue reading ‘Seasonal net ecosystem metabolism of the near-shore reef system in La Parguera, Puerto Rico’

Primary production and calcification rates of algae‐dominated reef flat and seagrass communities

Monitoring variability in coral reef primary production and calcification is needed to understand changes over time and between reef systems, which helps separate differences due to natural and/or anthropogenic factors happening now and in the future. This study measured net productivity and calcification for two reef systems at Shark Bay, Heron Reef in the southern Great Barrier Reef and Saipan Lagoon, Commonwealth of the Northern Mariana Islands. Net primary productivity and calcification were strongly correlated for reef flats with an adjusted R2 = 0.66. Night time dissolution occurred at Shark Bay reef flat with an average of −12.66  mmol  CaCO3 · m−2 · hr−1, while calcification increased at night for the Saipan reef flat. For both reef flat sites, net productivity from oxygen flux was much lower than rates calculated from change in dissolved inorganic carbon. This study provided the first baseline estimates of net productivity and calcification for a reef flat and seagrass community in Saipan Lagoon. The seagrass community had the lowest productivity of all sites. However, the high presence of calcareous algae at the site highlights the need for more research on the carbonate chemistry of these habitats. All sites had high net productivity that was most likely associated with the dominant presence of algae. Continue reading ‘Primary production and calcification rates of algae‐dominated reef flat and seagrass communities’

Vulnerability of juvenile hermit crabs to reduced seawater pH and shading

Highlights

• Local impacts may potentially increase effects of global environmental changes.
• We assessed combined effects of reduced pH and shading caused by harbor structures.
• Reduced seawater pH and shading affected behavioral responses of hermit crabs.
• Multiple stressors induced high mortality and reduced growth.
• Maintenance of local populations may be impaired by the impact of both stressors.

Abstract

Multiple simultaneous stressors induced by anthropogenic activities may amplify their impacts on marine organisms. The effects of ocean acidification, in combination with other anthropogenic impacts (apart from temperature) are poorly understood, especially in coastal regions. In these areas, shading caused by infrastructure development, such as harbor construction, may potentially interact with CO2-induced pH reduction and affect invertebrate populations. Here, we evaluated the effects of reduced pH (7.6) and shading (24h in darkness) on mortality, growth, calcification and displacement behavior to live predator (danger signal) and dead gastropod (resource availability signal) odors using juveniles of the hermit crab Pagurus criniticornis collected in Araçá Bay (São Paulo state, Southeastern Brazil). After a 98 day experimental period, both stressors had a significant interaction effect on mortality, and an additive effect on total growth. No difference in calcification was recorded among treatments, indicating that individuals were able to maintain calcification under reduced pH conditions. When exposed to odor of live predators, crab responses were only affected by shading. However, an interactive effect between both stressors was observed in response to gastropod odor, leading to reduced displacement behavior. This study shows how local disturbance impacts may enhance the effects of global environmental change on intertidal crustacean populations.

Continue reading ‘Vulnerability of juvenile hermit crabs to reduced seawater pH and shading’

Growth and feeding of deep-sea coral Lophelia pertusa from the California margin under simulated ocean acidification conditions

The global decrease in seawater pH known as ocean acidification has important ecological consequences and is an imminent threat for numerous marine organisms. Even though the deep sea is generally considered to be a stable environment, it can be dynamic and vulnerable to anthropogenic disturbances including increasing temperature, deoxygenation, ocean acidification and pollution. Lophelia pertusa is among the better-studied cold-water corals but was only recently documented along the US West Coast, growing in acidified conditions. In the present study, coral fragments were collected at ∼300 m depth along the southern California margin and kept in recirculating tanks simulating conditions normally found in the natural environment for this species. At the collection site, waters exhibited persistently low pH and aragonite saturation states (Ωarag) with average values for pH of 7.66 ± 0.01 and Ωarag of 0.81 ± 0.07. In the laboratory, fragments were grown for three weeks in “favorable” pH/Ωarag of 7.9/1.47 (aragonite saturated) and “unfavorable” pH/Ωarag of 7.6/0.84 (aragonite undersaturated) conditions. There was a highly significant treatment effect (P < 0.001) with an average% net calcification for favorable conditions of 0.023 ± 0.009% d−1 and net dissolution of −0.010 ± 0.014% d-1 for unfavorable conditions. We did not find any treatment effect on feeding rates, which suggests that corals did not depress feeding in low pH/ Ωarag in an attempt to conserve energy. However, these results suggest that the suboptimal conditions for L. pertusa from the California margin could potentially threaten the persistence of this cold-water coral with negative consequences for the future stability of this already fragile ecosystem.

Continue reading ‘Growth and feeding of deep-sea coral Lophelia pertusa from the California margin under simulated ocean acidification conditions’

The requirement for calcification differs between ecologically important coccolithophore species

Summary

  • Coccolithophores are globally distributed unicellular marine algae that are characterized by their covering of calcite coccoliths. Calcification by coccolithophores contributes significantly to global biogeochemical cycles. However, the physiological requirement for calcification remains poorly understood as non‐calcifying strains of some commonly used model species, such as Emiliania huxleyi, grow normally in laboratory culture.
  • To determine whether the requirement for calcification differs between coccolithophore species, we utilized multiple independent methodologies to disrupt calcification in two important species of coccolithophore: E. huxleyi and Coccolithus braarudii. We investigated their physiological response and used time‐lapse imaging to visualize the processes of calcification and cell division in individual cells.
  • Disruption of calcification resulted in major growth defects in C. braarudii, but not in E. huxleyi. We found no evidence that calcification supports photosynthesis in C. braarudii, but showed that an inability to maintain an intact coccosphere results in cell cycle arrest.
  • We found that C. braarudii is very different from E. huxleyi as it exhibits an obligate requirement for calcification. The identification of a growth defect in C. braarudii resulting from disruption of the coccosphere may be important in considering their response to future changes in ocean carbonate chemistry.

 

Continue reading ‘The requirement for calcification differs between ecologically important coccolithophore species’

Water chemistry reveals a significant decline in coral calcification rates in the southern Red Sea

Experimental and field evidence support the assumption that global warming and ocean acidification is decreasing rates of calcification in the oceans. Local measurements of coral growth rates in reefs from various locations have suggested a decline of ~6–10% per decade since the late 1990’s. Here, by measuring open water strontium-to-alkalinity ratios along the Red Sea, we show that the net contribution of hermatypic corals to the CaCO3 budget of the southern and central Red Sea declined by ~100% between 1998 and 2015 and remained low between 2015 and 2018. Measured differences in total alkalinity of the Red Sea surface water indicate a 26 ± 16% decline in total CaCO3 deposition rates along the basin. These findings suggest that coral reefs of the southern Red Sea are under severe stress and demonstrate the strength of geochemical measurements as cost-effective indicators for calcification trends on regional scales.

Continue reading ‘Water chemistry reveals a significant decline in coral calcification rates in the southern Red Sea’

The effect of ocean acidification on tropical coral calcification: insights from calcification fluid DIC chemistry

Highlights

• Calcification fluid pH and [co-precipitating DIC] are positively correlated in all corals.
• [Precipitating DIC] and coral calcification rate are positively correlated in all but one outlier coral.
• Corals cultured at high seawater pCO2 usually have low fluid pH and [precipitating DIC]. Reduced DIC substrate at the calcification site is the likely cause of decreased coral calcification rates under ocean acidification scenarios.
• The outlier coral maintained a high calcification fluid pH and [co-precipitating DIC] at high seawater pCO2 but exhibited a low calcification rate suggesting that corals have a limited energy budget for calcification which is apportioned between proton extrusion from the calcification site and other processes e.g. synthesis of the skeletal organic matrix.

Abstract

Ocean acidification typically reduces calcification in tropical marine corals but the mechanism for this process is not understood. We use skeletal boron geochemistry (B/Ca and δ11B) to reconstruct the calcification fluid DIC of corals cultured over both high and low seawater pCO2 (180, 400 and 750 μatm). We observe strong positive correlations between calcification fluid pH and concentrations of the DIC species potentially implicated in aragonite precipitation (be they CO32−, HCO3 or HCO3 + CO32−). Similarly, with the exception of one outlier, the fluid concentrations of precipitating DIC species are strongly positively correlated with coral calcification rate. Corals cultured at high seawater pCO2 usually have low calcification fluid pH and low concentrations of precipitating DIC, suggesting that a reduction in DIC substrate at the calcification site is responsible for decreased calcification. The outlier coral maintained high pHCF and DICCF at high seawater pCO2 but exhibited a reduced calcification rate indicating that the coral has a limited energy budget to support proton extrusion from the calcification fluid and meet other calcification demands. We find no evidence that increasing seawater pCO2 enhances diffusion of CO2 into the calcification site. Instead the overlying [CO2] available to diffuse into the calcification site appears broadly comparable between seawater pCO2 treatments, implying that metabolic activity (respiration and photosynthesis) generates a similar [CO2] in the vicinity of the calcification site regardless of seawater pCO2.

Continue reading ‘The effect of ocean acidification on tropical coral calcification: insights from calcification fluid DIC chemistry’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,123,853 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book