Posts Tagged 'calcification'

Adaptive responses and local stressor mitigation drive coral resilience in warmer, more acidic oceans

Coral reefs have great biological and socioeconomic value, but are threatened by ocean acidification, climate change and local human impacts. The capacity for corals to adapt or acclimatize to novel environmental conditions is unknown but fundamental to projected reef futures. The coral reefs of Kāne‘ohe Bay, Hawai‘i were devastated by anthropogenic insults from the 1930s to 1970s. These reefs experience naturally reduced pH and elevated temperature relative to many other Hawaiian reefs which are not expected to face similar conditions for decades. Despite catastrophic loss in coral cover owing to human disturbance, these reefs recovered under low pH and high temperature within 20 years after sewage input was diverted. We compare the pH and temperature tolerances of three dominant Hawaiian coral species from within Kāne‘ohe Bay to conspecifics from a nearby control site and show that corals from Kāne‘ohe are far more resistant to acidification and warming. These results show that corals can have different pH and temperature tolerances among habitats and understanding the mechanisms by which coral cover rebounded within two decades under projected future ocean conditions will be critical to management. Together these results indicate that reducing human stressors offers hope for reef resilience and effective conservation over coming decades.

Continue reading ‘Adaptive responses and local stressor mitigation drive coral resilience in warmer, more acidic oceans’

Physiological responses of juvenile Chilean scallops (Argopecten purpuratus) to isolated and combined environmental drivers of coastal upwelling

Coastal biota is exposed to continuous environmental variability as a consequence of natural and anthropogenic processes. Responding to heterogeneous conditions requires the presence of physiological strategies to cope with the environment. Ecosystems influenced by upwelling endure naturally cold, acidic and hypoxic conditions, nevertheless they sustain major fisheries worldwide. This suggests that species inhabiting upwelling habitats possess physiological adaptations to handle high environmental variability. Here, we assessed the impact of the main upwelling drivers (temperature, pH and oxygen) in isolation and combined on eco-physiological responses of Chilean scallop Argopecten purpuratus. A. purpuratus responded to hypoxia by increasing their metabolic performance to maintain growth and calcification. Calcification was only affected by pH and increased under acidic conditions. Further, A. purpuratus juveniles prioritized calcification at the expense of growth under upwelling conditions. Increasing temperature had a significant impact by enhancing the physiological performance of A. purpuratus juveniles independently of oxygen and pH conditions, but this was associated with earlier and higher mortalities. Our results suggest that A. purpuratus is acclimated to short-term colder, acidic and hypoxic conditions, and provide important information of how this species responds to the heterogeneous environment of upwelling, which is significantly relevant in the climatic context of upwelling intensification.

Continue reading ‘Physiological responses of juvenile Chilean scallops (Argopecten purpuratus) to isolated and combined environmental drivers of coastal upwelling’

Systematic review and meta-analysis toward synthesis of thresholds of ocean acidification impacts on calcifying pteropods and interactions with warming

Interpreting the vulnerability of pelagic calcifiers to ocean acidification (OA) is enhanced by an understanding of their critical thresholds and how these thresholds are modified by other climate change stressors (e.g., warming). To address this need, we undertook a three-part data synthesis for pteropods, one of the calcifying zooplankton group. We conducted the first meta-analysis and threshold analysis of literature characterizing pteropod responses to OA and warming by synthetizing dataset comprising of 2,097 datapoints. Meta-analysis revealed the extent to which responses among studies conducted on differing life stages and disparate geographies could be integrated into a common analysis. The results demonstrated reduced calcification, growth, development, and survival to OA with increased magnitude of sensitivity in the early life stages, under prolonged duration, and with the concurrent exposure of OA and warming, but not species-specific sensitivity. Second, breakpoint analyses identified OA thresholds for several endpoints: dissolution (mild and severe), calcification, egg development, shell growth, and survival. Finally, consensus by a panel of pteropod experts was used to verify thresholds and assign confidence scores for five endpoints with a sufficient signal: noise ratio to develop life-stage specific, duration-dependent thresholds. The range of aragonite saturation state from 1.5–0.9 provides a risk range from early warning to lethal impacts, thus providing a rigorous basis for vulnerability assessments to guide climate change management responses, including an evaluation of the efficacy of local pollution management. In addition, meta-analyses with OA, and warming shows increased vulnerability in two pteropod processes, i.e., shell dissolution and survival, and thus pointing toward increased threshold sensitivity under combined stressor effect.

Continue reading ‘Systematic review and meta-analysis toward synthesis of thresholds of ocean acidification impacts on calcifying pteropods and interactions with warming’

Anthropogenic ocean warming and acidification recorded by Sr/Ca, Li/Mg, δ11B and B/Ca in Porites coral from the Kimberley region of northwestern Australia

Highlights

• Ocean warming has accelerated since the 1970s in the nearshore Kimberley.

• Coral calcification remains less affected and ‘normal’ seasonal coral internal carbonate chemistry is observed.

• Under intensified warming, coral’s ability to concentrate metabolic DIC has been reduced.

• Ocean acidification has led to the secular reduction of pHcf.

Abstract

The impact of climate changes on corals living in naturally extreme environments is poorly understood but crucial to longer-term sustainability of coral reefs. Here we report century-long temperature (Sr/Ca and Li/Mg) and calcifying fluid (CF) carbonate chemistry (δ11B and B/Ca) records for a long-lived (1919 to 2016) Porites coral from the high thermally variable Kimberley region of northwestern Australia. We investigate how increasing temperatures and ocean acidification are manifested in the carbonate chemistry of coral’s CF and impacts of climate change on calcification. Using Sr/Ca and Li/Mg multiproxy we show that annual temperature in the nearshore Kimberley exhibited a gradual increase (0.009 ± 0.003 °C/yr) from the 1920s onward. However for the most recent years (2000–2015) more rapid summer warming (0.05 ± 0.01 °C/yr) are registered, indicative of intensified warming. Despite that, we find no significant trend for calcification rate of this coral over the past century, as well as ‘normal’ seasonal variability in coral’s CF carbonate chemistry. Importantly, the coral’s ability to concentrate inorganic carbon seems to be affected by recent warming, with reduced DICcf observed during 2008 to 2015, while the minimally-affected pHcf acts to compensate the decreases of DICcf with the calcification rate showing only slight decrease. Additionally, we also find that ocean acidification has clearly led to the long-term reduction in the pH of the CF.

Continue reading ‘Anthropogenic ocean warming and acidification recorded by Sr/Ca, Li/Mg, δ11B and B/Ca in Porites coral from the Kimberley region of northwestern Australia’

Temporal effects of ocean warming and acidification on coral–algal competition

While there is an ever-expanding list of impacts on coral reefs as a result of ocean warming and acidification, there is little information on how these global changes influence coral–algal competition. The present study assessed the impact of business-as-usual ocean warming and acidification conditions on the survivorship, calcification, photosynthesis and respiration of the coral–algal interaction between the macroalga Halimeda heteromorpha and the coral Acropora intermedia over 8 weeks in two seasons. The physiological responses of A. intermedia and H. heteromorpha were highly dependent on season, with both organisms demonstrating optimal rates of calcification and photosynthesis under present-day conditions in summer. Contact with H. heteromorpha did not influence A. intermedia survivorship, however did reduce long-term calcification rates. Photosynthetic rates of A. intermedia were influenced by algal contact temporally in opposing directions, with rates reduced in winter and increased in summer. Enhanced photosynthetic rates as a result of algal contact were not enough to offset the combined effects of ocean warming and acidification, which regardless of coral–algal contact, reduced survivorship, calcification and photosynthesis of A. intermedia and the calcification rates of H. heteromorpha. These findings provide experimental support for the idea that the effects of coral–algal competition are temporally variable, and help improve our understanding of how future ocean warming and acidification may alter the dynamics of coral–algal interactions.

Continue reading ‘Temporal effects of ocean warming and acidification on coral–algal competition’

The combined effects of pH and temperature on the physiology of the temperate coral Oculina arbuscula

The purpose of this investigation was to investigate the impact of ocean acidification and warming sea temperature on Oculina arbuscula, a temperate scleractinian coral found in Gray’s Reef National Marine Sanctuary (GRNMS) off the coast of Sapelo Island, GA. GRNMS experiences seasonal fluctuations in temperatures that reach 30°C and concurrent decreases in pH to approximately 8.0, thus naturally modelling the projected effects of anthropogenic climate change on an annual basis. Oculina arbuscula colonies in GRNMS are exposed to these natural fluctuations in temperature and pH, therefore I hypothesized that this species is resistant to the combined effects of high temperature and low pH. Specifically, I predicted that there would be no effects on calcification rates, symbiont densities, or chlorophyll a concentrations. To test these predictions, O. arbuscula colonies were collected from GRNMS, divided into three treatments and a control, and maintained for 75 days. Ambient temperature was applied at 26°C while high temperature was 31°C, and the ambient pH was 7.9 with a low pH of 7.65. The ambient values were applied to the control aquaria, and the three treatments experienced ocean acidification (ambient temperature, low pH), ocean warming (high temperature, ambient pH), and combined ocean warming and acidification (high temperature, low pH). Results showed that calcification rates were significantly reduced by the combined stressors and symbiont densities and chlorophyll concentrations were significantly reduced by high temperature treatments. These results indicated that with continued ocean acidification and warming, the success of Oculina arbsucula within the spatially competitive benthic communities in GRNMS may be compromised.

Continue reading ‘The combined effects of pH and temperature on the physiology of the temperate coral Oculina arbuscula’

Common Caribbean corals exhibit highly variable responses to future acidification and warming

We conducted a 93-day experiment investigating the independent and combined effects of acidification (280−3300 µatm pCO2) and warming (28°C and 31°C) on calcification and linear extension rates of four key Caribbean coral species (Siderastrea sidereaPseudodiploria strigosaPorites astreoidesUndaria tenuifolia) from inshore and offshore reefs on the Belize Mesoamerican Barrier Reef System. All species exhibited nonlinear declines in calcification rate with increasing pCO2. Warming only reduced calcification in Ps. strigosa. Of the species tested, only S. siderea maintained positive calcification in the aragonite-undersaturated treatment. Temperature and pCO2 had no effect on the linear extension of S. siderea and Po. astreoides, and natal reef environment did not impact any parameter examined. Results suggest that S. siderea is the most resilient of these corals to warming and acidification owing to its ability to maintain positive calcification in all treatments, Ps. strigosa and U. tenuifolia are the least resilient, and Po. astreoides falls in the middle. These results highlight the diversity of calcification responses of Caribbean corals to projected global change.

Continue reading ‘Common Caribbean corals exhibit highly variable responses to future acidification and warming’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,242,894 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book