Posts Tagged 'calcification'



Seasonal calcification of the coral Acropora digitifera from a subtropical marginal Okinawa reef under ocean acidification

Coral calcification is affected by the decrease in aragonite saturation state (Ωarag) caused by ocean acidification (OA). However, OA effects are modulated by other environmental factors such as seawater temperature, light intensity and nutrients. Considering that in subtropical coral reefs all these factors vary seasonally, it can be hypothesized that the magnitude of OA effects on coral physiology will also vary seasonally. We evaluated the seasonal coral calcification rate of a subtropical reef-building coral under OA conditions. We approached this aim by culturing Acropora digitifera under three different CO2 partial pressure (pCO2) conditions in three different seasons (summer, autumn and winter) under natural light and temperature conditions. Additionally, to predict future coral net G, the year-round seawater carbonate chemistry was measured on the coast of Okinawa Island, and the annual coral CaCO3production amount assessed considering seasonal changes in environmental conditions. Coral A. digitifera net calcification (net G) significantly differed among seasons, and summer net Gwas 1.7 and 2.7 times higher than autumn and winter, respectively. However, the impact of OA did not differ among seasons and the rate of net G decrease per unit Ωarag was 11.1%, 17.4% and 18.7% for summer, autumn and winter, respectively. The regression model indicated that net Gof A. digitifera is primarily affected by temperature, secondly by seawater Ωarag, while light intensity was not selected as an explanatory factor, and there was no interactive effect among the factors. The model predicts that the present annual A. digitifera net G in Okinawa Island reef (present mean annual pCO2: 382 μatm and Ωarag: 3.49) is about 0.3 g CaCO3 cm−2 y−1, and it will decrease by 20% with an increase of 500 μatm seawater pCO2 than the present condition. As reefs in high-latitude regions already have marginal positive net G, further decrease in annual CaCO3 production would be detrimental for the reef under conditions of climate change.

Continue reading ‘Seasonal calcification of the coral Acropora digitifera from a subtropical marginal Okinawa reef under ocean acidification’

pH variability exacerbates effects of ocean acidification on a Caribbean crustose coralline alga

Crustose coralline algae (CCA) are among the most sensitive marine taxa to the pH changes predicted with ocean acidification (OA). However, many CCA exist in habitats where diel cycles in pH can surpass near-future OA projections. The prevailing theory that natural variability increases the tolerance of calcifiers to OA has not been widely tested with tropical CCA. Here, we assess the response of the reef-building species Lithophyllum congestum to stable and variable pH treatments, including an ambient control (amb/stable). The amb/variable treatment simulated an ambient diel cycle in pH (7.65–7.95), OA/stable simulated constant low pH reflecting worst-case year 2100 predictions (7.7), and OA/variable combined diel cycling with lower mean pH (7.45–7.75). We monitored the effects of pH on total calcification rate and photophysiology (maximum quantum yield) over 16 weeks. To assess the potential for acclimatization, we also quantified calcification rates during the first (0–8 weeks), and second (8–16 weeks) halves of the experiment. Calcification rates were lower in all pH treatments relative to ambient controls and photophysiology was unaffected. At the end of the 16-week experiment, total calcification rates were similarly low in the amb/variable and OA/stable treatment (27–29%), whereas rates declined by double in the OA/variable treatment (60%). When comparing the first and second halves of the experiment, there was no acclimatization in stable treatments as calcification rates remained unchanged in both the amb/stable and OA/stable treatments. In contrast, calcification rates deteriorated between periods in the variable treatments: from a 16–47% reduction in the amb/variable treatment to a 49–79% reduction in the OA/variable treatment, relative to controls. Our findings provide compelling evidence that pH variability can heighten CCA sensitivity to reductions in pH. Moreover, the decline in calcification rate over time directly contrasts prevailing theory that variability inherently increases organismal tolerances to low pH, and suggests that mechanisms of tolerance may become limited with increasing time of exposure. The significant role of diel pH cycling in CCA responses to OA indicates that organisms in habitats with diel variability could respond more severely to rapid changes in ocean pH associated with OA than predicted by experiments conducted under static conditions.

Continue reading ‘pH variability exacerbates effects of ocean acidification on a Caribbean crustose coralline alga’

Grazers increase the sensitivity of coralline algae to ocean acidification and warming

Highlights

  • Stimulation of the primary production and calcification of corallines by grazing
  • Different response of maerl between winter and summer conditions
  • High vulnerability of corallines to ocean acidification in the presence of grazers

Abstract

Coralline algae are expected to be adversely impacted by ocean acidification and warming. Most research on these algae has involved experiments on isolated species, without considering species interactions, such as grazing. This myopic view is challenging because the impact of climate change on coralline algae will depend on the direct impacts on individual coralline species and the indirect effects of altered interactions with other species. Here, we tested the influence of grazing on the response of the coralline alga Lithothamnion corallioides to near-future ocean acidification and warming. Two three-month experiments were performed in the winter and summer seasons in mesocosms under crossed conditions of pCO2 (ambient and high pCO2) and temperature (ambient and +3 °C) in the presence and absence of grazers. In the winter, L. corallioides photosynthesis decreased with rising temperature in the presence of grazers, while calcification increased. It is likely that increased calcification may act as a structural protection to prevent damage from grazing. However, increasing calcification rates in the presence of grazers may be detrimental to other physiological processes, such as photosynthesis. In the summer, L. corallioides primary production, respiration, and calcification were higher in the presence of grazers than in their absence. Light calcification rates were reduced under high pCO2 in the presence of grazers only. Moreover, dark calcification rates were more adversely affected by pCO2 increase in the presence of grazers. Through their feeding activity, grazers may alter the structural integrity of thalli and increase the sensitivity of coralline algae to ocean acidification. Our results indicate that both season and grazing play a key role in the response of L. corallioides to acidification and warming. Seasonal variations and species interactions are thus critical to consider to make ecologically relevant predictions of the effects of future environmental changes.

Continue reading ‘Grazers increase the sensitivity of coralline algae to ocean acidification and warming’

Particulate inorganic to organic carbon production as a predictor for coccolithophorid sensitivity to ongoing ocean acidification

Ocean acidification (OA) can induce shifts in plankton community composition, with coccolithophores being mostly negatively impacted. This is likely to change particulate inorganic and organic carbon (PIC and POC, respectively) production, with impacts on the biological carbon pump. Hence, assessing and, most importantly, understanding species‐specific sensitivities of coccolithophores is paramount. In a multispecies comparison, spanning more than two orders of magnitude in terms of POC and PIC production rates, among Calcidiscus leptoporus, Coccolithus pelagicus subsp. braarudii, Emiliania huxleyi, Gephyrocapsa oceanica, and Scyphosphaera apsteinii, we found that cellular PIC : POC was a good predictor for a species’ OA sensitivity. This is likely related to the need for cellular pH homeostasis, which is challenged by the process of calcification producing protons internally, especially when seawater pH decreases in an OA scenario. With higher PIC : POC, species and strains being more sensitive to OA coccolithophores may shift toward less calcified varieties in the future.

Continue reading ‘Particulate inorganic to organic carbon production as a predictor for coccolithophorid sensitivity to ongoing ocean acidification’

Ocean warming drives decline in coral metabolism while acidification highlights species-specific responses

Ocean warming and acidification can have negative implications on coral reefs. This mechanistic study aims to evaluate the proximal causes of the observed negative response of Hawaiian corals to climate change scenarios. Net calcification (Gnet), gross photosynthesis, and dark respiration were measured in three species of Hawaiian corals across a range of temperature and acidification regimes using endpoint incubations. Calcification rates showed a curvilinear response with temperature, with the highest calcification rates observed at 26°C. Coral response to ocean acidification (OA) was species dependent and highly variable. OA enhanced calcification rates by 45% in the perforate coral, Montipora capitata, but had no short-term effect on the calcification or photosynthetic rates of imperforate corals, Pocillopora damicornis or Leptastrea purpurea. Further investigations revealed M. capitata to effectively dissipate protons (H+) while increasing uptake of bicarbonate (HCO−3), therefore maintaining high rates of Gnet under acute OA stress. This study demonstrates the first experimental evidence of the ability of a coral species to take advantage of increased dissolved inorganic carbon and overcome an increasing proton gradient in the boundary layer under OA conditions. These observed differences in coral metabolism may underlie the species-specific responses to climate change.

Continue reading ‘Ocean warming drives decline in coral metabolism while acidification highlights species-specific responses’

Contrasting responses of photosynthesis and photochemical efficiency to ocean acidification under different light environments in a calcifying alga

Ocean acidification (OA) is predicted to enhance photosynthesis in many marine taxa. However, photophysiology has multiple components that OA may affect differently, especially under different light environments, with potentially contrasting consequences for photosynthetic performance. Furthermore, because photosynthesis affects energetic budgets and internal acid-base dynamics, changes in it due to OA or light could mediate the sensitivity of other biological processes to OA (e.g. respiration and calcification). To better understand these effects, we conducted experiments on Porolithon onkodes, a common crustose coralline alga in Pacific coral reefs, crossing pCO2 and light treatments. Results indicate OA inhibited some aspects of photophysiology (maximum photochemical efficiency), facilitated others (α, the responsiveness of photosynthesis to sub-saturating light), and had no effect on others (maximum gross photosynthesis), with the first two effects depending on treatment light level. Light also exacerbated the increase in dark-adapted respiration under OA, but did not alter the decline in calcification. Light-adapted respiration did not respond to OA, potentially due to indirect effects of photosynthesis. Combined, results indicate OA will interact with light to alter energetic budgets and potentially resource allocation among photosynthetic processes in P. onkodes, likely shifting its light tolerance, and constraining it to a narrower range of light environments.

Continue reading ‘Contrasting responses of photosynthesis and photochemical efficiency to ocean acidification under different light environments in a calcifying alga’

A comparison of species specific sensitivities to changing light and carbonate chemistry in calcifying marine phytoplankton

Coccolithophores are unicellular marine phytoplankton and important contributors to global carbon cycling. Most work on coccolithophore sensitivity to climate change has been on the small, abundant bloom-forming species Emiliania huxleyi and Gephyrocapsa oceanica. However, large coccolithophore species can be major contributors to coccolithophore community production even in low abundances. Here we fit an analytical equation, accounting for simultaneous changes in CO2 and light intensity, to rates of photosynthesis, calcification and growth in Scyphosphaera apsteinii. Comparison of responses to G. oceanica and E. huxleyi revealed S. apsteinii is a low-light adapted species and, in contrast, becomes more sensitive to changing environmental conditions when exposed to unfavourable CO2 or light. Additionally, all three species decreased their light requirement for optimal growth as CO2 levels increased. Our analysis suggests that this is driven by a drop in maximum rates and, in G. oceanica, increased substrate uptake efficiency. Increasing light intensity resulted in a higher proportion of muroliths (plate-shaped) to lopadoliths (vase shaped) and liths became richer in calcium carbonate as calcification rates increased. Light and CO2 driven changes in response sensitivity and maximum rates are likely to considerably alter coccolithophore community structure and productivity under future climate conditions.

Continue reading ‘A comparison of species specific sensitivities to changing light and carbonate chemistry in calcifying marine phytoplankton’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,250,208 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book