Posts Tagged 'South Pacific'

A good Kiwi isn’t acidic: how ocean acidification is affecting the New Zealand economy

In a country that houses a mere 4 million people, it is no wonder that agriculture has become the main facet of New Zealand’s economy. However, while the sheep and produce have flourished from land protection laws, marine life has struggled in recent years due to an increase in oceanic carbon levels. In an area of the Pacific that is so rich in coral reefs, Great White breeding areas, and a plethora of fish species, any upset of the natural preexisting chemical balance has a tangible impact. New Zealand is dealing with a crisis with huge economic and ecological ramifications. I study the exact adverse effects that ocean acidification has had on the economy of New Zealand. The scientific process of how ocean acidification occurs is a building block of this understanding as well as the Gross Domestic Product (GDP) of the country. The rise of marine pH levels is inextricably linked to the downturn of prosperity in New Zealand’s agricultural sector. My solutions address stricter policies in regards to fishing and emissions regulations to augment the regulation of established New Zealand commercial fishing laws. In this thesis, my goal is to highlight that ocean acidification is a climate problem that affects the entire New Zealand population. By putting these effects into economic terms, I hope to urge change in the “business as usual” way countries conduct themselves, starting with policy makers whose focus is growing their GDP. To illustrate this point effectively, I utilize the disciplines of chemistry, economics, and politics to analyze the trends and consequences of ocean acidification.

Continue reading ‘A good Kiwi isn’t acidic: how ocean acidification is affecting the New Zealand economy’

Climate change and tropical sponges: The effect of elevated pCO₂ and temperature on the sponge holobiont

As atmospheric CO₂ concentrations rise, associated ocean warming (OW) and ocean acidification (OA) are predicted to cause declines in reef-building corals globally, shifting reefs from coral-dominated systems to those dominated by less sensitive species. Sponges are important structural and functional components of coral reef ecosystems, but despite increasing field-based evidence that sponges may be ‘winners’ in response to environmental degradation, our understanding of how they respond to the combined effects of OW and OA is limited. This PhD thesis explores the response of four abundant Great Barrier Reef species – the phototrophic Carteriospongia foliascens and Cymbastela coralliophila and the heterotrophic Stylissa flabelliformis and Rhopaloeides odorabile to OW and OA levels predicted for 2100, under two CO₂ Representative Concentration Pathways (RCPs). The overall aim of this research is to bridge gaps in our understanding of how these important coral reef organisms will respond to projected climate change, to begin to explore whether a sponge dominated state is a possible future trajectory for coral reefs.

To determine the tolerance of adult sponges to climate change, these four species were exposed to OW and OA in the Australian Institute of Marine Science’s (AIMS) National Sea Simulator (SeaSim) in a 3-month experimental study. The first data chapter explores the physiological responses of these sponges to OW and OA to gain a broad understanding of sponge holobiont survival and functioning under these conditions. In this chapter I also address the hypothesis that phototrophic and heterotrophic sponges will exhibit differential responses to climate change. In the second and third data chapters I explore the cellular lipid and fatty acid composition of sponges, and how these biochemical constituents vary with OW and OA. Lipids and fatty acids are not only vital energy stores, they form the major components of cell membranes, and the structure and composition of these biochemical constituents ultimately determines the integrity and physiological competency of a cell. Therefore through these analyses I aimed to determine how OW and OA affects the metabolic balance of sponges, and to understand mechanisms underpinning observed systemic sponge responses. Finally, to provide greater insight into the population level impacts of climate change on tropical sponges, in the last data chapter I explore the response of the phototrophic species Carteriospongia foliascens to OW/OA throughout its developmental stages.

I found that while sponges can generally tolerate climate change scenarios predicted under the RCP6.0 conditions for 2100 (30ºC/ pH 7.8), environmental projections for the end of this century under the RCP8.5 (31.5ºC/ pH 7.6) will have significant implications for their survival. Temperature effects were much stronger than OA effects for all species; however, phototrophic and heterotrophic species responded differently to OA. Elevated pCO₂ exacerbated temperature stress in heterotrophic sponges but somewhat ameliorated thermal stress in phototrophic species. Furthermore, sponges with siliceous spiculated skeletons resisted the RCP 8.5 conditions for longer than the aspiculate species. Biochemical analysis revealed that spiculated species also have greater cell membrane support features, which is likely to contribute to the observed stress tolerance. I also found that the additional energy available to phototrophic sponges under OA conditions may be used for investment into cell membrane support, providing protection against thermal stress. Finally, larval survival and settlement success of C. foliascens was unaffected by OW and OA treatments, and juvenile sponges exhibited greater tolerance than their adult counterparts, again with evidence that OA reduces OW stress for some of these life stages.

Based on the species studied here, this thesis confirms that sponges are better able to deal with OW and OA levels predicted for 2100 under RCP6.0, compared to many corals for which survival in a high CO₂ world requires OW to remain below 1.5°C. This suggests sponges may be future ‘winners’ on coral reefs under global climate change. However, if CO₂ atm concentrations reach levels predicted under RCP8.5, the prognosis for sponge survival by the end of this century changes as inter-species sponge tolerances to OW and OA differ. Under this projection it is likely we will also start to see a shift in sponge populations to those dominated by phototrophic sponges with siliceous spiculated skeletons. Overall, this thesis gives a holistic view of OW and OA impacts on tropical sponges and provides the basis from which to explore the potential for a sponge-coral regime shift in a high CO₂ world.

Continue reading ‘Climate change and tropical sponges: The effect of elevated pCO₂ and temperature on the sponge holobiont’

Pontellid copepods, Labidocera spp., affected by ocean acidification: A field study at natural CO2 seeps

CO2 seeps in coral reefs were used as natural laboratories to study the impacts of ocean acidification on the pontellid copepod, Labidocera spp. Pontellid abundances were reduced by ∼70% under high-CO2 conditions. Biological parameters and substratum preferences of the copepods were explored to determine the underlying causes of such reduced abundances. Stage- and sex-specific copepod lengths, feeding ability, and egg development were unaffected by ocean acidification, thus changes in these physiological parameters were not the driving factor for reduced abundances under high-CO2 exposure. Labidocera spp. are demersal copepods, hence they live amongst reef substrata during the day and emerge into the water column at night. Deployments of emergence traps showed that their preferred reef substrata at control sites were coral rubble, macro algae, and turf algae. However, under high-CO2 conditions they no longer had an association with any specific substrata. Results from this study indicate that even though the biology of a copepod might be unaffected by high-CO2, Labidocera spp. are highly vulnerable to ocean acidification.

Continue reading ‘Pontellid copepods, Labidocera spp., affected by ocean acidification: A field study at natural CO2 seeps’

Lipid consumption in coral larvae differs among sites: a consideration of environmental history in a global ocean change scenario

The success of early life-history stages is an environmentally sensitive bottleneck for many marine invertebrates. Responses of larvae to environmental stress may vary due to differences in maternal investment of energy stores and acclimatization/adaptation of a population to local environmental conditions. In this study, we compared two populations from sites with different environmental regimes (Moorea and Taiwan). We assessed the responses of Pocillopora damicornis larvae to two future co-occurring environmental stressors: elevated temperature and ocean acidification. Larvae from Taiwan were more sensitive to temperature, producing fewer energy-storage lipids under high temperature. In general, planulae in Moorea and Taiwan responded similarly to pCO2. Additionally, corals in the study sites with different environments produced larvae with different initial traits, which may have shaped the different physiological responses observed. Notably, under ambient conditions, planulae in Taiwan increased their stores of wax ester and triacylglycerol in general over the first 24 h of their dispersal, whereas planulae from Moorea consumed energy-storage lipids in all cases. Comparisons of physiological responses of P. damicornis larvae to conditions of ocean acidification and warming between sites across the species’ biogeographic range illuminates the variety of physiological responses maintained within P. damicornis, which may enhance the overall persistence of this species in the light of global climate change.

Continue reading ‘Lipid consumption in coral larvae differs among sites: a consideration of environmental history in a global ocean change scenario’

Boosted food web productivity through ocean acidification collapses under warming

Future climate is forecast to drive bottom-up (resource driven) and top-down (consumer driven) change to food web dynamics and community structure. Yet, our predictive understanding of these changes is hampered by an over-reliance on simplified laboratory systems centred on single trophic levels. Using a large mesocosm experiment, we reveal how future ocean acidification and warming modify trophic linkages across a three-level food web: that is, primary (algae), secondary (herbivorous invertebrates) and tertiary (predatory fish) producers. Both elevated CO2 and elevated temperature boosted primary production. Under elevated CO2, the enhanced bottom-up forcing propagated through all trophic levels. Elevated temperature, however, negated the benefits of elevated CO2 by stalling secondary production. This imbalance caused secondary producer populations to decline as elevated temperature drove predators to consume their prey more rapidly in the face of higher metabolic demand. Our findings demonstrate how anthropogenic CO2 can function as a resource that boosts productivity throughout food webs, and how warming can reverse this effect by acting as a stressor to trophic interactions. Understanding the shifting balance between the propagation of resource enrichment and its consumption across trophic levels provides a predictive understanding of future dynamics of stability and collapse in food webs and fisheries production.

Continue reading ‘Boosted food web productivity through ocean acidification collapses under warming’

Symbiodinium mitigate the combined effects of hypoxia and acidification on a non-calcifying cnidarian

Anthropogenic nutrient inputs enhance microbial respiration within many coastal ecosystems, driving concurrent hypoxia and acidification. During photosynthesis, Symbiodinium spp., the microalgal endosymbionts of cnidarians and other marine phyla, produce O2 and assimilate CO2, and thus potentially mitigate the exposure of the host to these stresses. However, such a role for Symbiodinium remains untested for non-calcifying cnidarians. We therefore contrasted the fitness of symbiotic and aposymbiotic polyps of a model host jellyfish (Cassiopea sp.) under reduced O2 (~2.09mgL−1) and pH (~pH 7.63) scenarios in a full factorial experiment. Host fitness was characterised as asexual reproduction and their ability to regulate internal pH and Symbiodinium performance characterised by maximum photochemical efficiency, chla content, and cell density. Acidification alone resulted in 58% more asexual reproduction of symbiotic polyps than aposymbiotic polyps (and enhanced Symbiodinium cell density) suggesting Cassiopea sp. fitness was enhanced by CO2-stimulated Symbiodinium photosynthetic activity. Indeed, greater CO2 drawdown (elevated pH) was observed within host tissues of symbiotic polyps under acidification regardless of O2 conditions. Hypoxia alone produced 22% fewer polyps than ambient conditions regardless of acidification and symbiont status, suggesting Symbiodinium photosynthetic activity did not mitigate its effects. Combined hypoxia and acidification, however, produced similar numbers of symbiotic polyps compared with aposymbiotic kept under ambient conditions, demonstrating that the presence of Symbiodinium was key for mitigating the combined effects of hypoxia and acidification on asexual reproduction. We hypothesise that this mitigation occurred because of reduced photorespiration under elevated CO2 conditions where increased net O2 production ameliorates oxygen debt. We show that Symbiodinium play an important role in facilitating enhanced fitness of Cassiopea sp. polyps, and perhaps also other non-calcifying cnidarian hosts, to the ubiquitous effects of ocean acidification. Importantly we highlight that symbiotic, non-calcifying cnidarians may be particularly advantaged in productive coastal waters that are subject to simultaneous hypoxia and acidification.

Continue reading ‘Symbiodinium mitigate the combined effects of hypoxia and acidification on a non-calcifying cnidarian’

Variable response to warming and ocean acidification by bacterial processes in different plankton communities

Extracellular bacterial enzymes play an important role in the degradation of organic matter in the surface ocean but are sensitive to changes in pH and temperature. This study tested the individual and combined effects of lower pH (-0.3) and warming (+3°C) projected for the year 2100 on bacterial abundance, process rates and diversity in plankton communities of differing composition from 4 locations east of New Zealand. Variation was observed in magnitude and temporal response between the different communities during 5 to 6 day incubations. Leucine aminopeptidase activity showed the strongest response, with an increase in potential activity under low pH alone and in combination with elevated temperature in 3 of 4 incubations. Temperature had a greater effect on bacterial cell numbers and protein synthesis, with stronger responses in the elevated temperature and combined treatments. However, the most common interactive effect between temperature and pH was antagonistic, with lower bacterial secondary production in the combined treatment relative to elevated temperature, and lower leucine aminopeptidase activity in the combined treatment relative to low pH. These results highlight the variability of responses to and interactions of environmental drivers, and the importance of considering these in experimental studies and prognostic models of microbial responses to climate change.

Continue reading ‘Variable response to warming and ocean acidification by bacterial processes in different plankton communities’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,001,108 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book