Posts Tagged 'South Pacific'

Sea surface carbonate dynamics at reefs of Bolinao, Philippines: seasonal variation and fish mariculture-induced forcing

Coral reefs are vulnerable to global ocean acidification (OA) and local human activities will continue to exacerbate coastal OA. In Bolinao, Philippines, intense unregulated fish mariculture has resulted in regional eutrophication. In order to examine the coastal acidification associated with this activity and the impact on nearby coral reefs, water quality and carbonate chemistry parameters were measured at three reef sites, a mariculture site and an offshore, minimally impacted control site during both the wet and dry season. Additionally, benthic community composition was characterized at reef sites, and both autonomous carbonate chemistry sampling and high-frequency pH measurements were used to characterize fine-scale (diel) temporal variability. Water quality was found to be poorer at all reefs during the wet season, when there was stronger outflow of waters from the mariculture area. Carbonate chemistry parameters differed significantly across the reef flat and between seasons, with more acidic conditions occurring during the dry season and increased primary production suppressing further acidification during the wet season. Significant relationships of both total alkalinity (TA) and dissolved inorganic carbon (DIC) with salinity across all stations may imply outflow of acidified water originating from the mariculture area where pH values as low as 7.78 were measured. This apparent mariculture-induced coastal acidification was likely due to organic matter respiration as sustained mariculture will continue to deliver organic matter. While TA-DIC vector diagrams indicate greater contribution of net primary production, net calcification potential in the nearest reef to mariculture area may already be diminished. The two farther reefs, characterized by higher coral cover, indicates healthier ecosystem functioning. Here we show that unregulated fish mariculture activities can lead to localized acidification and impact reef health. As these conditions at times approximate those projected to occur globally due to OA, our results may provide insight into reef persistence potential worldwide. These results also underscore the importance of coastal acidification and indicate that actions taken to mitigate OA on coral reefs should address not only global CO2 emissions but also local perturbations, in this case fish mariculture-induced eutrophication.

Continue reading ‘Sea surface carbonate dynamics at reefs of Bolinao, Philippines: seasonal variation and fish mariculture-induced forcing’

Threats to Australia’s oceans and coasts: a systematic review

Graphical abstract.


  • Threats to Australia’s oceans and coasts described in the academic literature from 2010 to 2020 were systematically reviewed.
  • 307 threats were identified across three categories, with most threats in the group “environmental and human-induced threats”.
  • Threats were described as impacting environmental (68%), economic (14%), socio-cultural (12%), and Indigenous (6%) values.
  • Only 45 of the 226 papers (20%) discussed multiple threats.
  • Findings highlight the cumulative and multi-faceted threats facing Australian oceans and coasts that must be addressed.


Oceans and coasts provide important ecosystem, livelihood, and cultural values to humans and the planet but face current and future compounding threats from anthropogenic activities associated with expanding populations and their use of and reliance on these environments. To respond to and mitigate these threats, there is a need to first systematically understand and categorise them. This paper reviewed 226 articles from the period 2010–2020 on threats to Australia’s oceans and coasts, resulting in the identification of a total of 307 threats. Threats were grouped into three broad categories — threats from use and extraction; environmental and human-induced threats; and policy and socio-political threats —then ranked by frequency. The most common ‘threats from use and extraction’ were recreational activities, non-point source pollution, and urban development; the most common ‘environmental and human-induced threat’ was increased temperatures; and the most common ‘policy and socio-political threat’ was policy gaps and failures (e.g., a lack of coastal climate adaptation policies). The identification of threats across all three categories increased over time; however, the identification of ‘threats from use and extraction’ increased most rapidly over the last four years (2017–2020). Threats were most often described for their impacts on environmental values (68%), followed by economic (14%), socio-cultural (12%), and Indigenous (6%) values. Only 45 of the 226 papers (20%) discussed multiple threats. The threats facing Australia’s oceans and coasts are rising, cumulative, and multi-faceted, and the inherent tensions between varied uses, along with intensification of uses that derive short-term anthropogenic benefit, will continue to degrade the ecological sustainability of ocean and coastal systems if actions are not taken.

Continue reading ‘Threats to Australia’s oceans and coasts: a systematic review’

Cell wall organic matrix composition and biomineralization across reef-building coralline algae under global change

Crustose coralline algae (CCA) are one of the most important benthic substrate consolidators on coral reefs through their ability to deposit calcium carbonate on an organic matrix in their cell walls. Discrete polysaccharides have been recognized for their role in biomineralization, yet little is known about the carbohydrate composition of organic matrices across CCA taxa and whether they have the capacity to modulate their organic matrix constituents amidst environmental change, particularly the threats of ocean acidification (OA) and warming. We simulated elevated pCO2 and temperature (IPCC RCP 8.5) and subjected four mid-shelf Great Barrier Reef species of CCA to two months of experimentation. To assess the variability in surficial monosaccharide composition and biomineralization across species and treatments, we determined the monosaccharide composition of the polysaccharides present in the cell walls of surficial algal tissue and quantified calcification. Our results revealed dissimilarity among species’ monosaccharide constituents, which suggests that organic matrices are composed of different polysaccharides across CCA taxa. We also found that species differentially modulate composition in response to ocean acidification and warming. Our findings suggest that both variability in composition and ability to modulate monosaccharide abundance may play a crucial role in surficial biomineralization dynamics under the stress of OA and global warming.

Continue reading ‘Cell wall organic matrix composition and biomineralization across reef-building coralline algae under global change’

Physical and biological effects on the carbonate system during summer in the Northern Argentine Continental Shelf (Southwestern Atlantic)


  • New Argentine Shelf data analyzed biogeochemical mechanisms affecting the carbonate system.
  • The study region during the summer was likely an important CO2 sink.
  • Biological mechanisms affected the CO2 dynamics in the Argentine Shelf in summer.
  • Small phytoplankton (<2–3 μm) played a key role in modulating the CO2 uptake.


The Argentine shelf and its shelf-break (Southwestern Atlantic Ocean) are known for their high biological productivity, and as an important CO2 sink region. However, many aspects of the carbonate system dynamics in the area, especially those related to the biological activity, deserve further study. Here we investigated the mechanisms affecting the carbonate system distributions, using in situ physical, chemical and biological observations collected along a section (COSTAL-AR) on the Northern Argentine Continental Shelf during two summer cruises in 2019. Our main goal was to evaluate the role of the microbial communities on the modulation of the carbonate system in the area. For that, we characterized (i) the distribution of the thermohaline properties, chlorophyll a, dissolved oxygen, carbonate system (pH, total alkalinity, dissolved inorganic carbon and high resolution underway CO2 fugacity, fCO2), dissolved inorganic nutrients, and (ii) the microbial communities (bacterioplankton, phytoplankton, and protozooplankton). Our results show that the COSTAL-AR section was likely an important CO2 sink and presented high seawater fCO2 spatial variability in both middle (272–430 μatm) or early (211–365 μatm) summer conditions. Phytoplankton played a key role in modulating the CO2 uptake and carbonate system spatial variability during summer, especially in the middle and outer shelf. The main contribution to CO2 fixation was given by small cells, since the microbial community was dominated by autotrophic picoplankton (<2 μm; e.g. Synechococcus sp. and coccal picophytoeukaryotes). Moreover, the influence of the Shelf-break front in ruling both the seawater fCO2 distribution and biological processes was evident. These findings provide new insights on the connection between the biology and the carbonate system in this sparsely sampled area of the southwestern Atlantic Ocean.

Continue reading ‘Physical and biological effects on the carbonate system during summer in the Northern Argentine Continental Shelf (Southwestern Atlantic)’

Genetic architecture of behavioural resilience to ocean acidification

Genetic variation is essential for adaptation to rapid environmental changes. Identifying genetic variation associated with climate-change related phenotypes is therefore the necessary first step towards predictive models of genomic vulnerability.

Here we used a whole-genome scan to identify candidate genetic variants associated with differences in behavioural resilience to ocean acidification in a coral reef fish. We identified three genomic regions that differ between individuals that are behaviourally tolerant compared with behaviourally sensitive to elevated CO2. These include a dopamine receptor (drd4rs), cadherin related family member 5-like (cdhr5l), Synapse-associated protein 1 (syap1), and GRB2 Associated Regulator of MAPK1 Subtype 2 (garem2), which have previously been found to modify behaviour related to boldness, novelty seeking, and learning in other species, and differ between behaviourally tolerant and sensitive individuals.

Consequently, the identified genes are promising candidates in the search of the genetic underpinnings and adaptive potential of behavioural resilience to ocean acidification in fishes.

Continue reading ‘Genetic architecture of behavioural resilience to ocean acidification’

Intraspecific variation reshapes coral assemblages under elevated temperature and acidity

Insights into assemblages that can persist in extreme environments are still emerging. Ocean warming and acidification select against species with low physiological tolerance (trait-based ‘filtering’). However, intraspecific trait variation can promote species adaptation and persistence, with potentially large effects on assemblage structure. By sampling nine coral traits (four morphological, four tissue and one skeletal) along an offshore–inshore gradient in temperature and pH, we show that distantly related coral species undergo consistent intraspecific changes as they cross into warm, acidic environment. Intraspecific variation and species turnover each favoured colonies with greater tissue biomass, higher symbiont densities and reduced skeletal investments, indicating strong filtering on colony physiology within and across species. Physiological tissue traits were highly variable within species and were independent of morphology, enabling morphologically diverse species to cross into sites of elevated temperature and acidity. Widespread intraspecific change can therefore counter the loss of biodiversity and morphological structure across a steep environmental gradient.

Continue reading ‘Intraspecific variation reshapes coral assemblages under elevated temperature and acidity’

Physiologically mediated susceptibilities of coralline algae to ocean change

Coralline algae are important foundation species in coastal ecosystems around the world but are threatened by ocean acidification (OA) and other anthropogenic stressors such as ocean warming (OW) and sedimentation. Physiological responses to ocean change are challenging to predict because the mechanisms that provide tolerance to different stressors are unknown and there is a lack of understanding of responses to multiple drivers. To address these issues, I conducted four experiments examining the physiological responses of multiple temperate coralline algal species to decreasing irradiance, declining pH, OW and marine heatwaves (MHWs), and a combination of OA, OW and reduced irradiance.

Coralline algal calcification generally responded parabolically to irradiance, but photosynthesis responded linearly. My results suggest that light enhanced calcification is the result of increased ion pumping rates to elevate the calcium carbonate saturation state in the calcifying fluid (CF) and a higher daytime pH in the diffusion boundary layer that raises pHCF. My results implied the existence of two calcification strategies in coralline algae that I discuss within the thesis.

Tolerance to OA was coupled to the species’ ability to maintain stable carbonate chemistry at the site of calcification to support calcification as seawater pH declined. Conversely, pronounced changes in internal calcium carbonate saturation state (ΩCF) and skeletal magnesium content were observed in the sensitive taxa. However, ΩCF did generally not decline but increase under OA. There was also slight OA-induced photodamage in sensitive taxa that could explain the inability to support ion-pumping and growth under OA.

Photo-physiology and calcification of coralline algae were generally unaffected by OW and MHWs implying a high thermo-tolerance. However, exposure to future ocean conditions (decreased irradiance+OW x OA) caused the most severe reductions in calcification. Single driver (OA and decreased irradiance+OW) impacts were smaller. Calcification responses were decoupled from ΩCF likely due to the effective control over the internal carbonate chemistry. However, calcification likely declined due to the increased energy expenditure of calcification or when energy supply was reduced. Indeed, variations in energy expenditure and photosynthesis could explain most of the observed calcification responses.

Overall, this thesis has increased our predictive understanding regarding the impact of ocean change on coralline algae by addressing several critical issues by providing a new mechanistic model that more accurately defines the role of irradiance in coralline algal calcification.

Continue reading ‘Physiologically mediated susceptibilities of coralline algae to ocean change’

Acidification and high-temperature impacts on energetics and shell production of the edible clam Ameghinomya antiqua

Warming and ocean acidification are currently critical global change drivers for marine ecosystems due to their complex and irreversible effects on the ecology and evolution of marine communities. Changes in the chemistry and the temperature of the ocean impact the biological performance of marine resources by affecting their energy budget and thus imposing energetic restrictions and trade-offs on their survival, growth, and reproduction. In this study, we evaluated the interplaying effects of increased pCO2 levels and temperature on the economically relevant clam Ameghinomya antiqua, an infaunal bivalve inhabiting a wide distributional range along the coast of Chile. Juvenile clams collected from southern Chile were exposed to a 90-day experimental set-up emulating the current and a future scenario projeced to the end of the current century for both high pCO2/low-pH and temperature (10 and 15°C) projected for the Chilean coast. Clams showed physiological plasticity to different projected environmental scenarios without mortality. In addition, our results showed that the specimens under low-pH conditions were not able to meet the energetic requirements when increased temperature imposed high maintenance costs, consequently showing metabolic depression. Indeed, although the calcification rate was negative in the high-pCO2 scenario, it was the temperature that determined the amount of shell loss. These results indicate that the studied clam can face environmental changes for short-term periods modifying energetic allocation on maintenance and growth processes, but with possible long-term population costs, endangering the sustainability of an important benthic artisanal fisheries resource.

Continue reading ‘Acidification and high-temperature impacts on energetics and shell production of the edible clam Ameghinomya antiqua

Environmental memory gained from exposure to extreme pCO2 variability promotes coral cellular acid–base homeostasis

Ocean acidification is a growing threat to coral growth and the accretion of coral reef ecosystems. Corals inhabiting environments that already endure extreme diel pCO2 fluctuations, however, may represent acidification-resilient populations capable of persisting on future reefs. Here, we examined the impact of pCO2 variability on the reef-building coral Pocillopora damicornis originating from reefs with contrasting environmental histories (variable reef flat versus stable reef slope) following reciprocal exposure to stable (218 ± 9) or variable (911 ± 31) diel pCO2 amplitude (μtam) in aquaria over eight weeks. Endosymbiont density, photosynthesis and net calcification rates differed between origins but not treatment, whereas primary calcification (extension) was affected by both origin and acclimatization to novel pCO2 conditions. At the cellular level, corals from the variable reef flat exhibited less intracellular pH (pHi) acidosis and faster pHi recovery rates in response to experimental acidification stress (pH 7.40) than corals originating from the stable reef slope, suggesting environmental memory gained from lifelong exposure to pCO2 variability led to an improved ability to regulate acid–base homeostasis. These results highlight the role of cellular processes in maintaining acidification resilience and suggest that prior exposure to pCO2 variability may promote more acidification-resilient coral populations in a changing climate.

Continue reading ‘Environmental memory gained from exposure to extreme pCO2 variability promotes coral cellular acid–base homeostasis’

Impacts of warming and acidification on coral calcification linked to photosymbiont loss and deregulation of calcifying fluid pH

Corals are globally important calcifiers that exhibit complex responses to anthropogenic warming and acidification. Although coral calcification is supported by high seawater pH, photosynthesis by the algal symbionts of zooxanthellate corals can be promoted by elevated pCO2. To investigate the mechanisms underlying corals’ complex responses to global change, three species of tropical zooxanthellate corals (Stylophora pistillataPocillopora damicornis, and Seriatopora hystrix) and one species of asymbiotic cold-water coral (Desmophyllum pertusum, syn. Lophelia pertusa) were cultured under a range of ocean acidification and warming scenarios. Under control temperatures, all tropical species exhibited increased calcification rates in response to increasing pCO2. However, the tropical species’ response to increasing pCO2 flattened when they lost symbionts (i.e., bleached) under the high-temperature treatments—suggesting that the loss of symbionts neutralized the benefit of increased pCO2 on calcification rate. Notably, the cold-water species that lacks symbionts exhibited a negative calcification response to increasing pCO2, although this negative response was partially ameliorated under elevated temperature. All four species elevated their calcifying fluid pH relative to seawater pH under all pCO2 treatments, and the magnitude of this offset (Δ[H+]) increased with increasing pCO2. Furthermore, calcifying fluid pH decreased along with symbiont abundance under thermal stress for the one species in which calcifying fluid pH was measured under both temperature treatments. This observation suggests a mechanistic link between photosymbiont loss (‘bleaching’) and impairment of zooxanthellate corals’ ability to elevate calcifying fluid pH in support of calcification under heat stress. This study supports the assertion that thermally induced loss of photosymbionts impairs tropical zooxanthellate corals’ ability to cope with CO2-induced ocean acidification.

Continue reading ‘Impacts of warming and acidification on coral calcification linked to photosymbiont loss and deregulation of calcifying fluid pH’

Ocean acidification assessment

This report summarises data and analysis methods for ocean acidification data from the Munida Time Series over the period 1998-­2020 and the New Zealand Ocean Acidification Observing Network over the period 2015-­21. Analysis of the trends and variability is also provided along with discussion on the implications of this for the New Zealand marine environment.

Continue reading ‘Ocean acidification assessment’

Gaining insights into the seawater carbonate system using discrete fCO2 measurements

Understanding the ocean carbon sink and its future acidification-derived changes requires accurate and precise measurements with good spatiotemporal coverage. In addition, a deep knowledge of the thermodynamics of the seawater carbonate system is key to interconverting between measured and calculated variables. To gain insights into the remaining inconsistencies in the seawater carbonate system, we assess discrete water column measurements of carbon dioxide fugacity (fCO2), dissolved inorganic carbon (DIC), total alkalinity (TA), and pH measured with unpurified indicators, from hydrographic cruises in the Atlantic, Pacific, and Southern Oceans included in GLODAPv2.2020 (19,013 samples). An agreement of better than ± 3% between fCO2 measured and calculated from DIC and pH is obtained for 94% of the compiled dataset, while when considering fCO2 measured and calculated from DIC and TA, the agreement is better than ± 4% for 88% of the compiled dataset, with a poorer internal consistency for high-CO2 waters. Inspecting all likely sources of uncertainty from measured and calculated variables, we conclude that the seawater carbonate system community needs to (i) further refine the thermodynamic model of the seawater carbonate system, especially K2, including the impact of organic compounds and other acid-base systems on TA; (ii) update the standard operating procedures for the seawater carbonate system measurements following current technological and analytical advances, paying particular attention to the pH methodology that is the one that evolved the most; (iii) encourage measuring discrete water column fCO2 to further check the internal consistency of the seawater carbonate system, especially given the new era of sensor-based seawater measurements; and (iv) develop seawater Certified Reference Materials (CRMs) for fCO2 and pH together with seawater CRMs for TA and DIC over the range of values encountered in the global ocean. Our conclusions also suggest the need for a re-evaluation of the adjustments applied by GLODAPv2 to pH, which were based on DIC and TA consistency checks but not supported by fCO2 and DIC consistency.

Continue reading ‘Gaining insights into the seawater carbonate system using discrete fCO2 measurements’

Recent ocean acidification trends from boron isotope (δ11B) records of coral: role of oceanographic processes and anthropogenic CO2 forcing


Anthropogenic CO2 emission has resulted in lowering of surface ocean pH referred as ‘Ocean acidification (OA)’ which posed a serious threat to calcifying marine organisms. Several attempts have been made to assess the role of anthropogenic CO2 forcing against oceanographic factors/processes contributing to the recent OA trend; however, such attempts were hindered by the dearth of long-term pH records. Boron isotopic composition (δ11B) of corals has been used as a robust proxy for seawater pH records. In the present study, we have compiled available coral δ11B-pH records from the Indian, Pacific and Atlantic oceans and assessed regional trends, variability, forcing factors and their relative roles. Most of these δ11B-pH records show a discernable decline trend in recent decades with large variability. Our assessment of the Pacific records reveals that atmospheric CO2 forcing explains maximum pH variability followed by physical oceanographic factors/processes modulated by Pacific oscillations, e.g., ENSO and PDO. In addition, coral metabolic processes might control a large portion of the pH variability; however, they require detailed laboratory-based studies. Further, our investigation reveals a significant increase in pH variability (pH extremes) since ~1970s associated with ENSO events which might be critical for the resilience and adaptability of corals and other calcifiers.

Research Highlights

  • Since the industrial era (~1850), Coral δ11B-pH records show a discernible decreasing trend and a rapid decline since 1970.
  • Oceanographic processes control large inter-annual pH variability, whereas the long-term declining trend is driven by atmospheric CO2 forcing.
  • The pH extremes are predicted to increase in future warming scenarios, a threat to coral ecosystem.
Continue reading ‘Recent ocean acidification trends from boron isotope (δ11B) records of coral: role of oceanographic processes and anthropogenic CO2 forcing’

High coral recruitment despite coralline algal loss under extreme environmental conditions

The crucial role of crustose coralline algae (CCA) in inducing hard coral larval settlement and ensuring the replenishment of coral reefs is widely accepted, and so are the negative effects of anthropogenic CO2 emissions on both CCA abundance and coral development. However, diversified and well-developed coral reef communities have been recently discovered in natural conditions where CCA and corals would not be expected to thrive. Back-reef pools, volcanic CO2 vents, mangrove estuaries, and semi-enclosed lagoons systems can present seawater pH, temperature, and dissolved oxygen values reaching or even exceeding the conditions currently predicted by the Inter Panel on Climate Change (IPCC) for 2100. In the semi-enclosed lagoon of Bouraké (New Caledonia, southwest Pacific Ocean), seawater pHT, dissolved oxygen, and temperatures regularly fluctuate with the tide reaching respectively minimum values of 7.23 pHT units, 2.28 mg O2 L-1, and maximum of 33.85°C. This study reports the effect of such extreme environmental conditions on hard coral recruitment and CCA originally settled at a forereef on artificial substrates that were transplanted over two years in two fringing reef and at the Bouraké lagoon. Our data emphasize the negative effects of the extreme conditions in our study sites on the CCA, which decreased in cover by ca. 80% and lost in the competition with turf algae, which, in turn, increased up to 162% at the end of the two years. Conversely, hard coral recruitment remained high at Bouraké throughout the study, three-fold higher than at two sites located outside Bouraké where environmental conditions were typical for coastal fringing reefs. Our findings show that while such extreme, climate change like-conditions have a direct and adverse effect on CCA abundance, and despite a certain persistence, coral larvae settlement was not affected. Based on previous findings from Bouraké, and the present observations, both coral recruits and adults seem to be unaffected despite the extreme environmental conditions. This study supports previous research illustrating how extreme natural and variable environments may reveal unexpected and positive insights on the processes underlying coral acclimatization and adaptation to global change.

Continue reading ‘High coral recruitment despite coralline algal loss under extreme environmental conditions’

Environmental stability and phenotypic plasticity benefit the cold-water coral Desmophyllum dianthus in an acidified fjord

The stratified Chilean Comau Fjord sustains a dense population of the cold-water coral (CWC) Desmophyllum dianthus in aragonite supersaturated shallow and aragonite undersaturated deep water. This provides a rare opportunity to evaluate CWC fitness trade-offs in response to physico-chemical drivers and their variability. Here, we combined year-long reciprocal transplantation experiments along natural oceanographic gradients with an in situ assessment of CWC fitness. Following transplantation, corals acclimated fast to the novel environment with no discernible difference between native and novel (i.e. cross-transplanted) corals, demonstrating high phenotypic plasticity. Surprisingly, corals exposed to lowest aragonite saturation (Ωarag < 1) and temperature (T < 12.0 °C), but stable environmental conditions, at the deep station grew fastest and expressed the fittest phenotype. We found an inverse relationship between CWC fitness and environmental variability and propose to consider the high frequency fluctuations of abiotic and biotic factors to better predict the future of CWCs in a changing ocean.

Continue reading ‘Environmental stability and phenotypic plasticity benefit the cold-water coral Desmophyllum dianthus in an acidified fjord’

Assessing the vulnerability of marine life to climate change in the Pacific Islands region

Our changing climate poses growing challenges for effective management of marine life, ocean ecosystems, and human communities. Which species are most vulnerable to climate change, and where should management focus efforts to reduce these risks? To address these questions, the National Oceanic and Atmospheric Administration (NOAA) Fisheries Climate Science Strategy called for vulnerability assessments in each of NOAA’s ocean regions. The Pacific Islands Vulnerability Assessment (PIVA) project assessed the susceptibility of 83 marine species to the impacts of climate change projected to 2055. In a standard Rapid Vulnerability Assessment framework, this project applied expert knowledge, literature review, and climate projection models to synthesize the best available science towards answering these questions. Here we: (1) provide a relative climate vulnerability ranking across species; (2) identify key attributes and factors that drive vulnerability; and (3) identify critical data gaps in understanding climate change impacts to marine life. The invertebrate group was ranked most vulnerable and pelagic and coastal groups not associated with coral reefs were ranked least vulnerable. Sea surface temperature, ocean acidification, and oxygen concentration were the main exposure drivers of vulnerability. Early Life History Survival and Settlement Requirements was the most data deficient of the sensitivity attributes considered in the assessment. The sensitivity of many coral reef fishes ranged between Low and Moderate, which is likely underestimated given that reef species depend on a biogenic habitat that is extremely threatened by climate change. The standard assessment methodology originally developed in the Northeast US, did not capture the additional complexity of the Pacific region, such as the diversity, varied horizontal and vertical distributions, extent of coral reef habitats, the degree of dependence on vulnerable habitat, and wide range of taxa, including data-poor species. Within these limitations, this project identified research needs to sustain marine life in a changing climate.

Continue reading ‘Assessing the vulnerability of marine life to climate change in the Pacific Islands region’

The effect of ocean acidification on the escape behaviour of the sea star Parvulastra exigua to its sea star predator Meridiastra calcar

Ocean acidification (OA) driven by sea water uptake of anthropogenic atmospheric CO2 has broad deleterious effects on marine species including modified behavioural interactions such as between predators and prey. Predatory sea stars are key species in many marine ecosystems and often elicit defensive responses in their prey. This study investigated the effect of elevated CO2 on the escape response of the sea star Parvulastra exigua to its sea star predator Meridiastra calcar. In response to touch by M. calcarP. exigua exhibits a distinct fleeing response. The escape response of P. exigua with respect to velocity and escape trajectory was investigated after both species were acclimated in OA conditions. At pHT 7.6 and 7.8 velocity and escape trajectory of the fleeing response of P. exigua did not differ from that seen in the ambient treatment. However, there was a delay in the time that P. exigua started to flee with the initiation time being 2.8 times slower (10 vs 28 s) at pHT 7.6. This delay may increase the vulnerability of P. exigua to predation by M. calcar and have ecological effects with respect to the role of this species as an algal grazer on rocky shores of southeast Australia where these sea star species co-occur.

Continue reading ‘The effect of ocean acidification on the escape behaviour of the sea star Parvulastra exigua to its sea star predator Meridiastra calcar’

Understanding the implications of hydrographic processes on the dynamics of the carbonate system in a sub-Antarctic marine-terminating glacier-fjord (53°S)

The biogeochemical dynamics of fjords in the southeastern Pacific Ocean are strongly influenced by hydrological and oceanographic processes occurring at a seasonal scale. In this study, we describe the role of hydrographic forcing on the seasonal variability of the carbonate system of the Sub-Antarctic glacial fjord, Seno Ballena, in the Strait of Magellan (53°S). Biogeochemical variables were measured in 2018 during three seasonal hydrographic cruises (fall, winter and spring) and from a high-frequency pCO2-pH mooring for 10 months at 10 ± 1 m depth in the fjord. The hydrographic data showed that freshwater input from the glacier influenced the adjacent surface layer of the fjord and forced the development of undersaturated CO2 (< 400 μatm) and low aragonite saturation state (ΩAr < 1) water. During spring, the surface water had relatively low pCO2 (mean = 365, range: 167 – 471 μatm), high pH (mean = 8.1 on the total proton concentration scale, range: 8.0 – 8.3), and high ΩAr (mean = 1.6, range: 1.3 – 4.0). Concurrent measurements of phytoplankton biomass and nutrient conditions during spring indicated that the periods of lower pCO2 values corresponded to higher phytoplankton photosynthesis rates, resulting from autochthonous nutrient input and vertical mixing. In contrast, higher values of pCO2 (range: 365 – 433 μatm) and relatively lower values of pHT (range: 8.0 – 8.1) and ΩAr (range: 0.9 – 2.0) were recorded in cold surface waters during winter and fall. The naturally low freshwater carbonate ion concentrations diluted the carbonate ion concentrations in seawater and decreased the calcium carbonate saturation of the fjord. In spring, at 10 m depth, higher primary productivity caused a relative increase in ΩAr and pHT. Assuming global climate change will bring further glacier retreat and ocean acidification, this study represents important advances in our understanding of glacier meltwater processes on CO2 dynamics in glacier–fjord systems.

Continue reading ‘Understanding the implications of hydrographic processes on the dynamics of the carbonate system in a sub-Antarctic marine-terminating glacier-fjord (53°S)’

Elevated temperature and carbon dioxide levels alter growth rates and shell composition in the fluted giant clam, Tridacna squamosa

Giant clams produce massive calcified shells with important biological (e.g., defensive) and ecological (e.g., habitat-forming) properties. Whereas elevated seawater temperature is known to alter giant clam shell structure, no study has examined the effects of a simultaneous increase in seawater temperature and partial pressure of carbon dioxide (pCO2) on shell mineralogical composition in these species. We investigated the effects of 60-days exposure to end-of-the-century projections for seawater temperature (+ 3 °C) and pCO2 (+ 500 µatm) on growth, mineralogy, and organic content of shells and scutes in juvenile Tridacna squamosa giant clams. Elevated temperature had no effect on growth rates or organic content, but did increase shell [24Mg]/[40Ca] as well as [40Ca] in newly-formed scutes. Elevated pCO2 increased shell growth and whole animal mass gain. In addition, we report the first evidence of an effect of elevated pCO2 on element/Ca ratios in giant clam shells, with significantly increased [137Ba]/[40Ca] in newly-formed shells. Simultaneous exposure to both drivers greatly increased inter-individual variation in mineral concentrations and resulted in reduced shell N-content which may signal the onset of physiological stress. Overall, our results indicate a greater influence of pCO2 on shell mineralogy in giant clams than previously recognized.

Continue reading ‘Elevated temperature and carbon dioxide levels alter growth rates and shell composition in the fluted giant clam, Tridacna squamosa’

Calcification accretion units (CAUs): a standardized approach for quantifying recruitment and calcium carbonate accretion in marine habitats

  1. Standardized metrics that quantify a component of ecosystem functioning are essential for evaluating the current status of coastal marine habitats and for monitoring how ecologically important ecosystems are changing in response to global and local environmental change. Calcification accretion units (CAUs) are a standardized tool for quantifying net calcium carbonate accretion, early successional community structure, recruitment of algae and sessile invertebrates and other response metrics that can be determined from image analyses in coastal marine habitats.
  2. CAUs are comprised of paired-settlement tiles that are separated by a spacer. This design mimics the presence of different representative habitats that are common in most marine systems such as exposed benthic surfaces, cryptic spaces inaccessible to grazers and shaded overhangings. The protected space between the tiles facilitates recruitment and inclusion of cryptic taxa in community assemblage estimates. After a period of deployment, CAUs are photographed for image analysis and then decalcified to quantify calcium carbonate accretion rates.
  3. The CAU methodology provides a cost-effective, standardized protocol for evaluating structure and function in marine benthic habitats. We illustrate how CAU data can be used to compare accretion rates and the relative proportion of carbonate polymorphs in ecosystems across the globe.
  4. Here we provide a comprehensive standard operating procedure for building, deploying and processing CAUs, to ensure that a consistent protocol is used for accurate data collection and cross-system comparative studies.
Continue reading ‘Calcification accretion units (CAUs): a standardized approach for quantifying recruitment and calcium carbonate accretion in marine habitats’

  • Reset


OA-ICC Highlights

%d bloggers like this: