Posts Tagged 'South Pacific'

Changes in the metabolic potential of the sponge microbiome under ocean acidification

Anthropogenic CO2 emissions are causing ocean acidification, which can affect the physiology of marine organisms. Here we assess the possible effects of ocean acidification on the metabolic potential of sponge symbionts, inferred by metagenomic analyses of the microbiomes of two sponge species sampled at a shallow volcanic CO2 seep and a nearby control reef. When comparing microbial functions between the seep and control sites, the microbiome of the sponge Stylissa flabelliformis (which is more abundant at the control site) exhibits at the seep reduced potential for uptake of exogenous carbohydrates and amino acids, and for degradation of host-derived creatine, creatinine and taurine. The microbiome of Coelocarteria singaporensis (which is more abundant at the seep) exhibits reduced potential for carbohydrate import at the seep, but greater capacity for archaeal carbon fixation via the 3-hydroxypropionate/4-hydroxybutyrate pathway, as well as archaeal and bacterial urea production and ammonia assimilation from arginine and creatine catabolism. Together these metabolic features might contribute to enhanced tolerance of the sponge symbionts, and possibly their host, to ocean acidification.

Continue reading ‘Changes in the metabolic potential of the sponge microbiome under ocean acidification’

Flow-driven micro-scale pH variability affects the physiology of corals and coralline algae under ocean acidification

Natural variability in pH in the diffusive boundary layer (DBL), the discrete layer of seawater between bulk seawater and the outer surface of organisms, could be an important factor determining the response of corals and coralline algae to ocean acidification (OA). Here, two corals with different morphologies and one coralline alga were maintained under two different regimes of flow velocities, pH, and light intensities in a 12 flumes experimental system for a period of 27 weeks. We used a combination of geochemical proxies, physiological and micro-probe measurements to assess how these treatments affected the conditions in the DBL and the response of organisms to OA. Overall, low flow velocity did not ameliorate the negative effect of low pH and therefore did not provide a refugia from OA. Flow velocity had species-specific effects with positive effects on calcification for two species. pH in the calcifying fluid (pHcf) was reduced by low flow in both corals at low light only. pHcf was significantly impacted by pH in the DBL for the two species capable of significantly modifying pH in the DBL. The dissolved inorganic carbon in the calcifying fluid (DICcf) was highest under low pH for the corals and low flow for the coralline, while the saturation state in the calcifying fluid and its proxy (FWHM) were generally not affected by the treatments. This study therefore demonstrates that the effects of OA will manifest most severely in a combination of lower light and lower flow habitats for sub-tropical coralline algae. These effects will also be greatest in lower flow habitats for some corals. Together with existing literature, these findings reinforce that the effects of OA are highly context dependent, and will differ greatly between habitats, and depending on species composition.

Continue reading ‘Flow-driven micro-scale pH variability affects the physiology of corals and coralline algae under ocean acidification’

Multi-decadal change in reef-scale production and calcification associated with recent disturbances on a Lizard Island reef flat

Climate change is threatening the persistence of coral reef ecosystems resulting in both chronic and acute impacts which include higher frequency and severity of cyclones, warming sea surface temperatures, and ocean acidification. This study measured net ecosystem primary production (NEP) and net ecosystem calcification (NEC) on a reef flat after the most severe El Nino-driven mass bleaching event on Australia’s Great Barrier Reef (GBR) in 2016 and again in 2018 after another consecutive bleaching event in 2017. Our results indicate temporal changes in reef metabolism likely as result of both the continuing press disturbance of ocean acidification and severe pulse disturbances (cyclones and bleaching events). In 2016, NEP was within the range of values reported in past studies, however, it declined in 2018. NEC over a 12-h period was lower in 2016 than 2018; but when compared with past studies there was a severe decline in daytime net calcification from 2008–2009, to 2016 followed by an increase in 2018 (but still NEC remained lower than values reported in 2008–2009). Conversely, nighttime net calcification was similar to that reported in 2009 indicating nighttime dissolution did not increase over the past decade. Overall coral cover remained stable following recent disturbances, however, algal turf was the dominant benthic component on the reef flat, while calcifiers (corals and calcified algae) were minor components (<20% of total benthic cover). This study documented temporal changes in community function following major pulse disturbances (bleaching events and cyclones) within the context of ongoing OA at the same location over the last decade. Repeated pulse disturbances could jeopardize the persistence of the reef flat as a net calcifying entity, with the potential for cascading effects on other ecosystem services.

Continue reading ‘Multi-decadal change in reef-scale production and calcification associated with recent disturbances on a Lizard Island reef flat’

Geochemical characterization of highly diverse hydrothermal fluids from volcanic vent systems of the Kermadec intraoceanic arc

During the R/V Sonne cruise SO253 in 2016/2017, hydrothermal vent sites along the Kermadec intraoceanic arc were sampled for hydrothermal fluids at four active volcanoes: Macauley, Haungaroa, Brothers and Rumble III, respectively. Water depths ranged between 290 m and 1700 m. A new vent field was discovered at Haungaroa. The samples were taken from diffuse-flow sites as well as from white and black smokers – rich in metals and gases – with discharge temperatures as high as 311 °C. Their fluid composition is very variable but basically divides into two types: one that indicates distinct magmatic input and another that shows evidence for intense water-rock interaction under hot, acidic conditions.

Fluid samples from Macauley, the shallowest sampling site (~300 m), had Fe concentrations as high as 1.7 mM, Al concentrations up to 122 μM and H2S up to 10 mM at a pH of only 1.2. At Brothers, the deepest sampling site (down to 1600 m), we identified two different fluid types: 1) A magmatically-influenced type at the Upper and Lower Cone with highest temperatures of 115 °C, up to 95.6 mM Mg (the highest Mg concentration measured in fluids from intraoceanic arc systems so far), elevated SO42− (76.9 mM), high H2S (5.0 mM), but Fe concentrations of only 15 μM and 2) A fluid with low Mg (5.4 mM), low H2S (1.1 mM), temperatures reaching 311 °C and high Fe contents (12.4 mM) at the Upper Caldera and NW Caldera Wall, typical of a black smoker fluid. Chloride concentrations in all fluids were similar, or highly enriched when compared to seawater (e.g. up to 787 mM, brine fluids), with also one low-chlorinity vapor-phase fluid sample recovered, indicating that phase separation is occurring at Brothers. Unusual highly elevated Mg concentrations in fluids from the Brothers Lower Cone (95.6 mM, compared to 53.2 mM in ambient seawater) combined with highly elevated concentrations of SO42− (76.9 mM, compared to 29.0 mM in ambient seawater) indicate dissolution of Mg- and SO42−-bearing minerals in the subsurface, such as caminite.

Our data show how highly diverse and variable island arc systems can be with respect to their fluid chemistry, both spatially and temporally. It adds to the still limited data set of arc systems compared to mid-ocean ridges and supplies an important contribution towards a better understanding of geochemical processes along arc volcanoes.

The higher range in fluid chemistry together with shallower water depth implies that the fluids from intraoceanic arcs may contribute a significant fraction of dissolved metals not only to the global oceanic biogeochemical cycle but also into the photic zone, the area of highest bioproductivity.

Continue reading ‘Geochemical characterization of highly diverse hydrothermal fluids from volcanic vent systems of the Kermadec intraoceanic arc’

Little evidence of adaptation potential to ocean acidification in sea urchins living in “future ocean” conditions at a CO2 vent

Ocean acidification (OA) can be detrimental to calcifying marine organisms, with stunting of invertebrate larval development one of the most consistent responses. Effects are usually measured by short‐term, within‐generation exposure, an approach that does not consider the potential for adaptation. We examined the genetic response to OA of larvae of the tropical sea urchin Echinometra sp. C. raised on coral reefs that were either influenced by CO2 vents (pH ~ 7.9, future OA condition) or nonvent control reefs (pH 8.2). We assembled a high quality de novo transcriptome of Echinometra embryos (8 hr) and pluteus larvae (48 hr) and identified 68,056 SNPs. We tested for outlier SNPs and functional enrichment in embryos and larvae raised from adults from the control or vent sites. Generally, highest FST values in embryos were observed between sites (intrinsic adaptation, most representative of the gene pool in the spawned populations). This comparison also had the highest number of outlier loci (40). In the other comparisons, classical adaptation (comparing larvae with adults from the control transplanted to either the control or vent conditions) and reverse adaptation (larvae from the vent site returned to the vent or explanted at the control), we only observed modest numbers of outlier SNPs (6–19) and only enrichment in two functional pathways. Most of the outliers detected were silent substitutions without adaptive potential. We conclude that there is little evidence of realized adaptation potential during early development, while some potential (albeit relatively low) exists in the intrinsic gene pool after more than one generation of exposure.

Continue reading ‘Little evidence of adaptation potential to ocean acidification in sea urchins living in “future ocean” conditions at a CO2 vent’

Restoring the flat oyster Ostrea angasi in the face of a changing climate

Across the globe, restoration efforts are stemming the loss of native oyster reefs and the ecosystem services they provide, but these efforts will need to consider climate change in order to be sustainable. South-eastern Australia is the focus of restoring the once abundant oyster Ostrea angasi. This region is also a climate change ‘hot spot’ where the ocean is warming rapidly, with the potential to be exacerbated by marine heatwaves and coastal acidification. In this study, the impact of near-future (~2050) elevated temperature and pCO2 on O. angasi was determined and considered in context with concerns for the long-term sustainability of oyster reef restoration efforts. Oysters were exposed to ambient and elevated pCO2 concentrations (mean ± SE: 408 ± 19.8 and 1070 ± 53.4 µatm) and ambient and elevated temperatures (22.78 ± 0.17 and 25.73 ± 0.21°C) for 10 wk in outdoor flow-through mesocosms. Shell growth, condition index, standard metabolic rate (SMR), extracellular pH and survival were measured. Elevated temperature caused high mortality (36%) and decreased the condition of oysters (33%). Elevated pCO2 increased SMR almost 4-fold and lowered the extracellular pH of O. angasi by a mean 0.29 pH units. In combination, elevated pCO2 and temperature ameliorated effects on SMR and survivorship of oysters. O. angasi appears to be living near the limits of its thermal tolerance. Restoration projects will need to account for the temperature sensitivity of this species and its changing habitat to ‘climate proof’ long-term restoration efforts.

Continue reading ‘Restoring the flat oyster Ostrea angasi in the face of a changing climate’

Mangrove lagoons of the Great Barrier Reef support coral populations persisting under extreme environmental conditions

Global degradation of coral reefs has increased the urgency of identifying stress-tolerant coral populations, to enhance understanding of the biology driving stress tolerance, as well as identifying stocks of stress-hardened populations to aid reef rehabilitation. Surprisingly, scientists are continually discovering that naturally extreme environments house established coral populations adapted to grow within extreme abiotic conditions comparable to seawater conditions predicted over the coming century. Such environments include inshore mangrove lagoons that carry previously unrecognised ecosystem service value for corals, spanning from refuge to stress preconditioning. However, the existence of such hot-spots of resilience on the Great Barrier Reef (GBR) remains entirely unknown. Here we describe, for the first time, 2 extreme GBR mangrove lagoons (Woody Isles and Howick Island), exposing taxonomically diverse coral communities (34 species, 7 growth morphologies) to regular extreme low pH (<7.6), low oxygen (7°C) conditions. Coral cover was typically low (0.5 m diameter), with net photosynthesis and calcification rates of 2 dominant coral species (Acropora millepora, Porites lutea) reduced (20-30%), and respiration enhanced (11-35%), in the mangrove lagoon relative to adjacent reefs. Further analysis revealed that physiological plasticity (photosynthetic ‘strategy’) and flexibility of Symbiodiniaceae taxa associations appear crucial in supporting coral capacity to thrive from reef to lagoon. Prevalence of corals within these extreme conditions on the GBR (and elsewhere) increasingly challenge our understanding of coral resilience to stressors, and highlight the need to study unfavourable coral environments to better resolve mechanisms of stress tolerance.

Continue reading ‘Mangrove lagoons of the Great Barrier Reef support coral populations persisting under extreme environmental conditions’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,284,648 hits


Ocean acidification in the IPCC AR5 WG II

OUP book