Posts Tagged 'predation'

Current and future trophic interactions in tropical shallow-reef lagoon habitats

Calcium carbonate (CaCO3) sediments are the dominant form of CaCO3 on coral reefs accumulating in lagoon and inter-reefal areas. Owing to their mineralogy and a range of physical parameters, tropical CaCO3 sediments are predicted to be more sensitive to dissolution driven by ocean acidification than the skeleton of living reef organisms. How this scales up to impact infaunal organisms, which are an important food source for higher trophic levels, and thereby ecosystem functioning, is not well explored. We combined seasonal field surveys in a shallow-reef lagoon ecosystem on the Great Barrier Reef, Australia, with stable isotope analyses and a tank-based experiment to examine the potential top-down influence of the deposit-feeding sea cucumber, Stichopus herrmanni, on this infaunal community under current and future ocean pH. Densities of surface-sediment meiofauna were lowest in winter and spring, with harpacticoid copepods (38%) and nematodes (27%) the dominant taxa. Stable isotope analyses showed that S. herrmanni had a top-down influence on meiofauna and microphytes with a distinct δ13C and δ15N trophic position that was homogenous across seasons and locations. Tanks that mimicked sandy shallow-reef lagoon habitats were used to examine the effects of ocean acidification (elevated pCO2) on this trophic interaction. We used outdoor control (sediment only) and experimental (sediment plus S. herrmanni) tanks maintained at present-day and near-future pCO2 (+ 570 µatm) for 24 days, which fluctuated with the diel pCO2 cycle. In sediment-only tanks, copepods were > twofold more abundant at elevated pCO2, with no negative effects documented for any meiofauna group. When included in the community, top-down control by S. herrmanni counteracted the positive effects of low pH on meiofaunal abundance. We highlight a novel perspective in coral reef trophodynamics between surface-sediment meiofauna and deposit-feeding sea cucumbers, and posit that community shifts may occur in shallow-reef lagoon habitats in a future ocean with implications for the functioning of coral reefs from the bottom up.

Continue reading ‘Current and future trophic interactions in tropical shallow-reef lagoon habitats’

Predation in high CO2 waters: prey fish from high-risk environments are less susceptible to ocean acidification

Most studies investigating the effects of anthropogenic environmental stressors do so in conditions that are often optimal for their test subjects, ignoring natural stressors such as competition or predation. As such, the quantitative results from such studies may often underestimate the lethality of certain toxic compounds. A well-known example of this concept is illustrated by the marked increase in the lethality of pesticides when larval amphibians are concurrently exposed to the odor of potential predators. Here, we investigated the interaction between background levels of environmental predation risk (high vs. low) and ocean acidification (ambient vs. elevated CO2) in 2 × 2 design. Wild-caught juvenile damselfish, Pomacentrus amboinensis, were exposed in the laboratory to the different risk and CO2 conditions for 4 days and released onto coral reef patches. Using a well-established field assay, we monitored the in situ behavior and mortality of the damselfish for 2 days. We predicted that juvenile fish exposed to elevated CO2 and high-risk conditions would display more severe behavioral impairments and increased mortality compared to fish exposed to elevated CO2 maintained under low-risk conditions. As expected, elevated CO2 exposure led to impaired antipredator responses and increased mortality in low-risk fish compared to ambient CO2 controls. However, we failed to find an effect of elevated CO2 on the behavior and survival of the high-risk fish. We hypothesized that the results may stem from either a behavioral compensation or a physiological response to high risk. Our results provide insights into the interactive nature of environmental and natural stressors and advance our understanding of the predicted effect of ocean acidification on aquatic ecosystems.

Continue reading ‘Predation in high CO2 waters: prey fish from high-risk environments are less susceptible to ocean acidification’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,441,077 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book

Archives