Posts Tagged 'metals'

Ocean acidification increases copper accumulation and exacerbates copper toxicity in Amphioctopus fangsiao (Mollusca: Cephalopoda): a potential threat to seafood safety

Highlights

  • A. fangsiao can adapt well to ocean acidification after 21-days experiment.
  • Copper accumulation in tissues showed increase in acidified seawater.
  • Copper exposure can influence the growth and feeding of A. fangsiao.
  • Acidification exacerbated the copper effect in metabolism and oxidative stress.
  • Copper exposure triggered DNA and protein and mitochondrial damage.

Abstract

Ocean acidification (OA) and trace metal pollutants coexist to exert combined effects on the functions and services of marine ecosystems. Increasing atmospheric carbon dioxide has caused a decrease in the pH of the ocean, affecting the bioavailability and speciation of trace metals and consequently altering metal toxicity in marine organisms. As an important trace metal functioned in hemocyanin, the richness of Copper (Cu) in octopuses is remarkable. Therefore, the biomagnification and bioaccumulation capacities of Cu in octopuses may be a non-negligible risk of contamination. Here, Amphioctopus fangsiao was continuously exposed to acidified seawater (pH 7.8) and copper (50 μg/L) to investigate the combined effect of ocean acidification and Cu exposure on marine mollusks. Our results showed that A. fangsiao could adapt well to ocean acidification after 21 days of the rearing experiment. However, the accumulation of Cu in A. fangsiao intestine increased significantly in acidified seawater under high levels of Cu stress. In addition, Cu exposure can influence the physiological function of A. fangsiao, including growth and feeding. This study also demonstrated that Cu exposure disturbed glucolipid metabolism and induced oxidative damage to intestine tissue, and ocean acidification further exacerbated these toxic effects. The obvious histological damage and microbiota alterations were also caused by Cu stress and its combined effect with ocean acidification. At the transcription level, we found numerous differentially expressed genes (DEGs) and significantly enriched KEGG pathways, involving glycolipid metabolism, transmembrane transport, glucolipid metabolism, oxidative stress, mitochondrial, protein and DNA damage, all revealing the strong toxicological synergetic effect of Cu and OA exposure and the molecular adaptation mechanism of A. fangsiao. Collectively, this study demonstrated that octopuses may withstand future ocean acidification conditions, however, the complex interactions of future OA and trace metal pollution need to be emphasized. OA can influence the toxicity of trace metals, inducing a potential threat to marine organism safety.

Continue reading ‘Ocean acidification increases copper accumulation and exacerbates copper toxicity in Amphioctopus fangsiao (Mollusca: Cephalopoda): a potential threat to seafood safety’

High and diurnally fluctuating carbon dioxide exposure produces lower mercury toxicity in a marine copepod

Highlights

  • Elevated pCO2 decreased Hg accumulation in Hg-treated T. japonicus.
  • Fluctuating elevated pCO2 further decreased Hg bioaccumulation.
  • Hg exposure caused energy depletion and oxidative stress in T. japonicus.
  • Elevated pCO2 initiated compensatory response in copepods to decrease Hg toxicity.
  • Fluctuating elevated pCO2 presented more immune defense related genes/processes.

Abstract

Coastal waters have experienced fluctuations in partial pressure of carbon dioxide (pCO2) and mercury (Hg) pollution, yet little is known concerning how natural pCO2 fluctuations affect Hg biotoxicity. Here, a marine copepod Tigriopus japonicus was interactively exposed to different seawater pCO2 (ambient 400, steady elevated 1000, and fluctuating elevated 1000 ± 600 μatm) scenarios and Hg (control, 2 μg/L) treatments for 7 d. The results showed that elevated pCO2 decreased Hg bioaccumulation, and it was even more under fluctuating elevated pCO2 condition. We found energy depletion and oxidative stress under Hg-treated copepods, while combined exposure initiated compensatory response to alleviate Hg toxicity. Intriguingly, fluctuating acidification presented more immune defense related genes/processes in Hg-treated copepods when compared to steady acidification, probably linking with the greater decrease in Hg bioaccumulation. Collectively, understanding how fluctuating acidification interacts with Hg contaminant will become more crucial in predicting their risks to coastal biota and ecosystems.

Continue reading ‘High and diurnally fluctuating carbon dioxide exposure produces lower mercury toxicity in a marine copepod’

Ocean warming and CO2-driven acidification can alter the toxicity of metal-contaminated sediments to the meiofauna community

Highlights

  • Contamination interacted with warming but the effect on density was taxon dependent.
  • Warming increased metal effects in nematods and copepods, and decreased in acoelomorphs.
  • Copepod densities were lower, and acoelomorphs higher, in the high CO2/low pH scenario.
  • Global change studies should consider multispecies exposures in multi-stressor scenarios.

Abstract

Interactive effects of trace metal contamination, ocean warming, and CO2-driven acidification on the structure of a meiofaunal benthic community was assessed. Meiofauna microcosm bioassays were carried out in controlled conditions in a full factorial experimental design which included three fixed factors: metal contamination in the sediment (3 levels of a mixture of Cu, Pb, Zn, and Hg), temperature (26 and 28 °C) and pH (7.6 and 8.1). Metal contamination caused a sharp decrease in the densities of the most abundant meiobenthic groups and interacted with temperature rise, exacerbating deleterious effects for Nematoda and Copepoda, but mitigating effects for Acoelomorpha. CO2-driven acidification resulted in increased acoelomorphs density, but only in sediments with lower levels of metals. Copepod densities, in turn, were lower in the CO2-driven acidification scenario regardless of contamination or temperature. The results obtained in the present study showed that temperature rise and CO2-driven acidification of coastal ocean waters, at environmentally relevant levels, interacts with trace metals in marine sediments, differently affecting the major groups of benthic biota.

Continue reading ‘Ocean warming and CO2-driven acidification can alter the toxicity of metal-contaminated sediments to the meiofauna community’

Ocean acidification enhances the embryotoxicity of CuO nanoparticles to Oryzias melastigma

Concerns are raised towards individual effects of ocean acidification (OA) and engineered nanoparticles (NPs) on marine organisms. However, there are scarce studies regarding nanotoxicity under OA conditions. We investigated the combined effects of OA (pHs, 7.70 and 7.40) and CuO NPs on the embryotoxicity of marine medaka Oryzias melastigma and the bioavailability of CuO NPs in embryos. The results showed that OA alleviated the aggregation of CuO NPs and promoted the dissolution of CuO NPs in seawater (increased by 0.010 and 0.029 mg/L under pHs 7.70 and 7.40, respectively). Synergistic effects of OA with CuO NPs on medaka embryos were observed as indicated by much higher mortality and oxidative damage. Importantly, the enhanced toxicity of CuO NPs to medaka embryos under OA conditions mainly originated from the higher bioavailability of particulate CuO (e.g., 30.28 mg/kg at pH 7.40) rather than their released Cu2+ ions (e.g. 3.04 mg/kg at pH 7.40). The weaker aggregation of NPs under OA conditions resulted in higher penetration of individual particles (or small aggregates) into embryos through the micropyle and chorionic pores, causing enhanced bioavailability of NPs. The obtained results provided underlying insights into understanding the risk of NPs to marine ecosystem under OA conditions.

Continue reading ‘Ocean acidification enhances the embryotoxicity of CuO nanoparticles to Oryzias melastigma’

Review of warming and acidification effects to the ecotoxicity of pharmaceuticals on aquatic organisms in the era of climate change

Highlights

  • Acidification and warming modulates the ecotoxicity of pharmaceuticals.
  • Biochemical, cellular and behavioral biomarkers show a response.
  • Trends of change in acute and chronic toxicity were drug dependent.
  • Acidification modified the toxicity of selected ionizable pharmaceuticals.
  • Bioaccumulation was modified by target effects of global warming.

Abstract

An increase in the temperature and the acidification of the aquatic environment are among the many consequences of global warming. Climate change can also negatively affect aquatic organisms indirectly, by altering the toxicity of pollutants. Models of climate change impacts on the distribution, fate and ecotoxicity of persistent pollutants are now available. For pharmaceuticals, however, as new environmental pollutants, there are no predictions on this issue. Therefore, this paper organizes the existing knowledge on the effects of temperature, pH and both stressors combined on the toxicity of pharmaceuticals on aquatic organisms. Besides lethal toxicity, the molecular, physiological and behavioral biomarkers of sub-lethal stress were also assessed. Both acute and chronic toxicity, as well as bioaccumulation, were found to be affected. The direction and magnitude of these changes depend on the specific pharmaceutical, as well as the organism and conditions involved. Unfortunately, the response of organisms was enhanced by combined stressors. We compare the findings with those known for persistent organic pollutants, for which the pH has a relatively low effect on toxicity. The acid-base constant of molecules, as assumed, have an effect on the toxicity change with pH modulation. Studies with bivalves have been were overrepresented, while too little attention was paid to producers. Furthermore, the limited number of pharmaceuticals have been tested, and metabolites skipped altogether. Generally, the effects of warming and acidification were rather indicated than explored, and much more attention needs to be given to the ecotoxicology of pharmaceuticals in climate change conditions.

Continue reading ‘Review of warming and acidification effects to the ecotoxicity of pharmaceuticals on aquatic organisms in the era of climate change’

Response of juvenile Saccharina japonica to the combined stressors of elevated pCO2 and excess copper

Coastal macroalgae may be subjected to global and local environmental stressors, such as ocean acidification and heavy-metal pollution. We investigated the growth, photosynthetic characteristics, and biochemical compositions of juvenile sporophytes of Saccharina japonica cultivated at two pCO2 levels (400 and 1000 ppmv) and four copper concentrations (natural seawater, control; 0.2 μM, low level; 0.5 μM, medium level; and 1 μM, high level) to better understand how macroalgae respond to ongoing environmental changes. The results showed that the responses of juvenile S. japonica to copper concentrations depended on the pCO2 level. Under the 400 ppmv condition, medium and high copper concentrations significantly decreased the relative growth rate (RGR) and non-photochemical quenching (NPQ) but increased the relative electron transfer rate (rETR) and chlorophyll a (Chl a), chlorophyll c (Chl c), carotenoid (Car), and soluble carbohydrate contents. At 1000 ppmv, however, none of the parameters had significant differences between the different copper concentrations. Our data suggest that excess copper may inhibit the growth of juvenile sporophytes of S. japonica, but this negative effect could be alleviated by CO2-induced ocean acidification.

Continue reading ‘Response of juvenile Saccharina japonica to the combined stressors of elevated pCO2 and excess copper’

Sediment-seawater exchange altered adverse effects of ocean acidification towards marine microalgae

Highlights

  • Five marine microalgal species showed different sensitivities to OA.
  • OA promoted algal growth except I. galbana after introducing sediments.
  • N, P and Fe released from sediments mitigated OA-induced toxicity to E. huxleyi.
  • OA-induced algal community instability was alleviated by the presence of sediments.

Abstract

Ocean acidification (OA) exhibits high threat to marine microalgae. However, the role of marine sediment in the OA-induced adverse effect towards microalgae is largely unknown. In this work, the effects of OA (pH 7.50) on the growth of individual and co-cultured microalgae (Emiliania huxleyiIsochrysis galbanaChlorella vulgarisPhaeodactylum tricornutum, and Platymonas helgolandica tsingtaoensis) were systematically investigated in the sediment-seawater systems. OA inhibited E. huxleyi growth by 25.21 %, promoted P. helgolandica (tsingtaoensis) growth by 15.49 %, while did not cause any effect on the other three microalgal species in the absence of sediment. In the presence of the sediment, OA-induced growth inhibition of E. huxleyi was significantly mitigated, because the released chemicals (N, P and Fe) from seawater-sediment interface increased the photosynthesis and reduced oxidative stress. For P. tricornutum, C. vulgaris and P. helgolandica (tsingtaoensis), the growth was significantly increased in the presence of sediment in comparison with those under OA alone or normal seawater (pH 8.10). For I. galbana, the growth was inhibited when the sediment was introduced. Additionally, in the co-culturing system, C. vulgaris and P. tricornutum were the dominant species, while OA increased the proportions of dominant species and decreased the community stability as indicated by Shannon and Pielou’s indexes. After the introduction of sediment, the community stability was recovered, but remained lower than that under normal condition. This work demonstrated the role of sediment in the biological responses to OA, and could be helpful for better understanding the impact of OA on marine ecosystems.

Continue reading ‘Sediment-seawater exchange altered adverse effects of ocean acidification towards marine microalgae’

Ocean acidification induces tissue-specific interactions with copper toxicity on antioxidant defences in viscera and gills of Asiatic hard clam Meretrix petechialis (Lamarck, 1818)

Highlights

  • Cu and OA coexposures induce tissue-specific oxidative stress in clams.
  • OA exacerbates Cu toxicity and increases oxidative damage in tissues.
  • Gill is more vulnerable to oxidation than viscera with MDA and 8-OHdG as indicators.
  • PCAs usefully identify the contributions of biomarkers to antioxidant defences.
  • The results provide insights for assessing Cu toxicity under OA in wild bivalves.

Abstract

Toxicity of contaminants in organisms under ocean acidification (OA) has attracted increasing attention in ecotoxicological studies. This study investigated how pCO2-driven OA affected waterborne copper (Cu) toxicity in antioxidant defences in viscera and gills of Asiatic hard clam Meretrix petechialis (Lamarck, 1818). Clams were continuously exposed to Cu at ambient relevant (0/no metal exposure, 10 and 50 μg L−1) and polluted-high (100 μg L−1) concentrations in unacidified (pH 8.10) and acidified (pH 7.70/moderate OA and 7.30/extreme OA) seawater for 21 days. Following coexposure, metal bioaccumulation and responses of antioxidant defence-related biomarkers to OA and Cu coexposure were investigated. Results showed that metal bioaccumulation was positively correlated with waterborne metal concentrations but was not notably influenced by OA conditions. Both Cu and OA affected the antioxidant responses to environmental stress. Additionally, OA induced tissue-specific interactions with Cu on antioxidant defences, varying with exposure conditions. In unacidified seawater, antioxidant biomarkers were activated to defend against oxidative stress induced by Cu and prevented clams from lipid peroxidation (LPO or MDA), but failed to defend against DNA damage (8-OHdG). OA exacerbated Cu toxicity in antioxidant defences and increased LPO levels in tissues. Gills and viscera adopted adaptive antioxidant defence strategies to manage oxidative stress, with the former being more vulnerable to oxidative stress than the latter. MDA and 8-OHdG were sensitive to OA and Cu exposure, respectively, and were useful bioindicators for assessing oxidative stress. Integrated biomarker response (IBR) and PCA can reflect the integrative responses of antioxidant biomarkers to environmental stress and illuminate the contributions of specific biomarkers to antioxidant defence strategies. The findings provided insights for understanding antioxidant defences against metal toxicity in marine bivalves under OA scenarios, which is essential into managing wild populations.

Continue reading ‘Ocean acidification induces tissue-specific interactions with copper toxicity on antioxidant defences in viscera and gills of Asiatic hard clam Meretrix petechialis (Lamarck, 1818)’

Predicting effects of multiple interacting global change drivers across trophic levels

Global change encompasses many co-occurring anthropogenic drivers, which can act synergistically or antagonistically on ecological systems. Predicting how different global change drivers simultaneously contribute to observed biodiversity change is a key challenge for ecology and conservation. However, we lack the mechanistic understanding of how multiple global change drivers influence the vital rates of multiple interacting species. We propose that reaction norms, the relationships between a driver and vital rates like growth, mortality, and consumption, provide insights to the underlying mechanisms of community responses to multiple drivers. Understanding how multiple drivers interact to affect demographic rates using a reaction-norm perspective can improve our ability to make predictions of interactions at higher levels of organization—that is, community and food web. Building on the framework of consumer–resource interactions and widely studied thermal performance curves, we illustrate how joint driver impacts can be scaled up from the population to the community level. A simple proof-of-concept model demonstrates how reaction norms of vital rates predict the prevalence of driver interactions at the community level. A literature search suggests that our proposed approach is not yet used in multiple driver research. We outline how realistic response surfaces (i.e., multidimensional reaction norms) can be inferred by parametric and nonparametric approaches. Response surfaces have the potential to strengthen our understanding of how multiple drivers affect communities as well as improve our ability to predict when interactive effects emerge, two of the major challenges of ecology today.

Continue reading ‘Predicting effects of multiple interacting global change drivers across trophic levels’

Enormously enhanced particulate organic carbon and nitrogen production by elevated CO2 and moderate aluminum enrichment in the coccolithophore Emiliania huxleyi

Aluminum (Al) is abundant and ubiquitous in the environment. However, little information is available on its effects on photosynthetic microbes in alkaline seawater. Thus, we investigated the physiological performance in the most cosmopolitan coccolithophorid, viz., Emiliania huxleyi, grown under low (410 µatm) and high (1000 µatm) CO2 levels in seawater having none (0 nM, NAl), low (0.2 µM, LAl) and high (2 µM, HAl) Al concentrations. Under low CO2 conditions, the specific growth rate showed no significant difference between the NAl and LAl treatments, which was higher than the HAL treatment. Elevated CO2 inhibited the growth rate in the NAl and LAl cultures but did not affect the HAl cultures. The addition of Al had no effects on (LAl) or slightly elevated (HAl) the particulate organic carbon (POC) production rate under low CO2 conditions. With increasing CO2 concentration, the production rate of POC was enhanced by 55.3 % during the NAl treatment and further increased by 22.3 % by adding 0.2 µM Al. The responses of particulate organic nitrogen (PON) production rate, cellular POC, and PON contents to the different treatments revealed the same pattern as those of the POC production rate. The particulate inorganic carbon (PIC) production rate and PIC/POC ratio were not affected by Al under low CO2 conditions. They were significantly decreased by elevated CO2 in the LAl and HAl cultures. Our results indicate that high CO2 could increase carbon export to ocean depths by elevating the efficiency of the biological pump at low Al levels occurring in natural seawater (0.2 μM), with potentially significant implications for the carbon cycle of the ocean under accelerating anthropogenic influences.

Continue reading ‘Enormously enhanced particulate organic carbon and nitrogen production by elevated CO2 and moderate aluminum enrichment in the coccolithophore Emiliania huxleyi’

Antagonism toxicity of CuO nanoparticles and mild ocean acidification to marine algae

Graphical abstract

The toxicity of CuO nanoparticles (NPs) to marine microalgae (Emiliania huxleyi) under ocean acidification (OA) conditions (pHs 8.10, 7.90, 7.50) was investigated. CuO NPs (5.0 mg/L) caused significant toxicity (e.g., 48-h growth inhibition, 20%) under normal pH (8.10), and severe OA (pH 7.50) increased the toxicity of CuO NPs (e.g., 48-h growth inhibition, 68%). However, toxicity antagonism was observed with a growth inhibition (48 h) decreased to 37% after co-exposure to CuO NPs and mild OA (pH 7.90), which was attributed to the released Cu2+ ions from CuO NPs. Based on biological responses as obtained from RNA-sequencing, the dissolved Cu2+ ions (0.078 mg/L) under mild OA were found to increase algae division (by 17%) and photosynthesis (by 28%) through accelerating photosynthetic electron transport and promoting ATP synthesis. In addition, mild OA enhanced EPS secretion by 41% and further increased bioavailable Cu2+ ions, thus mitigating OA-induced toxicity. In addition, excess Cu2+ ions could be transformed into less toxic Cu2S and Cu2O based on X-ray absorption near-edge spectroscopy (XANES) and high-resolution transmission electron microscopy (HR-TEM), which could additionally regulate the antagonism effect of CuO NPs and mild OA. The information advances our knowledge in nanotoxicity to marine organisms under global climate change.

Continue reading ‘Antagonism toxicity of CuO nanoparticles and mild ocean acidification to marine algae’

Multi-stress interplay: time and duration of ocean acidification modulate the toxicity of mercury and other metals

The current understanding of multi-stress interplay assumes stresses occur in perfect synchrony, but this assumption is rarely met in the natural marine ecosystem. To understand the interplay between non-perfectly overlapped stresses in the ocean, we manipulated different temporal scenarios of acidification and assessed their effect on mercury toxicity in a marine copepod. We found that the scenario of past acidification aggravated mercury toxicity, but personal and persistent acidification mitigated the toxicity. This is because personal and persistent acidification initiated the energy compensation to enhance growth and mercury efflux. To explore how general temporal scenarios of acidification affected multi-stress interplay, we conducted a meta-analysis on marine animals and found that scenarios significantly changed the toxicity of several other metals. Our study thus demonstrates that time and duration of stresses modulate multi-stress interplay in the marine ecosystem, and suggests that future studies should move beyond the scenario of perfect synchrony.

Continue reading ‘Multi-stress interplay: time and duration of ocean acidification modulate the toxicity of mercury and other metals’

Elevated CO2 reduces copper accumulation and toxicity in the diatom Thalassiosira pseudonana

The projected ocean acidification (OA) associated with increasing atmospheric CO2 alters seawater chemistry and hence the bio-toxicity of metal ions. However, it is still unclear how OA might affect the long-term resilience of globally important marine microalgae to anthropogenic metal stress. To explore the effect of increasing pCO2 on copper metabolism in the diatom Thalassiosira pseudonana (CCMP 1335), we employed an integrated eco-physiological, analytical chemistry, and transcriptomic approach to clarify the effect of increasing pCO2 on copper metabolism of Thalassiosira pseudonana across different temporal (short-term vs. long-term) and spatial (indoor laboratory experiments vs. outdoor mesocosms experiments) scales. We found that increasing pCO2 (1,000 and 2,000 μatm) promoted growth and photosynthesis, but decreased copper accumulation and alleviated its bio-toxicity to T. pseudonana. Transcriptomics results indicated that T. pseudonana altered the copper detoxification strategy under OA by decreasing copper uptake and enhancing copper-thiol complexation and copper efflux. Biochemical analysis further showed that the activities of the antioxidant enzymes glutathione peroxidase (GPX), catalase (CAT), and phytochelatin synthetase (PCS) were enhanced to mitigate oxidative damage of copper stress under elevated CO2. Our results provide a basis for a better understanding of the bioremediation capacity of marine primary producers, which may have profound effect on the security of seafood quality and marine ecosystem sustainability under further climate change.

Continue reading ‘Elevated CO2 reduces copper accumulation and toxicity in the diatom Thalassiosira pseudonana’

Climate-driven changes of global marine mercury cycles in 2100

Significance

One concern caused by the changes in the ocean due to climate change is the potential increase of neurotoxic methylmercury content in seafood. This work quantifies the impact of global change factors on marine mercury cycles. The air–sea exchange is influenced by wind speed weakening and solubility drop of mercury due to seawater warming. The decreased biological pump shrinks the methylation substrate and causes weaker methylation. The advantageous light environment resulting from less attenuation by sea ice and phytoplankton increases the photodegradation potential for seawater methylmercury. Responses of seawater methylmercury can propagate to biota, which is also modulated by the changes in anthropogenic emissions and ocean ecology. Our results offer insight into interactions among different climate change stressors.

Abstract

Human exposure to monomethylmercury (CH3Hg), a potent neurotoxin, is principally through the consumption of seafood. The formation of CH3Hg and its bioaccumulation in marine food webs experience ongoing impacts of global climate warming and ocean biogeochemistry alterations. Employing a series of sensitivity experiments, here we explicitly consider the effects of climate change on marine mercury (Hg) cycling within a global ocean model in the hypothesized twenty-first century under the business-as-usual scenario. Even though the overall prediction is subjected to significant uncertainty, we identify several important climate change impact pathways. Elevated seawater temperature exacerbates elemental Hg (Hg0) evasion, while decreased surface wind speed reduces air–sea exchange rates. The reduced export of particulate organic carbon shrinks the pool of potentially bioavailable divalent Hg (HgII) that can be methylated in the subsurface ocean, where shallower remineralization depth associated with lower productivity causes impairment of methylation activity. We also simulate an increase in CH3Hg photodemethylation potential caused by increased incident shortwave radiation and less attenuation by decreased sea ice and chlorophyll. The model suggests that these impacts can also be propagated to the CH3Hg concentration in the base of the marine food web. Our results offer insight into synergisms/antagonisms in the marine Hg cycling among different climate change stressors.

Continue reading ‘Climate-driven changes of global marine mercury cycles in 2100’

Impact of ocean acidification and ocean warming on the oxidation of dissolved Fe(II) in coastal and open Southern Ocean water

The Southern Ocean is the largest region where major nutrients such as nitrate, silicate and phosphate are present in excess, yet the crucial micronutrient element iron (Fe) is scarce. It is well established that the Southern Ocean is key in exporting carbon to greater depths through biomass production by phytoplankton, but Fe is metabolically required for photosynthesis. Changes in uptake of carbon and heat to the ocean will impact ocean acidification and ocean warming. These anthropogenically linked processes are projected to lead to a drop in ocean pH by 0.2 units and an increase in the ocean’s temperature by 2°C by the end of the century and are already known to have tremendous ecological impacts on the ocean’s flora and fauna. However, little is known about how changes in ocean temperature and pH could alter the nutrient composition in future oceans.

Regarding nutrients, this work focuses on the dissolved (d) element Fe. It is essential for photosynthesis, but also a limiting element in the Southern Ocean due to limiting sources leading to low availability. Iron exists in two redox states in seawater. While the species dFe(III) is stable in seawater and occurs in relatively higher concentrations, its redox partner dFe(II) is tied to several physico-chemical processes impacting its oxidation time and overall presence. The importance of dFe(II) also lies with its accessibility for phytoplankton in its reduced oxidative state. The overall aim of this study was to investigate changes in concentration, speciation, and availability of the ‘more’ bioavailable, rapidly oxidizing Fe species dFe(II) under a changing Southern Ocean scenario.

Chapter 2 addressed the redox behaviour of dFe(II) and dFe(III), where several questions were explored for further experimental planning. The main question was how the coastal and open ocean systems differ in their dFe(II) concentrations and how ocean acidification and ocean warming impact Fe redox chemistry in both systems. I therefore performed controlled acidification and temperature alteration experiments in coastal and open ocean water taken from the Tasmanian coast and the Southern Ocean. This large dataset enabled us to project for future ocean dFe(II) concentrations and oxidation rates. I observed that a reduction in ocean pH by 0.2 units doubles the dFe(II) oxidation time in the open ocean and tripled in coastal water through model-based experiments. In contrast to these high impacts from pH, an increase in temperature by 1°C accelerated the oxidation by ~ 1.1 times (13% in coastal water and 8% in open ocean water). Therefore, realistic changes in temperature are likely to have small impacts on the oxidation of dFe(II) in both water systems compared to the proposed changes in pH.

For phytoplankton, these results pose contradicting outcomes, and studies display mixed results once parameters such as ocean warming, and acidification are combined. An increase in temperature might lead to less or no growth once a certain temperature threshold is crossed. Similarly, a decrease in pH is also thought to impact phytoplankton physiology. It also depends on the severity of acidification and the phytoplankton species itself. Ocean warming could reduce phytoplankton growth, despite increased Fe availability due to higher solubility in warmer water. Regarding ocean acidification, on the other hand, dFe(II) could become available for an extended time, therefore enabling further uptake of dFe(II) by phytoplankton for that time. When comparing mixed effects of ocean acidification and warming, a reduction in pH might have a greater impact on the dFe(II) oxidation than just temperature. Temperature changes, however, might be a greater concern in the near future before ocean acidification becomes relevant.

Due to this projection of temperature being a more imminent concern, I targeted the limiting element Fe in its less investigated form dFe(II). I observed how temperature alone impacts growth of two Southern Ocean phytoplankton species. I therefore ran an dFe(II)-enrichment incubation experiment in Chapter 3 with differing temperatures (3°C, 5°C, and 7°C) in coastal and open ocean water from the Southern Ocean using the well-studied haptophyte Phaeocystis antarctica and the diatom Fragilariopsis cylindrus. These enrichment experiments with altered temperatures overall confirmed that phytoplankton growth was elevated once 5 nM dFe(II) were added. In other words, freely available dFe(II) was present, almost regardless of the temperature increase from 3°C to 7°C. This could implicate that an increase in temperature has beneficial effects on growth in the case of higher concentrations of freely available dFe(II). However, these values of future dFe(II) concentrations and oxidation rates under acidified and warmer scenarios are only laboratory-based projections, to better understand the dFe(II) presence and demand by phytoplankton species in a future Southern Ocean.

In Chapter 4, a one-month field study onboard the RV Investigator was conducted east of the Australian continent along the East Australian Current (EAC) into nutrient-rich but Fe poor water in the Southern Ocean. I observed the overall distribution of dFe(II) and hydrogen peroxide in this understudied region. The findings suggest that dFe(II) concentrations are very low in the observed area of the open Southern Ocean (< 0.1 nM) compared to coastal waters (> 0.5 nM), likely driven by differences in terrestrial Fe inputs. Hydrogen peroxide was generally higher in the southern stations within the upper 200 m (~60 nM) while the dFe(II) : dFe ratios are 10 % higher than reported for previous Southern Ocean studies. High biological activity in the upper water extending to the frontal mixing zone where the two major currents meet (EAC and STF), may further have led to the observed low dFe concentrations and high H22O22 concentrations. Occasional higher dFe(II) peaks found in this area in surface water may be the result of several external sources such as rain or vertical transport from seamounts but also due to biological or physico-chemical impacts such as photochemical reduction or uptake by phytoplankton.

Overall, the work in this study advances our understanding of the coupled effects of the climate change parameters ocean acidification and ocean warming on the dFe(II) oxidation, with implications for its availability to phytoplankton and overall sources in the region east and south-east of Tasmania in coastal and open ocean water. The experimental approaches taken suggest a higher impact of ocean acidification compared to ocean warming and a potential benefit for phytoplankton species preferring dFe(II).

Continue reading ‘Impact of ocean acidification and ocean warming on the oxidation of dissolved Fe(II) in coastal and open Southern Ocean water’

Global decrease in heavy metal concentrations in brown algae in the last 90 years

Graphical abstract

Highlights

  • A decline in metal pollution in algae is widespread in coastal ecosystems worldwide.
  • Decrease in algae concentrations may not also occur in seawater but in bioavailability.
  • Decreases began from 70’s coinciding with the implementation of environmental policies.
  • Legislation and ocean acidification can impact on the heavy metal content in algae.

Abstract

In the current scenario of global change, heavy metal pollution is of major concern because of its associated toxic effects and the persistence of these pollutants in the environment. This study is the first to evaluate the changes in heavy metal concentrations worldwide in brown algae over the last 90 years (>15,700 data across the globe reported from 1933 to 2020). The study findings revealed significant decreases in the concentrations of Cd, Co, Cr, Cu, Fe, Hg, Mn, Pb and Zn of around 60–84% (ca. 2% annual) in brown algae tissues. The decreases were consistent across the different families considered (Dictyotaceae, Fucaceae, Laminariaceae, Sargassaceae and Others), and began between 1970 and 1990. In addition, strong relationships between these trends and pH, SST and heat content were detected. Although the observed metal declines could be partially explained by these strong correlations, or by adaptions in the algae, other evidences suggest an actual reduction in metal concentrations in oceans because of the implementation of environmental policies. In any case, this study shows a reduction in metal concentrations in brown algae over the last 50 years, which is important in itself, as brown algae form the basis of many marine food webs and are therefore potential distributors of pollutants.

Continue reading ‘Global decrease in heavy metal concentrations in brown algae in the last 90 years’

Thalassiosira weissflogii grown in various Zn levels shows different ecophysiological responses to seawater acidification

Highlights

  • Zn deficient encouraged cellular silicon and sinking rate under normal pCO2.
  • Higher pCO2 decreased cellular silicon and sinking rate of Zn-deficient T. weissflogii.
  • Higher pCO2 increased cellular silicon and sinking rate in Zn-replete T. weissflogii.
  • Silica and carbon cycle could be impacted by acidification and Zn levels.

Abstract

The presence of zinc (Zn), a vital element for algal physiological functions, coupled with the silicification of diatoms implies that it plays an integral role in the carbon and silicon cycles of the sea. In this study, we examined the effects of different pCO2 and Zn levels on growth rate, elemental compositions and silicification by Thalassiosira weissflogii. The results showed that under normal pCO2 (400 μatm), cultures of T. weissflogii were depressed for growth rate and silica incorporation rate, but encouraged for cellular silicon content, Si/C, Si/N, and sinking rate when Zn deficient (0.3 pmol L−1). However, cellular silicon and sinking rate of Zn-deficient and Zn-replete (25 pmol L−1T. weissflogii were decreased and increased at higher pCO2 (800 μatm), respectively. Thus, acidification may affect diatoms significantly differently depending on the Zn levels of the ocean and then alter the biochemical cycling of carbon and silica.

Continue reading ‘Thalassiosira weissflogii grown in various Zn levels shows different ecophysiological responses to seawater acidification’

pCO2-driven seawater acidification affects aqueous-phase copper toxicity in juvenile flounder Paralichthys olivaceus: metal accumulation, antioxidant defenses and biodetoxification in livers

Graphical abstract.

Highlights

  • SA and Cu interact during hepatic antioxidant defenses and biodetoxification.
  • Moderate SA helps alleviate Cu exposure-induced LPO, but extreme SA exacerbates it.
  • Thiols respond actively to cope with Cu toxicity in acidified seawater.
  • SOD, CAT, EROD and GST sensitively respond to SA and Cu coexposure.
  • Pearson’s correlation coefficient and PCA usefully integrate biomarker responses.

Abstract

Ocean acidification potentially influences the biotoxicity of metals and the antioxidant defense systems of marine organisms. This study investigated how pCO2-driven seawater acidification (SA) affected aqueous-phase copper (Cu) toxicity in the juvenile flounder Paralichthys olivaceus from the perspective of hepatic oxidative stress and damage to better understand the mechanisms underlying the biological effects produced by the two stressors. Fish were exposed to aqueous-phase Cu at relevant ambient and polluted concentrations (0, 5, 10, 50, 100 and 200 μg L−1) at different pH levels (no SA: pH 8.10; moderate SA: pH 7.70, pCO2 ∼1353.89 μatm; extreme SA: pH 7.30, pCO2 ∼3471.27 μatm) for 28 days. A battery of biomarkers in the livers was examined to investigate their roles in antioxidant defense and biodetoxification in response to coexposure. Hepatic Cu accumulation (30.22–184.90 mg kg−1) was positively correlated with Cu concentrations. The biomarkers responded adaptively to different redox states following SA and Cu exposure. In unacidified seawater, increases in Cu concentrations significantly induced hepatic lipid peroxidation (LPO, by up to 27.03 %), although compensatory responses in antioxidant defenses and biodetoxification were activated. Moderate SA helped maintain hepatic redox homeostasis and alleviated LPO through different defense strategies, depending on Cu concentrations. Under extreme SA, antioxidant-based defenses were activated to cope with oxidative stress at ambient-low Cu concentrations but failed to defend against Cu toxicity at polluted Cu levels, and LPO (by up to 63.90 %) was significantly induced. Additionally, thiols (GSH and MT) responded actively to cope with Cu toxicity under SA. SOD, CAT, EROD, and GST were also sensitively involved in defending against hepatic oxidative stress during coexposure. These findings highlight the notable interactive effects of SA and Cu and provide a basis for understanding antioxidant-based defenses in marine fish confronting environmental challenges.

Continue reading ‘pCO2-driven seawater acidification affects aqueous-phase copper toxicity in juvenile flounder Paralichthys olivaceus: metal accumulation, antioxidant defenses and biodetoxification in livers’

Gadolinium ecotoxicity is enhanced in a warmer and acidified changing ocean as shown by the surf clam Spisula solida through a multibiomarker approach

Highlights

  • Spisula solida accumulated Gd after just one day.
  • Climate change did not impact Gd accumulation and elimination.
  • Gd was not proficiently eliminated in 7 days.
  • Lipid peroxidation was greater in clams exposed to warming and Gd.
  • Gd showed enhanced ecotoxicity in climate change conditions.

Abstract

Humans have exhaustively combusted fossil fuels, and released pollutants into the environment, at continuously faster rates resulting in global average temperature increase and seawater pH decrease. Climate change is forecasted to exacerbate the effects of pollutants such as the emergent rare earth elements. Therefore, the objective of this study was to assess the combined effects of rising temperature (Δ = + 4 °C) and decreasing pH (Δ = − 0.4 pH units) on the bioaccumulation and elimination of gadolinium (Gd) in the bioindicator bivalve species Spisula solida (Surf clam). We exposed surf clams to 10 µg L−1 of GdCl3 for seven days, under warming, acidification, and their combination, followed by a depuration phase lasting for another 7 days and investigated the Gd bioaccumulation and oxidative stress-related responses after 1, 3 and 7 days of exposure and the elimination phase. Gadolinium accumulated after just one day with values reaching the highest after 7 days. Gadolinium was not eliminated after 7 days, and elimination is further hampered under climate change scenarios. Warming and acidification, and their interaction did not significantly impact Gd concentration. However, there was a significant interaction on clam’s biochemical response. The augmented total antioxidant capacity and lipid peroxidation values show that the significant impacts of Gd on the oxidative stress response are enhanced under warming while the increased superoxide dismutase and catalase values demonstrate the combined impact of Gd, warming & acidification. Ultimately, lipid damage was greater in clams exposed to warming & Gd, which emphasizes the enhanced toxic effects of Gd in a changing ocean.

Continue reading ‘Gadolinium ecotoxicity is enhanced in a warmer and acidified changing ocean as shown by the surf clam Spisula solida through a multibiomarker approach’

Environmental change impacts on shell formation in the muricid Nucella lapillus

Environmental change is a significant threat to marine ecosystems worldwide. Ocean acidification, global warming and long-term emissions of anthropogenic effluents are all negatively impacting aquatic life. Marine calcifying organisms, in particular, are expected to be severely affected by decreasing seawater pH, resulting in shell dissolution and retardations during the formation and repair of shells. Understanding the underlying biological and environmental factors driving species vulnerabilities to habitat alterations is thus crucial to our ability to faithfully predict impacts on marine ecosystems under an array of environmental change scenarios. So far, existing knowledge about organism responses mainly stems from short to medium term laboratory experiments of single species or over- simplified communities. Although these studies have provided important insights, results may not translate to organism responses in a complex natural system requiring a more holistic experimental approach. In this thesis, I investigated shell formation mechanisms and shape and elemental composition responses in the shell of the important intertidal predatory muricid Nucella lapillus both in situ and across heterogeneous environmental gradients. The aim was to identify potential coping mechanisms of N. lapillus to environmental change and provide a more coherent picture of shell formation responses along large ecological gradients in the spatial and temporal domain. To investigate shell formation mechanisms, I tested for the possibility of shell recycling as a function to reduce calcification costs during times of exceptional demand using a multi-treatment shell labelling experiment. Reports on calcification costs vary largely in the literature. Still, recent discoveries showed that costs might increase as a function of decreasing calcification substrate abundance, suggesting that shell formation becomes increasingly more costly under future environmental change scenarios. However, despite the anticipated costs, no evidence was found that would indicate the use of functional dissolution as a means to recycle shell material for a more cost-efficient shell formation in N. lapillus. To investigate shell formation responses, I combined morphometric and shell thickness analyses with novel statistical methods to identify natural shape and thickness response of N. lapillus to large scale variability in temperature, salinity, wind speed and the carbonate system across a wide geographic range (from Portugal to Iceland) and through time (over 130 years). I found that along geographical gradients, the state of the carbonate system and, more specifically, the substrate inhibitor ratio ([HCO3−][H+]−1) (SIR) was the main predictor for shape variations in N. lapillus. Populations in regions with a lower SIR tend to form narrower shells with a higher spire to body whorl ratio. In contrast, populations in regions with a higher SIR form wider shells with a much lower spire to body whorl ratio. The results suggest a widespread phenotypic response of N. lapillus to continuing ocean acidification could be expected, affecting its phenotypic response patterns to predator or wave exposure regimes with profound implications for North Atlantic rocky shore communities. On the contrary, investigations of shell shape and thickness changes over the last 130 years from adjacent sampling regions on the Southern North Sea coast revealed that contrary to global predictions, N. lapillus built continuously thicker shells while maintaining a consistent shell shape throughout the last century. Systematic modelling efforts suggested that the observed shell thickening resulted from higher annual temperatures, longer yearly calcification windows, nearshore eutrophication, and enhanced prey abundance, which mitigated the impact of other climate change factors. An investigation into the trace elemental composition of common pollutant metals in the same archival N. lapillus specimens revealed that shell Cu/Ca and Zn/Ca concentration ratios remained remarkably constant throughout the last 130 years despite substantial shifts in the environmental concentration. However, Pb/Ca concentration ratios showed a definite trend closely aligned with leaded petrol emissions in Europe over the same period. Discussing physiological and environmental drivers for the observed shell bound heavy metal patterns, I argue that, unlike for Pb, constraints on environmental dissolved Cu species abundance and biologically mediated control on internal Zn levels were likely responsible for a decoupling of shell-bound to total ambient Cu and Zn concentrations. The results highlight the complexity of internal and external pathways that govern the uptake of heavy metals into the molluscan shell and suggest that the shell of N. lapillus could be a suitable archive for a targeted investigation of Pb pollution in the intertidal zone.

Continue reading ‘Environmental change impacts on shell formation in the muricid Nucella lapillus’

  • Reset

Subscribe

OA-ICC Highlights


%d bloggers like this: