Posts Tagged 'metals'

Influence of pH on Pb accumulation in the blue mussel, Mytilus edulis

Changes in seawater pH can alter the chemical speciation of waterborne chemical elements, affecting their bioavailability and, consequently, their bioaccumulation in marine organisms. Here, controlled environmental conditions and a 210Pb radiotracer were used to assess the effect of five distinct pH conditions (pHT ranging from 7.16 to 7.94) on the short-term (9 days) accumulation of Pb in the blue mussel, Mytilus edulis. After 9 days of exposure, higher levels of Pb were observed in the soft tissues of mussels maintained in the lower pH conditions, while Pb levels accumulated by mussel shells showed no difference across pH conditions. These results suggest that pH decreases such as those predicted by ocean acidification scenarios could enhance Pb contamination in marine organisms, with potential subsequent contamination and effect risks for human consumers.

Continue reading ‘Influence of pH on Pb accumulation in the blue mussel, Mytilus edulis’

Mercury in juvenile Solea senegalensis: linking bioaccumulation, seafood safety, and neuro-oxidative responses under climate change-related stressors

Mercury (Hg) is globally recognized as a persistent chemical contaminant that accumulates in marine biota, thus constituting an ecological hazard, as well as a health risk to seafood consumers. Climate change-related stressors may influence the bioaccumulation, detoxification, and toxicity of chemical contaminants, such as Hg. Yet, the potential interactions between environmental stressors and contaminants, as well as their impacts on marine organisms and seafood safety, are still unclear. Hence, the aim of this work was to assess the bioaccumulation of Hg and neuro-oxidative responses on the commercial flat fish species Solea senegalensis (muscle, liver, and brain) co-exposed to dietary Hg in its most toxic form (i.e., MeHg), seawater warming (ΔT°C = +4 °C), and acidification (pCO2 = +1000 µatm, equivalent to ΔpH = −0.4 units). In general, fish liver exhibited the highest Hg concentration, followed by brain and muscle. Warming enhanced Hg bioaccumulation, whereas acidification decreased this element’s levels. Neuro-oxidative responses to stressors were affected by both climate change-related stressors and Hg dietary exposure. Hazard quotient (HQ) estimations evidenced that human exposure to Hg through the consumption of fish species may be aggravated in tomorrow’s ocean, thus raising concerns from the seafood safety perspective.

Continue reading ‘Mercury in juvenile Solea senegalensis: linking bioaccumulation, seafood safety, and neuro-oxidative responses under climate change-related stressors’

The combined effect of zinc and pH on growth rate and chlorophyll content of brown seaweed, Padina boryana

Brown seaweed, Padina boryana is found along the coast of Terengganu, Malaysia and may serve as a potential heavy metal biomonitor in the coastal zones. To better understand the impact of heavy metal pollution on P. boryana at varying seawater pH levels, the combined effect of zinc (Zn) and pH on its growth rate and chlorophyll content was investigated in laboratory exposures. After exposure for 21 days in a mixed treatment of 6 pH variations (4 to 9) and three Zn concentrations (30, 150, 300 ppb), maximum growth rate was observed in controlled treatments at pH 8 with no added Zn, whereas treatments at pH 4 and 9 showed negative growth rates after 18 days. The growth rate and chlorophyll content of P. boryana decreased significantly with an increase in Zn concentration. At pH 6, 7 and 8, P. boryana showed significant decreases (p < 0.05) in growth rates and chlorophyll content in all concentrations of Zn compared with control plants (no Zn). At pH of 6.0 and below, controls were also affected with significantly reduced growth rates and chlorophyll contents while Zn treated seaweed showed significant effects compared to these controls. The effect of pH and Zn on all measured factors was obvious on Day 6 onwards, whereas the interaction effect between them was significant on chlorophyll content throughout the experiment. From Day 9 onwards, the growth rate and chlorophyll content showed significant correlation among each other.

Continue reading ‘The combined effect of zinc and pH on growth rate and chlorophyll content of brown seaweed, Padina boryana’

Particulate trace metal dynamics in response to increased CO2 and iron availability in a coastal mesocosm experiment (update)

Rising concentrations of atmospheric carbon dioxide are causing ocean acidification and will influence marine processes and trace metal biogeochemistry. In June 2012, in the Raunefjord (Bergen, Norway), we performed a mesocosm experiment, comprised of a fully factorial design of ambient and elevated pCO2 and/or an addition of the siderophore desferrioxamine B (DFB). In addition, the macronutrient concentrations were manipulated to enhance a bloom of the coccolithophore Emiliania huxleyi. We report the changes in particulate trace metal concentrations during this experiment. Our results show that particulate Ti and Fe were dominated by lithogenic material, while particulate Cu, Co, Mn, Zn, Mo and Cd had a strong biogenic component. Furthermore, significant correlations were found between particulate concentrations of Cu, Co, Zn, Cd, Mn, Mo and P in seawater and phytoplankton biomass (µgC L−1), supporting a significant influence of the bloom in the distribution of these particulate elements. The concentrations of these biogenic metals in the E. huxleyi bloom were ranked as follows: Zn < Cu ≈ Mn < Mo < Co < Cd. Changes in CO2 affected total particulate concentrations and biogenic metal ratios (Me : P) for some metals, while the addition of DFB only significantly affected the concentrations of some particulate metals (mol L−1). Variations in CO2 had the most clear and significant effect on particulate Fe concentrations, decreasing its concentration under high CO2. Indeed, high CO2 and/or DFB promoted the dissolution of particulate Fe, and the presence of this siderophore helped in maintaining high dissolved Fe. This shift between particulate and dissolved Fe concentrations in the presence of DFB, promoted a massive bloom of E. huxleyi in the treatments with ambient CO2. Furthermore, high CO2 decreased the Me : P ratios of Co, Zn and Mn while increasing the Cu : P ratios. These findings support theoretical predictions that the molar ratios of metal to phosphorous (Me : P ratios) of metals whose seawater dissolved speciation is dominated by free ions (e.g., Co, Zn and Mn) will likely decrease or stay constant under ocean acidification. In contrast, high CO2 is predicted to shift the speciation of dissolved metals associated with carbonates such as Cu, increasing their bioavailability and resulting in higher Me : P ratios.

Continue reading ‘Particulate trace metal dynamics in response to increased CO2 and iron availability in a coastal mesocosm experiment (update)’

Effects of seawater acidification and cadmium on the antioxidant defense of flounder Paralichthys olivaceus larvae


• Seawater acidification and Cd induced oxidative stress in flounder larvae.

• Two stressors interacted to regulate mRNA expressions of antioxidant-related genes.

• Integrated antioxidant response was promoted with increasing oxidative stress.


Increasing atmospheric carbon dioxide has led to a decrease in the pH of the ocean, which influences the speciation of heavy metals and consequently affects metal toxicity in marine organisms. To investigate the effects of seawater acidification and metals on the antioxidant defenses of marine fishes, the flounder Paralichthys olivaceus, was continuously exposed to cadmium (Cd; control, 0.01 and 0.15 mg L−1) and acidified seawater (control (pH 8.10), 7.70 and 7.30) for 49 days from embryogenesis to settlement. The results demonstrated that both Cd and acidified seawater could induce oxidative stress and consequently cause lipid peroxidation (LPO) in the larvae. Antioxidants (i.e., superoxide dismutase, SOD; catalase, CAT; reduced glutathione, GSH; glutathione S-transferase, GST; glutathione peroxidase, GPx; and glutathione reductase, GR) functioned to defend the larvae against oxidative damage. Overall, Cd induced (SOD, GST and GSH) or inhibited (CAT and GPx) the enzymatic activities or contents of all the selected antioxidants except for GR. The antioxidants responded differently to seawater acidification, depending on their interaction with the metal. Similarly, the mRNA expressions of the antioxidant-related genes were upregulated (sod, gr and gst) or downregulated (cat and gpx) in response to increasing Cd exposure. Seawater acidification did not necessarily affect all of the biomarkers; in some cases (e.g., SOD and sod, GR and gr), Cd stress may have exceeded and masked the stress from seawater acidification in regulating the antioxidant defense of the larvae. The integrated biomarker response (IBR) was enhanced with increasing levels of the stressors. These findings support the hypothesis that seawater acidification not only directly affects the antioxidant defense in flounder larvae but also interacts with Cd to further regulate this defense. This study has ecological significance for assessing the long-term impacts of ocean acidification and metal pollution on the recruitment of fish populations in the wild.

Continue reading ‘Effects of seawater acidification and cadmium on the antioxidant defense of flounder Paralichthys olivaceus larvae’

Impacts of Zn and Cu enrichment under ocean acidification scenario on a phytoplankton community from tropical upwelling system


• Phytoplankton showed higher resilience to increasing CO2.

• Few centric diatoms showed positive response to increasing CO2 supply.

• Addition of Zn under increasing CO2 inhibited cell division, but not biomass.

• The combined effects of increasing CO2 and Cu addition was insignificant on growth.

• Cu addition at high CO2 level promoted toxigenic pennate diatom growth.


Increasing dissolution of CO2 in the surface ocean is rapidly decreasing its pH and changing carbon chemistry which is further affecting marine biota in several ways. Phytoplankton response studies under the combination of elevated CO2 and trace metals are rare. We have conducted two consecutive onboard incubation experiments (R. V. Sindhu Sadhana; August 2017) in the eastern Arabian Sea (SW coast of India) during an upwelling event. A nutrient enriched diatom bloom was initiated onboard and grown under ambient (≈400 μatm, A-CO2) and high CO2 levels (≈1000 μatm; H–CO2) with different zinc (Zn; 1 nM) and copper (Cu) concentrations (1 nM, 2 nM and 8 nM). Phytoplankton community composition and the dominant genera were different during these two experiments. CO2 enrichment alone did not show any significant growth stimulating impact on the experimental community except enhanced cell density in the first experiment. Addition of Zn at A-CO2 level revealed no noticeable responses; whereas, the same treatment under H–CO2 level significantly reduced cell number. Considerably high protein content under H–CO2+Zn treatment was possibly counteracting Zn toxicity which also caused slower growth rate. Cu addition did not show any noticeable impact on growth and biomass production except increased protein content as well as decreased carbohydrate: protein ratio. This can be attributed to relatively higher protein synthesis than carbohydrate to alleviate oxidative stress generated by Cu. The centric diatom Chaetoceros and toxin producing pennate diatom Pseudo-nitzschias howed no significant response to either CO2 or Zn enrichment. Large centric diatom Leptocylindrus and Skeletonema responded positively to Zn addition in both CO2 levels. The former species showed the most sensitive response at the highest Cu and H–CO2 treatment; whereas, the pennate diatoms Nitzschia and Pseudo-nitzschia (toxigenic diatom) showed higher resilience under elevated CO2 and Cu levels. This observation indicated that in future ocean, increasing CO2 concentrations and trace metal pollution may potentially alter phytoplankton community structure and may facilitate toxigenic diatom bloom in the coastal waters.

Continue reading ‘Impacts of Zn and Cu enrichment under ocean acidification scenario on a phytoplankton community from tropical upwelling system’

Mitigation effects of CO2-driven ocean acidification on Cd toxicity to the marine diatom Skeletonema costatum


• OA significantly alleviated the toxicity of Cd to S. costatum.

• OA rescued S. costatum from inhibition of Cd on photosynthesis and pyruvate metabolism.

• OA detoxified Cd through upregulating genes in production of non-protein thiol compounds.


Ocean acidification (OA) is a global problem to marine ecosystems. Cadmium (Cd) is a typical metal pollutant, which is non-essential but extremely toxic to marine organisms. The combined effects of marine pollution and climate-driven ocean changes should be considered for the effective marine ecosystem management of coastal areas. Previous reports have separately investigated the influences of OA and Cd pollution on marine organisms. However, little is known of the potential combined effects of OA and Cd pollution on marine diatoms. We investigated the sole and combined influences of OA (1,500 ppm CO2) and Cd exposure (0.4 and 1.2 mg/L) on the coastal diatom Skeletonema costatum. Our results clearly showed that OA significantly alleviated the toxicity of Cd to S. costatum growth and mitigated the oxidant stress, although the intercellular Cd accumulation still increased. OA partially rescued S. costatum from the inhibition of photosynthesis and pyruvate metabolism caused by Cd exposure. It also upregulated genes involved in gluconeogenesis, glycolysis, the citrate cycle (TCA), Ribonucleic acid (RNA) metabolism, and especially the biosynthesis of non-protein thiol compounds. These changes might contribute to algal growth and Cd resistance. Overall, this study demonstrates that OA can alleviate Cd toxicity to S. costatum and explores the potential underlying mechanisms at both the cellular and molecular levels. These results will ultimately help us understand the impacts of combined stresses of climate change and metal pollution on marine organisms and expand the knowledge of the ecological risks of OA.

Continue reading ‘Mitigation effects of CO2-driven ocean acidification on Cd toxicity to the marine diatom Skeletonema costatum’

Zinc toxicity alters the photosynthetic response of red alga Pyropia yezoensis to ocean acidification

The globally changing environmental climate, ocean acidification, and heavy metal pollution are of increasing concern. However, studies investigating the combined effects of ocean acidification and zinc (Zn) exposure on macroalgae are very scarce. In this study, the photosynthetic performance of the red alga Pyropia yezoensis was examined under three different concentrations of Zn (control, 25 (medium), and 100 (high) μg L−1) and pCO2 (400 (ambient) and 1000 (high) μatm). The results showed that higher Zn concentrations resulted in increased toxicity for P. yezoensis, while ocean acidification alleviated this negative effect. Ocean acidification increased the relative growth rate of thalli under both medium and high Zn concentrations. The net photosynthetic rate and respiratory rate of thalli also significantly increased in response under ocean acidification, when thalli were cultured under both medium and high Zn concentrations. Malondialdehyde levels decreased under ocean acidification, compared to ambient CO2 conditions and either medium or high Zn concentrations. The activity of superoxide dismutase increased in response to high Zn concentrations, which was particularly apparent at high Zn concentration and ocean acidification. Immunoblotting tests showed that ocean acidification increased D1 removal, with increasing expression levels of the PSII reaction center proteins D2, CP47, and RbcL. These results suggested that ocean acidification could alleviate the damage caused by Zn exposure, thus providing a theoretical basis for a better prediction of the impact of global climate change and heavy metal contamination on marine primary productivity in the form of seaweeds.

Continue reading ‘Zinc toxicity alters the photosynthetic response of red alga Pyropia yezoensis to ocean acidification’

The effects of co-exposure of graphene oxide and copper under different pH conditions in Manila clam Ruditapes philippinarum

Carbon nanomaterials (CNM), such as graphene oxide (GO), have been the focus of study in several areas of science mostly due to their physical-chemical properties. However, data concerning the potential toxic effects of these CNM in bivalves are still scarce. When present in the aquatic systems, the combination with other contaminants, as well as pH environmental variations, can influence the behavior of these nanomaterials and, consequently, their toxicity. Thus, the main goal of this study was to evaluate the effect of exposure of clam Ruditapes philippinarum to GO when acting alone and in the combination with copper (Cu), under two pH levels (control 7.8 and 7.3). A 28-day exposure was performed and metabolism and oxidative stress-related parameters were evaluated. The effects caused by GO and Cu exposures, either isolated or co-exposed, showed a direct and dependent relationship with the pH in which the organisms were exposed. In clams maintained at control pH (7.8), Cu and GO + Cu treatments showed lower lipid peroxidation (LPO) and lower electron transport system (ETS) activity, respectively. In clams maintained at low pH, glutathione-S-transferases (GSTs) activities were increased in Cu and Cu + GO treatments, whereas reduced glutathione (GSH) levels were increased in Cu treatment and ETS activity was higher in GO + Cu. Thus, it can be observed that clams responses to Cu and GO were strongly modulated by pH in terms of their defense system and energy production, although this does not result into higher LPO levels.

Continue reading ‘The effects of co-exposure of graphene oxide and copper under different pH conditions in Manila clam Ruditapes philippinarum’

Combined effects of CO2-driven ocean acidification and Cd stress in the marine environment: enhanced tolerance of Phaeodactylum tricornutum to Cd exposure


• Combined effects of OA and Cd exposure on Phaeodactylum tricornutum were analyzed.

• Either OA (1500 ppm) or Cd stress (1.2 mg/L) alone inhibited the growth of P. tricornutum.

• A significantly enhanced tolerance of P. tricornutum to Cd of 1.2 mg/L occurred under OA.


Ocean acidification (OA) and heavy metals are common stress factors for marine ecosystems subject to anthropogenic impacts. OA coupled with the heavy metal is likely to affect marine species. This study investigated the single and combined effects of OA (1500 ppm) and cadmium (Cd; 0.4, 1.2 mg/L) on the marine diatom Phaeodactylum tricornutum under 7 d exposure. The results clearly indicated that either OA or Cd stress (1.2 mg/L) alone inhibited the growth of P. tricornutum. However, under the combined OA-Cd stress, the growth inhibition disappeared, and the intracellular oxidative damage was mitigated. These results indicated a significantly enhanced tolerance of P. tricornutum to Cd while under OA conditions, which could be beneficial to the survival of this diatom. This study will ultimately help us understand the responses of marine organisms to multiple stressors and have broad implications for the potential ecological risks of Cd under future OA conditions.

Continue reading ‘Combined effects of CO2-driven ocean acidification and Cd stress in the marine environment: enhanced tolerance of Phaeodactylum tricornutum to Cd exposure’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,356,916 hits


Ocean acidification in the IPCC AR5 WG II

OUP book