Posts Tagged 'metals'

The effects of near-future coastal acidification on the concentrations of Cd and Pb in the crab Dotilla fenestrata

Changes in seawater chemistry due to anthropogenic uptake of CO2 by seawater results in a phenomenon termed ocean acidification. Ocean acidification has been predicted to substantially affect the exposure, behaviour, mobility and fate of toxicants with significant impacts on marine organisms. This study assessed the interactive effects of acidification and metal concentrations of Cd and Pb in the exoskeleton of the crab Dotilla fenestrata. Crabs were acutely exposed to varying concentrations of Cd (0.5, 0.75 and 1.00 mg/l), Pb (6.50, 8.50, and 10.50 mg/l) and Cd/Pb (4.50, 5.75 and 7.00 mg/l) and near-future pH of 7.2, 7.4 and 7.6 for 96 h and concentrations in the exoskeleton were analyzed using ICP-OES. Cadmium concentrations in the exoskeleton due to pH effects were in the order of 7.4 > 7.6 > 7.2, while concentrations in the exoskeleton exposed to pH 7.4 were significantly higher (ANOVA HSD: df 6; p < 0.01) compared to those of pH 7.2 and 7.6. Crabs exposed to varying Pb concentrations showed no common trend in Pb concentrations with varying pH. Concentrations of Cd and Pb in the exoskeleton of crabs exposed to combined Cd and Pb were significantly higher (ANOVA HSD: df 6; p < 0.01) at pH of 7.2 and 4.50 and 7.00 mg/l exposures. Crabs exposed to mixed metal concentrations showed elevated levels of Cd and Pb compared to those exposed to single metal due to their regulatory capacity when exposed to mixed metals.

Continue reading ‘The effects of near-future coastal acidification on the concentrations of Cd and Pb in the crab Dotilla fenestrata’

Season specific influence of projected ocean changes on the response to cadmium of stress-related genes in Mytilus galloprovincialis

Highlights

• Seasonal effects of Cd, warming and acidification on mussels target genes were assessed.

• mt-20 showed higher responsiveness to Cd exposure in digestive gland than in gills.

• hsp70 was sensitive to acidification in summer in digestive gland and in winter in gills.

• Cu/Zn-sod, gst-pi and cat showed tissue- and season-specific responses.

•Differences between tissues and seasons of investigation were demonstrated to occur.

Abstract

Anthropogenic inputs of carbon dioxide in the atmosphere are driving ocean warming and acidification. The potential threat represented by these changes for marine species could be amplified in coastal areas, characterized by higher levels of pollutants. In addition, temperate organisms may exhibit a different seasonal tolerance to stressors influenced by fluctuations of environmental and physiological factors. In this study, Mediterranean mussels Mytilus galloprovincialis collected both in summer and winter were exposed to combinations of two temperatures (SST, seasonal surface temperature and SST+5 °C) and two levels of pH (8.20 and 7.40) in clean or cadmium contaminated seawater (20 μg/L Cd). mRNA levels of genes related to metal-induced stress response were investigated, including metallothionein mt-20, heat-shock protein hsp70, superoxide dismutase Cu/Zn-sod, catalase cat, glutathione peroxidase gpx1 and glutathione S-transferase gst-pi. To further elucidate if tissues with different physiological roles could exhibit different responsiveness, such analyses were carried out in digestive gland and in gills of exposed mussels. mt-20 mRNA increase after Cd-exposure was higher in the digestive gland than in the gills, with few modulations by temperature or pH only in the latter. Acidification, alone or in combination with other stressors, increased hsp70 mRNA, with seasonal- and tissue-specificities (higher in summer and in digestive gland). Among antioxidants, gpx1 mRNA was affected by Cd in both tissues and seasons, with further modulations due to pH and temperature variation tissue- and season-specific; in winter the combination of Cd, warming and acidification affected Cu/Zn-sod both in digestive gland and gills and cat only in gills, while weak seasonal variations were observed for gst-pi transcripts only in digestive gland. The overall results highlighted the importance of considering seasonality and responsiveness of different tissues to predict the effects of sudden changes in environmental parameters on responsiveness to and toxicity of chemicals in marine coastal organisms.

Continue reading ‘Season specific influence of projected ocean changes on the response to cadmium of stress-related genes in Mytilus galloprovincialis’

Fluctuating seawater pCO2/pH induces opposing interactions with copper toxicity for two intertidal invertebrates

Highlights

• Fluctuating pCO2/pH doubled copper-induced antioxidant activity and DNA damage in mussels.

• In contrast, fluctuating conditions mitigated some of the effects of copper for ragworms.

• These effects were associated with the differing acid-base physiology of the two species.

• Physiology was as important as changing copper chemistry in determining overall toxicity.

Abstract

Global ocean pCO2 is increasing as a result of anthropogenic CO2 emissions, driving a decline in seawater pH. However, coastal waters already undergo fluctuations in pCO2/pH conditions over far shorter timescales, with values regularly exceeding those predicted for the open ocean by the year 2100. The speciation of copper, and therefore its potential toxicity, is affected by changing seawater pH, yet little is known concerning how present-day natural fluctuations in seawater pH affect copper toxicity to marine biota. Here, we test the hypothesis that a fluctuating seawater pCO2/pH regime will alter the responses of the mussel Mytilus edulis and the ragworm Alitta virens to sub-lethal copper, compared to a static seawater pCO2/pH scenario. Mussels and worms were exposed to 0.1 and 0.25 μM copper respectively, concentrations determined to produce comparable toxicity responses in these species, for two weeks under a fluctuating 12-hour pCO2/pH cycle (pH 8.14–7.53, pCO2 445–1747 μatm) or a static pH 8.14 (pCO2 432 μatm) treatment. Mussels underwent a haemolymph acidosis of 0.1–0.2 pH units in the fluctuating treatments, alongside two-fold increases in the superoxide dismutase activity and DNA damage induced by copper, compared to those induced by copper under static pH conditions. Conversely, ragworms experienced an alkalosis of 0.3 pH units under fluctuating pH/pCO2, driven by a two-fold increase in coelomic fluid bicarbonate. This mitigated the copper-induced oxidative stress to slightly reduce both antioxidant activity and DNA damage, relative to the static pH + copper treatment. These opposing responses suggest that differences in species acid-base physiology were more important in determining toxicity responses than the pH-induced speciation change. With variability in seawater chemistry predicted to increase as climate change progresses, understanding how fluctuating conditions interact with the toxicity of pH-sensitive contaminants will become more crucial in predicting their risk to coastal biota.

Continue reading ‘Fluctuating seawater pCO2/pH induces opposing interactions with copper toxicity for two intertidal invertebrates’

Physiological and ecotoxicological interactions of copper and ocean acidification in the polychaete worms Hediste diversicolor and Alitta virens

For coastal aquatic habitats the change in seawater pH occurring as a result of ocean acidification has the potential to alter the speciation and toxicity of the many contaminants that remain in high concentrations in coastal systems. Of particular concern are metals, such as copper, whose speciation is pH sensitive within the OA range. A meta-analysis of studies to date investigating OA-contaminant interactions using marine invertebrates reveals that 72% of the 44 studies conducted have indeed focused on metals such as copper, with only a few studies looking at polycyclic aromatic hydrocarbons (PAH) and pharmaceuticals. No clear trends in the pH-effect size on contaminant toxicity for either species or contaminant group were present however, suggesting species specific physiological responses may influence this interaction as well as contaminant chemistry. A relatively understudied group were the polychaetes, a key functional group for many coastal sediments. Sediments act as a sink for contaminants where they can accumulate to high concentrations. Hence there is high potential for polychaetes to experience elevated metal exposures under reduced seawater pH as OA progresses. To address this knowledge gap, the responses of two common coastal polychaete, Alitta virens and Hediste diversicolor, were studied under three different experimental scenarios (both water-borne and sediment based) focusing on the physiological and toxicological responses under combined exposures to ocean acidification and copper. Water-borne exposures of Alitta virens to 0.25 μM copper under ambient seawater (pH 8.10) showed a significant increase in DNA damage, along with a rise in both SOD activity and lipid peroxidation. However, when exposed to copper under OA conditions (pH 7.70) there was no further increase in DNA damage and a significant decrease in SOD activity was observed alongside a fall in lipid peroxidation suggesting that OA looks to buffer the toxicity responses to this species. This is in contrast to previous studies using mussels and sea urchins, where copper toxicity responses were significantly higher when exposed under OA conditions. To assess whether local adaptations to high levels of copper contamination influences this OA-copper interaction, a population comparison using a metal resistance population of the harbour ragworm, Hediste diversicolor and a nearby non-resistant population was then conducted. Exposures were run using copper concentrations that elicit comparable toxicity responses, using 0.50 uM copper for the resistant population, compared to 0.25 uM for the non-resistant population, reflecting the two-fold differences in LC50 values for these population. These experiments reveal a significant increase by 19.70% in metabolic rate effect size (the combined stressor when compared to the control) in the resistant population compared to a decrease by 24.02% the non-resistant population, along with differences in ammonia excretion rate and the O:N ratio, thus revealing an energetic cost of this genetic resistance when faced with the combined stressors of OA and copper. These data are in line with the emerging energy limited tolerance to stressors’ hypothesis which states that tolerance to stress can be energy limited, with bioenergetics playing a central role in the tolerance to environmental stress. Finally, a more environmentally realistic exposure scenario was conducted using Alitta virens to test the influence of sediment and tidal cycles on worm acid-base and oxidative stress responses. Field measurements of sediment pH revealed that the pHNBS range over a tidal cycle varies from 6.97 to 7.87, indicating that polychaetes are already experiencing pH’s lower than the predictions for near future open oceans. In aquarium exposures, with overlying water of pHNBS 8.10, sediment pHNBS remained within the range of 7.45 to 7.31, when the overlying water was manipulated to OA conditions (pHNBS 7.70) sediment pHNBS was within the same range as the ambient treatment. The lack of change in sediment pH, despite a 0.40 unit drop in seawater pH, removed any comparative differences in physiological and toxicity end points in the worms between treatments. Tidal emersion induced a slight reduction in sediment pH, with a significant copper effect on sediment pH causing a further decrease in pH levels. Interestingly emersion resulted in a significant OA-copper interaction for coelomic fluid bicarbonate, which increased over the emersion period, however, there was no emersion driven acidosis within coelomic fluid. Overall this work further points to contaminant-OA interactions being species specific driven, in part driven by animal physiology. It also highlights the importance of environmentally relevant exposures with sediment dwelling organisms experiencing lower pH levels than the overlying seawater which could potentially affect metal speciation and could lead to OA-contaminant interactions occurring very differently in this environment. These are important considerations for ecotoxicology studies in the face of global ocean changes.

Continue reading ‘Physiological and ecotoxicological interactions of copper and ocean acidification in the polychaete worms Hediste diversicolor and Alitta virens’

Effects of ocean acidification on toxicity of two trace metals in two marine molluscs in their early life stages

Ocean acidification (OA) is usually thought to change the speciation of trace metals and increase the concentration of free metal ions, hence elevating metal bioavailability. In this study, embryos of the oyster Crassostrea angulata and abalone Haliotis discus hannai were cultured under 4 pCO2 conditions (400, 800, 1500 and 2000 µatm) with Cu and Zn added. Fertilization rate was measured 2 h post-fertilization (hpf), while larval deformation and larval shell length were measured 24 hpf. Our results show that OA can alleviate Cu and Zn inhibition of C. angulata fertilization by 86.1 and 26.4% respectively, and Zn inhibition of H. discus hannai fertilization by 43.7%. However, OA enhanced the inhibitory effect of Cu on fertilization of H. discus hannai by 34.7%. OA enhanced the toxic effect of Cu on larval normality of C. angulata by 22.0% and the effect of Cu and Zn on larval normality of H. discus hannai by 71.4 and 37.2%, respectively. OA also enhanced the inhibitory effects of Cu and Zn on larval calcification in H. discus hannai by 8.8 and 8.6%, respectively. However, OA did not change the effect of Cu on the calcification of C. angulata larvae. OA decreased Zn inhibition of oyster larval calcification from 3.1 to 1.5%. Based on our results, the toxic effects of metal on early development of molluscs are not always increased by rising pCO2 and differ across developmental stages, egg structure and species. This complexity suggests that caution should be taken when carrying out multiple environmental stressor tests on molluscan embryos.

Continue reading ‘Effects of ocean acidification on toxicity of two trace metals in two marine molluscs in their early life stages’

Influence of pH on Pb accumulation in the blue mussel, Mytilus edulis

Changes in seawater pH can alter the chemical speciation of waterborne chemical elements, affecting their bioavailability and, consequently, their bioaccumulation in marine organisms. Here, controlled environmental conditions and a 210Pb radiotracer were used to assess the effect of five distinct pH conditions (pHT ranging from 7.16 to 7.94) on the short-term (9 days) accumulation of Pb in the blue mussel, Mytilus edulis. After 9 days of exposure, higher levels of Pb were observed in the soft tissues of mussels maintained in the lower pH conditions, while Pb levels accumulated by mussel shells showed no difference across pH conditions. These results suggest that pH decreases such as those predicted by ocean acidification scenarios could enhance Pb contamination in marine organisms, with potential subsequent contamination and effect risks for human consumers.

Continue reading ‘Influence of pH on Pb accumulation in the blue mussel, Mytilus edulis’

Mercury in juvenile Solea senegalensis: linking bioaccumulation, seafood safety, and neuro-oxidative responses under climate change-related stressors

Mercury (Hg) is globally recognized as a persistent chemical contaminant that accumulates in marine biota, thus constituting an ecological hazard, as well as a health risk to seafood consumers. Climate change-related stressors may influence the bioaccumulation, detoxification, and toxicity of chemical contaminants, such as Hg. Yet, the potential interactions between environmental stressors and contaminants, as well as their impacts on marine organisms and seafood safety, are still unclear. Hence, the aim of this work was to assess the bioaccumulation of Hg and neuro-oxidative responses on the commercial flat fish species Solea senegalensis (muscle, liver, and brain) co-exposed to dietary Hg in its most toxic form (i.e., MeHg), seawater warming (ΔT°C = +4 °C), and acidification (pCO2 = +1000 µatm, equivalent to ΔpH = −0.4 units). In general, fish liver exhibited the highest Hg concentration, followed by brain and muscle. Warming enhanced Hg bioaccumulation, whereas acidification decreased this element’s levels. Neuro-oxidative responses to stressors were affected by both climate change-related stressors and Hg dietary exposure. Hazard quotient (HQ) estimations evidenced that human exposure to Hg through the consumption of fish species may be aggravated in tomorrow’s ocean, thus raising concerns from the seafood safety perspective.

Continue reading ‘Mercury in juvenile Solea senegalensis: linking bioaccumulation, seafood safety, and neuro-oxidative responses under climate change-related stressors’

The combined effect of zinc and pH on growth rate and chlorophyll content of brown seaweed, Padina boryana

Brown seaweed, Padina boryana is found along the coast of Terengganu, Malaysia and may serve as a potential heavy metal biomonitor in the coastal zones. To better understand the impact of heavy metal pollution on P. boryana at varying seawater pH levels, the combined effect of zinc (Zn) and pH on its growth rate and chlorophyll content was investigated in laboratory exposures. After exposure for 21 days in a mixed treatment of 6 pH variations (4 to 9) and three Zn concentrations (30, 150, 300 ppb), maximum growth rate was observed in controlled treatments at pH 8 with no added Zn, whereas treatments at pH 4 and 9 showed negative growth rates after 18 days. The growth rate and chlorophyll content of P. boryana decreased significantly with an increase in Zn concentration. At pH 6, 7 and 8, P. boryana showed significant decreases (p < 0.05) in growth rates and chlorophyll content in all concentrations of Zn compared with control plants (no Zn). At pH of 6.0 and below, controls were also affected with significantly reduced growth rates and chlorophyll contents while Zn treated seaweed showed significant effects compared to these controls. The effect of pH and Zn on all measured factors was obvious on Day 6 onwards, whereas the interaction effect between them was significant on chlorophyll content throughout the experiment. From Day 9 onwards, the growth rate and chlorophyll content showed significant correlation among each other.

Continue reading ‘The combined effect of zinc and pH on growth rate and chlorophyll content of brown seaweed, Padina boryana’

Particulate trace metal dynamics in response to increased CO2 and iron availability in a coastal mesocosm experiment (update)

Rising concentrations of atmospheric carbon dioxide are causing ocean acidification and will influence marine processes and trace metal biogeochemistry. In June 2012, in the Raunefjord (Bergen, Norway), we performed a mesocosm experiment, comprised of a fully factorial design of ambient and elevated pCO2 and/or an addition of the siderophore desferrioxamine B (DFB). In addition, the macronutrient concentrations were manipulated to enhance a bloom of the coccolithophore Emiliania huxleyi. We report the changes in particulate trace metal concentrations during this experiment. Our results show that particulate Ti and Fe were dominated by lithogenic material, while particulate Cu, Co, Mn, Zn, Mo and Cd had a strong biogenic component. Furthermore, significant correlations were found between particulate concentrations of Cu, Co, Zn, Cd, Mn, Mo and P in seawater and phytoplankton biomass (µgC L−1), supporting a significant influence of the bloom in the distribution of these particulate elements. The concentrations of these biogenic metals in the E. huxleyi bloom were ranked as follows: Zn < Cu ≈ Mn < Mo < Co < Cd. Changes in CO2 affected total particulate concentrations and biogenic metal ratios (Me : P) for some metals, while the addition of DFB only significantly affected the concentrations of some particulate metals (mol L−1). Variations in CO2 had the most clear and significant effect on particulate Fe concentrations, decreasing its concentration under high CO2. Indeed, high CO2 and/or DFB promoted the dissolution of particulate Fe, and the presence of this siderophore helped in maintaining high dissolved Fe. This shift between particulate and dissolved Fe concentrations in the presence of DFB, promoted a massive bloom of E. huxleyi in the treatments with ambient CO2. Furthermore, high CO2 decreased the Me : P ratios of Co, Zn and Mn while increasing the Cu : P ratios. These findings support theoretical predictions that the molar ratios of metal to phosphorous (Me : P ratios) of metals whose seawater dissolved speciation is dominated by free ions (e.g., Co, Zn and Mn) will likely decrease or stay constant under ocean acidification. In contrast, high CO2 is predicted to shift the speciation of dissolved metals associated with carbonates such as Cu, increasing their bioavailability and resulting in higher Me : P ratios.

Continue reading ‘Particulate trace metal dynamics in response to increased CO2 and iron availability in a coastal mesocosm experiment (update)’

Effects of seawater acidification and cadmium on the antioxidant defense of flounder Paralichthys olivaceus larvae

Highlights

• Seawater acidification and Cd induced oxidative stress in flounder larvae.

• Two stressors interacted to regulate mRNA expressions of antioxidant-related genes.

• Integrated antioxidant response was promoted with increasing oxidative stress.

Abstract

Increasing atmospheric carbon dioxide has led to a decrease in the pH of the ocean, which influences the speciation of heavy metals and consequently affects metal toxicity in marine organisms. To investigate the effects of seawater acidification and metals on the antioxidant defenses of marine fishes, the flounder Paralichthys olivaceus, was continuously exposed to cadmium (Cd; control, 0.01 and 0.15 mg L−1) and acidified seawater (control (pH 8.10), 7.70 and 7.30) for 49 days from embryogenesis to settlement. The results demonstrated that both Cd and acidified seawater could induce oxidative stress and consequently cause lipid peroxidation (LPO) in the larvae. Antioxidants (i.e., superoxide dismutase, SOD; catalase, CAT; reduced glutathione, GSH; glutathione S-transferase, GST; glutathione peroxidase, GPx; and glutathione reductase, GR) functioned to defend the larvae against oxidative damage. Overall, Cd induced (SOD, GST and GSH) or inhibited (CAT and GPx) the enzymatic activities or contents of all the selected antioxidants except for GR. The antioxidants responded differently to seawater acidification, depending on their interaction with the metal. Similarly, the mRNA expressions of the antioxidant-related genes were upregulated (sod, gr and gst) or downregulated (cat and gpx) in response to increasing Cd exposure. Seawater acidification did not necessarily affect all of the biomarkers; in some cases (e.g., SOD and sod, GR and gr), Cd stress may have exceeded and masked the stress from seawater acidification in regulating the antioxidant defense of the larvae. The integrated biomarker response (IBR) was enhanced with increasing levels of the stressors. These findings support the hypothesis that seawater acidification not only directly affects the antioxidant defense in flounder larvae but also interacts with Cd to further regulate this defense. This study has ecological significance for assessing the long-term impacts of ocean acidification and metal pollution on the recruitment of fish populations in the wild.

Continue reading ‘Effects of seawater acidification and cadmium on the antioxidant defense of flounder Paralichthys olivaceus larvae’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,378,015 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book