Posts Tagged 'metals'

Copper exposure and seawater acidification interaction: Antagonistic effects on biomarkers in the zooxanthellate scleractinian coral Mussismilia harttii

Highlights

• 76% of the interactions between reduced seawater pH and increasing copper concentrations were antagonistic, and only 24% of these interactions were additive or synergistic;

• The combination of seawater acidification and increasing copper concentrations had no significant deleterious effects in the photosynthetic metabolism of endosymbionts (Symbiodinium spp.) or Ca-ATPase activity;

• Low copper concentrations had a consistent positive effect on Ca-ATPase activity in corals facing reduced seawater pH conditions;

• Potential deleterious effects on the acid-base balance of corals, associated with changes in carbonic anhydrase activity, were intensified by the combination of stressors;

• Toxic effects of copper in future ocean acidification scenarios can be less severe than previously suggested.

Abstract

Coral reefs are threatened by global and local impacts, such as ocean acidification (OA) and metal contamination. Toxicity of metals, such as copper (Cu), is expected to be enhanced with OA. However, the interaction between these environmental stressors is still poorly evaluated. In the present study, the interactive effects of seawater acidification and increasing Cu concentrations were evaluated in a zooxanthellate scleractinian coral (Mussismilia harttii), using biochemical biomarkers involved in the coral calcification process and the photosynthetic metabolism of endosymbionts. Corals were kept under control conditions (no seawater acidification and no Cu addition in seawater) or exposed to combined treatments of reduced seawater pH (8.1, 7.8, 7.5 and 7.2) and environmentally relevant concentrations of dissolved Cu (measured: 1.0, 1.6, 2.3 and 3.2 µg/L) in a mesocosm system. After 15- and 35-days exposure, corals were analyzed for photochemical efficiency (Fv/Fm), chlorophyll a content, Ca-ATPase and carbonic anhydrase (CA) activity. Results showed that 76% of the interactions between reduced seawater pH and increasing Cu concentrations were antagonistic. Only 24% of these interactions were additive or synergistic. In general, the combination of stressors had no significant deleterious effects in the photosynthetic metabolism of endosymbionts or Ca-ATPase activity. In fact, the lowest dissolved Cu concentration tested had a consistent positive effect on Ca-ATPase activity in corals facing any of the reduced seawater pH conditions tested. In turn, potentially deleterious effects on acid-base balance in M. harttii, associated with changes in CA activity, were intensified by the combination of stressors. Findings reported here indicate that Cu toxicity in future OA scenarios can be less severe than previously suggested in this coral holobiont.

Continue reading ‘Copper exposure and seawater acidification interaction: Antagonistic effects on biomarkers in the zooxanthellate scleractinian coral Mussismilia harttii’

Transgenerational effects of pCO2-driven ocean acidification on adult mussels Mytilus chilensis modulate physiological response to multiple stressors in larvae

The effect of CO2-driven ocean acidification (OA) on marine biota has been extensively studied mostly on a single stage of the life cycle. However, the cumulative and population-level response to this global stressor may be biased due to transgenerational effects and their impacts on physiological plasticity. In this study, we exposed adult mussels Mytilus chilensis undergoing gametogenesis to two pCO2 levels (550 and 1200 μatm) for 16 weeks, aiming to understand if prolonged exposure of reproductive individuals to OA can affect the performance of their offspring, which, in turn, were reared under multiple stressors (pCO2, temperature, and dissolved cadmium). Our results indicate dependence between the level of pCO2 of the broodstock (i.e., parental effect) and the performance of larval stages in terms of growth and physiological rates, as a single effect of temperature. While main effects of pCO2 and cadmium were observed for larval growth and ingestion rates, respectively, the combined exposure to stressors had antagonistic effects. Moreover, we found a suppression of feeding activity in post-spawning broodstock upon high pCO2 conditions. Nevertheless, this observation was not reflected in the final weight of the broodstock and oocyte diameter. Due to the ecological and socioeconomic importance of mussels’ species around the globe, the potential implications of maternal effects for the physiology, survival, and recruitment of larvae under combined global-change stressors warrant further investigation.

Continue reading ‘Transgenerational effects of pCO2-driven ocean acidification on adult mussels Mytilus chilensis modulate physiological response to multiple stressors in larvae’

Copper pollution exacerbates the effects of ocean acidification and warming on kelp microscopic early life stages

Ocean warming (OW), ocean acidification (OA) and their interaction with local drivers, e.g., copper pollution, may negatively affect macroalgae and their microscopic life stages. We evaluated meiospore development of the kelps Macrocystis pyrifera and Undaria pinnatifida exposed to a factorial combination of current and 2100-predicted temperature (12 and 16 °C, respectively), pH (8.16 and 7.65, respectively), and two copper levels (no-added-copper and species-specific germination Cu-EC50). Meiospore germination for both species declined by 5–18% under OA and ambient temperature/OA conditions, irrespective of copper exposure. Germling growth rate declined by >40%·day−1, and gametophyte development was inhibited under Cu-EC50 exposure, compared to the no-added-copper treatment, irrespective of pH and temperature. Following the removal of copper and 9-day recovery under respective pH and temperature treatments, germling growth rates increased by 8–18%·day−1. The exception was U. pinnatifida under OW/OA, where growth rate remained at 10%·day−1 before and after copper exposure. Copper-binding ligand concentrations were higher in copper-exposed cultures of both species, suggesting that ligands may act as a defence mechanism of kelp early life stages against copper toxicity. Our study demonstrated that copper pollution is more important than global climate drivers in controlling meiospore development in kelps as it disrupts the completion of their life cycle.

Continue reading ‘Copper pollution exacerbates the effects of ocean acidification and warming on kelp microscopic early life stages’

The impact of elevated atmospheric CO2 on cadmium toxicity in Pyropia haitanensis (Rhodophyta)

Cadmium is one of the major heavy metal pollutions in coastal waters, and it is well known that cadmium at trace concentration is toxic to macroalgae. Change in marine carbonate system and ocean acidification caused by elevated atmospheric CO2 also alter physiological characteristics of macroalgae. However, less research is focused on the combined impacts of elevated CO2 and cadmium pollution on the growth and physiology in macroalgae. In this study, the maricultivated macroalga Pyropia haitanensis (Rhodophyta) was cultured at three levels of Cd2+ (control, 4 and 12 mg L−1) and two concentrations of CO2, the ambient CO2 (AC, 410 ppm) and elevated CO2 (HC, 1100 ppm). The results showed that 12 mg L−1 Cd2+ significantly suppressed the relative growth rate and superoxide dismutase activity in AC-grown P. haitanensis, while such inhibition extents by Cd2+ were alleviated in HC-grown algae. Cd2+ had no effects on efficiency of electron transport (α) and maximum electron transport rate (ETRmax), but α was increased by elevated CO2. Cd2+ dramatically suppressed the maximum net photosynthesis oxygen evolution rate (NPRm) and the minimum saturation irradiance (Ik) when the algal thalli were grown at AC, while such suppression of NPRm by Cd2+ was much decreased when the thalli were grown at HC. Collectively, our results suggested that elevated CO2 would alleviate Cd2+ toxicity on P. haitanensis.

Continue reading ‘The impact of elevated atmospheric CO2 on cadmium toxicity in Pyropia haitanensis (Rhodophyta)’

Effects of ocean warming and acidification on accumulation and cellular responsiveness to cadmium in mussels Mytilus galloprovincialis: importance of the seasonal status

Highlights

• Effects of multiple stressors were analysed in M. galloprovincialis in winter season.
• Temperature but not acidification increased cadmium accumulation.
• Interactive effects of multiple stressors occurred at cellular level.
• Differences were observed compared to mussels exposed in summer.
• Elaborated hazard indices highlighted different tissue responsiveness to multiple stressors.

Abstract

Ocean warming and acidification could represent an additional threat to marine organisms already coping with other anthropogenic impacts, such as chemical contamination in coastal areas. In this study, interactions between such multiple stressors and their synergistic effects in terms of accumulation, detoxification and biological effects of metals were investigated in the Mediterranean mussel Mytilus galloprovincialis. Organisms sampled during the winter period were exposed for 28 days to different combinations of two temperatures (10 °C and 15 °C), two pH/pCO2 (8.20/~400µatm and 7.4/~3000µatm) and two cadmium concentrations (0 and 20 µg/L). Cadmium concentrations increased in digestive glands and gills of metal-exposed mussels and were further enhanced by co-exposure at higher temperature. Interactive effects of temperature and/or pH were observed on Cd-mediated metallothionein induction, responsiveness of antioxidant system and onset of oxidative damages in lipids, with tissue-specific effects. Immunological effects showed a generalized sensitivity of lysosomal membrane stability toward the investigated stressors with major effects in co-exposed organisms. Cadmium and temperature affected phagocytosis efficiency and composition of haemocyte populations probably influencing the micronucleus frequency through varied mitotic rate. Several differences were highlighted between these results and those previously obtained from mussels exposed in summer, supporting the importance of season when addressing the tolerance of temperate organisms to variations of environmental factors. The elaboration of the whole biomarker results through weighted criteria allowed to summarize specific hazard indices, highlighting tissue-specific sensitivity toward multiple stressors and the need of improving the knowledge on interactions between multiple stressors.

Continue reading ‘Effects of ocean warming and acidification on accumulation and cellular responsiveness to cadmium in mussels Mytilus galloprovincialis: importance of the seasonal status’

Development of the sea urchin Heliocidaris crassispina from Hong Kong is robust to ocean acidification and copper contamination

Highlights

• Ocean acidification will increase the fraction of the most toxic form of copper, increasing its bioavailability to marine organisms
• We tested the hypothesis that copper contaminated waters are more toxic to sea urchin larvae under future pH conditions in three laboratory experiments
• Larvae are robust to the pH and the copper levels we tested (little/no mortality)
• However, significant sub-lethal effects, could have indirect consequences on survival

Abstract

Metallic pollution is of particular concern in coastal cities. In the Asian megacity of Hong Kong, despite water qualities have improved over the past decade, some local zones are still particularly affected and could represent sinks for remobilization of labile toxic species such as copper. Ocean acidification is expected to increase the fraction of the most toxic form of copper (Cu2+) by 2.3-folds by 2100 (pH ≈7.7), increasing its bioavailability to marine organisms. Multiple stressors are likely to exert concomitant effects (additive, synergic or antagonist) on marine organisms.

Here, we tested the hypothesis that copper contaminated waters are more toxic to sea urchin larvae under future pH conditions. We exposed sea urchin embryos and larvae to two low-pH and two copper treatments (0.1 and 1.0 μM) in three separate experiments. Over the short time typically used for toxicity tests (up to 4-arm plutei, i.e. 3 days), larvae of the sea urchin Heliocidaris crassispina were robust and survived the copper levels present in Hong Kong waters today (≤0.19 μM) as well as the average pH projected for 2100. We, however, observed significant mortality with lowering pH in the longer, single-stressor experiment (Expt A: 8-arm plutei, i.e. 9 days). Abnormality and arm asymmetry were significantly increased by pH or/and by copper presence (depending on the experiment and copper level). Body size (d3; but not body growth rates in Expt A) was significantly reduced by both lowered pH and added copper. Larval respiration (Expt A) was doubled by a decrease at pHT from 8.0 to 7.3 on d6. In Expt B1.0 and B0.1, larval morphology (relative arm lengths and stomach volume) were affected by at least one of the two investigated factors.

Although the larvae appeared robust, these sub-lethal effects may have indirect consequences on feeding, swimming and ultimately survival. The complex relationship between pH and metal speciation/uptake is not well-characterized and further investigations are urgently needed to detangle the mechanisms involved and to identify possible caveats in routinely used toxicity tests.

Continue reading ‘Development of the sea urchin Heliocidaris crassispina from Hong Kong is robust to ocean acidification and copper contamination’

Effects of copper on hemocyte parameters in the estuarine oyster Crassostrea rivularis under low pH conditions

Highlights

• Hemocyte parameters of oysters were determined by FC in vitro and in vivo.
• Synergistic effects of Cu and low pH on oyster hemocyte were observed.
• Cu exerted a stronger influence on hemocyte parameters than low pH.
• Carry-over impacts of Cu and low pH were found during the recovery period.

Abstract

With the development of industry and agriculture, the metal pollutants (e.g., Cu) are inevitably released into the aquatic environment. In addition, ocean acidification (OA) as a major environmental stress is affecting marine organisms. In this study, we investigated the hemocyte responses of the estuarine oyster Crassostrea rivularis exposed to six combinations of two pH levels (8.1 and 7.7) and three Cu concentrations (0, 10 and 50 μg/l) using flow cytometry in vitro and in vivo. In both experiments, Cu and low pH jointly affected the hemocyte parameters of oyster. High Cu exposure resulted in decreased total hemocyte count (THC), esterase activity (EA) and lysosomal content (LC) and increased hemocyte mortality (HM), phagocytosis activity (PA) and reactive oxygen species (ROS) production, especially under low pH conditions. The immune suppression of metal-exposure was more significant than low pH exposure with a 28-d experimental period in oysters. A slight recovery of the immune parameters was observed in THC, HM, PA, ROS and LC. During the depuration period, the modulatory effects of pH were still obvious. In addition, carry-over effects of high Cu and low pH were still observed. Overall, our results showed that copper and low pH weaken immune functions of hemocyte in oysters, with synergistic effects. This work provides new evidence of sublethal negative effects of metals on marine animals under global change scenarios, and copper likely leads to reduced fitness of oysters under low pH conditions.

 

Continue reading ‘Effects of copper on hemocyte parameters in the estuarine oyster Crassostrea rivularis under low pH conditions’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,123,905 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book