Posts Tagged 'mitigation'

A good Kiwi isn’t acidic: how ocean acidification is affecting the New Zealand economy

In a country that houses a mere 4 million people, it is no wonder that agriculture has become the main facet of New Zealand’s economy. However, while the sheep and produce have flourished from land protection laws, marine life has struggled in recent years due to an increase in oceanic carbon levels. In an area of the Pacific that is so rich in coral reefs, Great White breeding areas, and a plethora of fish species, any upset of the natural preexisting chemical balance has a tangible impact. New Zealand is dealing with a crisis with huge economic and ecological ramifications. I study the exact adverse effects that ocean acidification has had on the economy of New Zealand. The scientific process of how ocean acidification occurs is a building block of this understanding as well as the Gross Domestic Product (GDP) of the country. The rise of marine pH levels is inextricably linked to the downturn of prosperity in New Zealand’s agricultural sector. My solutions address stricter policies in regards to fishing and emissions regulations to augment the regulation of established New Zealand commercial fishing laws. In this thesis, my goal is to highlight that ocean acidification is a climate problem that affects the entire New Zealand population. By putting these effects into economic terms, I hope to urge change in the “business as usual” way countries conduct themselves, starting with policy makers whose focus is growing their GDP. To illustrate this point effectively, I utilize the disciplines of chemistry, economics, and politics to analyze the trends and consequences of ocean acidification.

Continue reading ‘A good Kiwi isn’t acidic: how ocean acidification is affecting the New Zealand economy’

The influence of ocean acidification on the economic vitality of shellfish hatcheries in the Pacific Northwest: A meta-analysis

Ocean acidification is the chemical process that results in the decrease of ocean pH levels. This decrease is caused by the diffusion of atmospheric carbon dioxide into Earth’s oceans. In other words, Earth’s oceans act as a carbon sink for atmospheric carbon. Prior to the industrial revolution in 1760, the ocean regulated the amount of carbon in earth’s atmosphere in a manner that did not threaten marine ecosystems. However, due to the increased combustion of fossil fuels due to rapid industrialization, urbanization, and population growth, oceans have begun to take up excessive amounts of carbon dioxide, resulting in an alteration of oceanic chemistry. The accumulation of hydrogen ions in ocean water due to the chemical reaction between carbonate carbon dioxide, and water have increased the acidity of the ocean. This has created a corrosive environment for shell-forming organisms that rely on carbonate for their exoskeletons. Many of these organisms, especially those in the Mollusca phylum, are commercially valuable. Ocean acidification has already begun its impact on the shellfish industry in the Pacific Northwest. However, if a business-as-usual scenario of carbon combustion prevails over use of alternative energy sources and mandatory terrestrial pollutant controls, the impact on shellfish aquaculture firms will only intensify and threaten the industry and its associated jobs and revenue. Local, state and federal authorities and agencies have begun to take steps to mitigate the effects of ocean acidification. Mitigation strategies are analyzed on their basis to effectively diminish the physiological and economic impact of ocean acidification on shellfish aquaculture operations. The question remains if these strategies will be able to successfully inhibit the ongoing process of ocean acidification, or simply just delay the impacts.

Continue reading ‘The influence of ocean acidification on the economic vitality of shellfish hatcheries in the Pacific Northwest: A meta-analysis’

Can seaweed farming play a role in climate change mitigation and adaptation?

Seaweed aquaculture, the fastest-growing component of global food production, offers a slate of opportunities to mitigate, and adapt to climate change. Seaweed farms release carbon that maybe buried in sediments or exported to the deep sea, therefore acting as a CO2 sink. The crop can also be used, in total or in part, for biofuel production, with a potential CO2 mitigation capacity, in terms of avoided emissions from fossil fuels, of about 1,500 tons CO2 km−2 year−1. Seaweed aquaculture can also help reduce the emissions from agriculture, by improving soil quality substituting synthetic fertilizer and when included in cattle fed, lowering methane emissions from cattle. Seaweed aquaculture contributes to climate change adaptation by damping wave energy and protecting shorelines, and by elevating pH and supplying oxygen to the waters, thereby locally reducing the effects of ocean acidification and de-oxygenation. The scope to expand seaweed aquaculture is, however, limited by the availability of suitable areas and competition for suitable areas with other uses, engineering systems capable of coping with rough conditions offshore, and increasing market demand for seaweed products, among other factors. Despite these limitations, seaweed farming practices can be optimized to maximize climate benefits, which may, if economically compensated, improve the income of seaweed farmers.

Continue reading ‘Can seaweed farming play a role in climate change mitigation and adaptation?’

Human dimensions of environmental change in small island developing states: some common themes

Climate change and its consequence of sea level rise are major issues for small island developing states (SIDS), as they worsen many other pressures on their people and their environment. Accordingly, articles in this special issue of Regional Environmental Change on SIDS address research gaps in the following thematic areas of the human dimensions of climate change. (1) Islander perceptions of climate change and the information sources on which these are based. (2) Migration to richer countries, which dominates popular media articles, so that scholars from a wide range of disciplines have given their perspectives on it. For many SIDS, however, relocation within that country is much more of an issue, but little studied as yet. (3) Community-based adaptation, a theme which only rarely appears in peer-reviewed journals. (4) National, regional and international policies and the effectiveness of their implementation. (5) Social and cultural issues arising from the above. This paper provides an overview of these and some related themes of importance to SIDS, including ocean acidification and land degradation. Researchers based in the SIDS and regional organisations have an important role in recognising these issues and in developing the local skills base needed to deal with them. The Paris Agreement of 2015 is a positive (but as yet inadequate) step towards the international action on climate change that SIDS need.

Continue reading ‘Human dimensions of environmental change in small island developing states: some common themes’

Large-scale seaweed cultivation diverges water and sediment microbial communities in the coast of Nan’ao Island, South China Sea

Seaweed cultivation not only provides economy benefits, but also remediates the environment contaminated by mariculture of animals (e.g., fish, shrimps). However, the response of microbial communities to seaweed cultivation is poorly understood. In this study, we analyzed the diversity, composition, and structure of water and sediment microbial communities at a seaweed, Gracilaria lemaneiformis, cultivation zone and a control zone near Nan’ao Island, South China Sea by MiSeq sequencing of 16S rRNA gene amplicons. We found that large-scale cultivation of G. lemaneiformis increased dissolved oxygen (DO) and pH but decreased inorganic nutrients, possibly due to nutrient uptake, photosynthesis and other physiological processes of G. lemaneiformis. These environmental changes significantly (adonis, P < 0.05) shifted the microbial community composition and structure of both water column and sediment samples in the G. lemaneiformis cultivation zone, compared to the control zone. Also, certain microbial taxa associated with seaweed, such as Arenibacter, Croceitalea, Glaciecola, Leucothrix and Maribacter were enriched at the cultivation zone. In addition, we have proposed a conceptual model to summarize the results in this study and guide future studies on relationships among seaweed processes, microbial communities and their environments. Thus, this study not only provides new insights into our understanding the effect of G. lemaneiformis cultivation on microbial communities, but also guides future studies on coastal ecosystems.

Continue reading ‘Large-scale seaweed cultivation diverges water and sediment microbial communities in the coast of Nan’ao Island, South China Sea’

Impacts of physical environments in the coastal and marine environments of Caribbean Small Island Developing States (SIDS)

Temperature – sea surface temperature has risen by more than 1 °C over the last 100 years. Future temperature rises will have impacts on hurricanes, rainfall, coral reefs and wider marine ecosystems.

Hurricanes – The IPCC (IPCC AR5 WG1) found strong evidence for an increase in the frequency and intensity of the strongest tropical hurricanes since the 1970s in the North Atlantic.

El Niño- Understanding the influence of the El Niño – Southern Oscillation (ENSO) phenomenon on Caribbean’s marine environment and timescales of variability is key to understanding how climate has been changing; projecting these relationships and ENSO itself into the future becomes vital to understand the fingerprint of global warming in the region.

Precipitation – there are a wide range of projections for future precipitation change in the area with some models finding increases in the coming century while most suggest a drier future for the region.

Ocean surface aragonite saturation state (Ωarg) has declined by around 3% in the Caribbean region relative to pre-industrial levels.

Climate variability – the Caribbean region needs a smaller increase in temperature for its conditions to become distinct (climate emergence) from the envelope of climate variability over the last hundred years, compared with the rest of the world.

Continue reading ‘Impacts of physical environments in the coastal and marine environments of Caribbean Small Island Developing States (SIDS)’

Impacts of ocean acidification in the coastal and marine environments of Caribbean Small Island Developing States (SIDS)

Oceans have absorbed one third of the carbon dioxide (CO2) released to the atmosphere from human activities causing the seawater pH to decrease by 0.1 units since the Industrial Revolution.

There is certainty that ocean acidification caused by anthropogenic activities is currently in progress and will increase in accord with rising atmospheric CO2 concentrations. There is medium confidence that these changes with significantly impact marine ecosystems.

Throughout the Caribbean small islands, ocean acidification effects could be exacerbated due to local processes within coastal zones. Ocean surface aragonite saturation state (Ωarg) has declined by around 3% in the Caribbean region relative to pre-industrial levels potentially already impacting tropical marine calcifying organisms. In addition to the effect on living organisms, ocean acidification is likely to diminish the structural integrity of coral reefs through reduced skeletal density, loss of calcium carbonate, and dissolution of high-Mg carbonate cements which help to bind the reef. This would make coastal areas of the Caribbean small islands increasingly more vulnerable to the action of waves and storm surge. This is likely to have knock-on effects to the tourism sector, fisheries and coastal infrastructure.

More studies about the present and projected impacts of ocean acidification on Caribbean small islands are necessary in order to evaluate alternative adaptive strategies accounting for the different island’s environmental, socioeconomic, and political settings.

Continue reading ‘Impacts of ocean acidification in the coastal and marine environments of Caribbean Small Island Developing States (SIDS)’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,001,108 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book