Posts Tagged 'Red Sea'

Simulated climate change scenarios impact the reproduction and early life stages of a soft coral

Highlights

  • A change in the timing of onset of the soft coral breeding event occurred under elevated temperature and reduced pH seawater conditions.
  • A disruption of the synchronicity of the breeding event occurred under elevated temperature and reduced pH seawater conditions.
  • End-of-the-century seawater conditions are expected to affect the reproduction of the soft coral Rhytisma fulvum.
  • Planula survival and polyp metamorphosis rates were significantly reduced under both end-of-the-century seawater conditions compared to propagules reared under ambient conditions.
  • The photosynthetic capacity of the parent soft coral colonies was reduced under the end-of-the-century seawater conditions in comparison to those under the ambient conditions.

Abstract

Coral reefs are threatened worldwide by global climate change, manifested in anthropogenic ocean warming and acidification. Despite the importance of coral sexual reproduction for the continuity of coral reefs, our understanding of the extent of the impact of climate change on coral sexual reproduction, particularly on coral reproductive phenology and early life stages, is limited. Here, we experimentally examined the effects of predicted end-of-the-century seawater conditions on the sexual reproduction and photosynthetic capacity of a Red-Sea zooxanthellate octocoral, Rhytisma fulvum. Sexually mature colonies were exposed to ambient temperature and pH conditions and to Representative Concentration Pathway (RCP) conditions (4.5 and 8.5), five weeks prior to their expected surface-brooding event. The reproductive phenology of the colonies under the simulated seawater conditions was compared to that on the natural reef. In addition, subsequent planulae development and their metamorphosis into primary polyps under the same RCP conditions as their parent colonies were monitored in a running seawater system. The results reveal that both RCP conditions led to a change in the timing of onset of the surface-brooding event and its synchronicity. In contrast, the surface-brooding event under ambient conditions co-occurred with that of the in-situ reef colonies and maintained its synchrony. Similarly, planula survival and polyp metamorphosis rate were significantly reduced under both RCP conditions compared to propagules reared under ambient conditions. In addition, the photosynthetic capacity of the parent colonies under both RCPs showed a reduction relative to that under the ambient conditions in the experiment, suggesting a reduction in carbon fixation during the late stages of gametogenesis. While our findings indicate that octocoral reproductive phenology is affected by environmental changes, further work is required in order to elucidate the long-term implications for the R. fulvum population in the northern Red Sea.

Continue reading ‘Simulated climate change scenarios impact the reproduction and early life stages of a soft coral’

Differential sensitivity of a symbiont‐bearing foraminifer to seawater carbonate chemistry in a decoupled DIC‐pH experiment

Larger benthic foraminifera (LBF) are unicellular eukaryotic calcifying organisms and an important component of tropical and subtropical modern and ancient oceanic ecosystems. They are major calcium carbonate producers and important contributors to primary production due to the photosynthetic activity of their symbiotic algae. Studies investigating the response of LBF to seawater carbonate chemistry changes are therefore essential for understanding the impact of climate changes and ocean acidification (OA) on shallow marine ecosystems. In this study, calcification, respiration, and photosynthesis of the widespread diatom‐bearing LBF Operculina ammonoides were measured in laboratory experiments that included manipulation of carbonate chemistry parameters. pH was altered while keeping dissolved inorganic carbon (DIC) constant, and DIC was altered while keeping pH constant. The results show clear vulnerability of O. ammonoides to low pH and CO32− under constant DIC conditions, and no increased photosynthesis or calcification under high DIC concentrations. Our results call into question previous hypotheses, suggesting that mechanisms such as the degree of cellular control on calcification site pH/DIC and/or enhanced symbiont photosynthesis in response to OA may render the hyaline (perforate and calcitic‐radial) LBF to be less responsive to OA than porcelaneous LBF. In addition, manipulating DIC did not affect calcification when pH was close to present seawater levels in a model encompassing the total population size range. In contrast, larger individuals (>1,200 μm, >1 mg) were sensitive to changes in DIC, a phenomenon we attribute to their physiological requirement to concentrate large quantities of DIC for their calcification process.

Continue reading ‘Differential sensitivity of a symbiont‐bearing foraminifer to seawater carbonate chemistry in a decoupled DIC‐pH experiment’

Anomalies in the carbonate system of Red Sea coastal habitats (update)

We use observations of dissolved inorganic carbon (DIC) and total alkalinity (TA) to assess the impact of ecosystem metabolic processes on coastal waters of the eastern Red Sea. A simple, single-end-member mixing model is used to account for the influence of mixing with offshore waters and evaporation–precipitation and to model ecosystem-driven perturbations on the carbonate system chemistry of coral reefs, seagrass meadows and mangrove forests. We find that (1) along-shelf changes in TA and DIC exhibit strong linear relationships that are consistent with basin-scale net calcium carbonate precipitation; (2) ecosystem-driven changes in TA and DIC are larger than offshore variations in >70 % of sampled seagrass meadows and mangrove forests, changes which are influenced by a combination of longer water residence times and community metabolic rates; and (3) the sampled mangrove forests show strong and consistent contributions from both organic respiration and other sedimentary processes (carbonate dissolution and secondary redox processes), while seagrass meadows display more variability in the relative contributions of photosynthesis and other sedimentary processes (carbonate precipitation and oxidative processes). The results of this study highlight the importance of resolving the influences of water residence times, mixing and upstream habitats on mediating the carbonate system and coastal air–sea carbon dioxide fluxes over coastal habitats in the Red Sea.

Continue reading ‘Anomalies in the carbonate system of Red Sea coastal habitats (update)’

Responses of symbiotic cnidarians to environmental change

As climate change intensifies, the capacity of organisms to adapt to changing environments becomes increasingly relevant. Heat-induced coral bleaching –the breakdown of the symbiotic association between coral hosts and photosynthetic algae of the family Symbiodiniaceae– is rapidly degrading reefs worldwide. Hence, there is a growing interest to study symbioses that can persist in extreme conditions. The Red Sea is such a place, known as one of the hottest seas where healthy coral reef systems thrive. Here (Chapter 1), we tested the potential of symbiont manipulation as means to improve the thermal resilience of the cnidarian holobiont, particularly using heat tolerant symbiont species from the Red Sea. We used clonal lineages of the model system Aiptasia (host and symbiont), originating from different thermal environments to assess how interchanging either partner affected their short- and long-term performance under heat stress. Our findings revealed that symbioses are not only intra-specific but have also adapted to native, local environments, thus potentially limiting the acclimation capacity of symbiotic cnidarians to climate change. As such, infection with more heat resistant species, even if native, might not necessarily improve thermotolerance of the holobiont. We further investigated (Chapter 2) how environment-dependent specificity, in this case elevated temperature, affects the establishment of novel symbioses. That is, if Aiptasia hosts are, despite exhibiting a high degree of partner fidelity, capable of acquiring more thermotolerant symbionts under stress conditions. Thus, we examined the infection dynamics of multi-species symbioses under different thermal environments and assessed their performance to subsequent heat stress. We showed that temperature, more than host identity, plays a critical role in symbiont uptake and overall performance when heatchallenged. Additionally, we found that pre-exposure to high temperature plays a fundamental role in improving the response to thermal stress, yet, this can be heavily influenced by other factors like feeding. Like climate change, ocean acidification is a serious threat to corals. Yet, most research has focused on the host and little is known for the algal partner. Thus, here we studied (Chapter 3) the global transcriptomic response of an endosymbiotic dinoflagellate to long-term seawater acidification stress. Our results revealed that despite observing an enrichment of processes related to photosynthesis and carbon fixation, which might seem beneficial to the symbiont, low pH has a detrimental effect on its photo-physiology. Taken together, this dissertation provides valuable insights into the responses of symbiotic cnidarians to future climate and ocean changes.

Continue reading ‘Responses of symbiotic cnidarians to environmental change’

Ocean acidification impact on the grooved carpet shell clam (Ruditapes decussatus)

The grooved carpet shell clam (Ruditapes decussatus) is one of the most economically important mollusks inhabiting Mediterranean lagoons and sandy beaches both from fisheries and aquaculture. The present study aims to study the impact of different levels of acidification on this calcifying organism. Juvenile clams (avg. Shell Length, SL= 23.22 ± 0.84 mm) were incubated in CO2 enriched seawater at four different CO2 concentrations [420 ppm (ambient control), 550 ppm, 750 ppm and 1050 ppm] representing projected atmospheric CO2 concentration scenarios for the year 2100 by IPCC. The studied biological parameters showed slight decrease with increasing pCO2. However, differences were not significant. Standard length decreased as pCO2 concentration increased, with a maximum average decrease of (-0.12) recorded at 750 ppm as compared to the control group. Regarding total weight, the decrease was highest (-0.10) in both 550 and 1050 ppm. Moreover, clams kept at 550 ppm showed the lowest condition index (11.40 ± 1.49) and highest mortality rate of 8%. The study of physiological response showed increase in metabolic rate and ammonia excretion in both 550 ppm and the control 420 ppm groups. Algal feed clearance rate decreased with increasing acidification with highest value in the control (420 ppm) group and lowest average value of 3.34 l/h-1 in the extremely high pCO2 (1050 ppm) group. By the end of century, ocean acidification may exert additional stress on the health of R. decussatus and its economic value.

Continue reading ‘Ocean acidification impact on the grooved carpet shell clam (Ruditapes decussatus)’

Characterization of the CO2 System in a coral reef, a seagrass meadow, and a mangrove forest in the central Red Sea

The Red Sea is characterized by its high seawater temperature and salinity, and the resilience of its coastal ecosystems to global warming is of growing interest. This high salinity and temperature might also render the Red Sea a favorable ecosystem for calcification and therefore resistant to ocean acidification. However, there is a lack of survey data on the CO2 system of Red Sea coastal ecosystems. A 1‐year survey of the CO2 system was performed in a seagrass lagoon, a mangrove forest, and a coral reef in the central Red Sea, including fortnight seawater sampling and high‐frequency pHT monitoring. In the coral reef, the CO2 system mean and variability over the measurement period are within the range of other world’s reefs with pHT, dissolved inorganic carbon (DIC), total alkalinity (TA), pCO2, and Ωarag of 8.016±0.077, 2061±58 μmol/kg, 2415±34 μmol/kg, 461±39 μatm, and 3.9±0.4, respectively. Here, comparisons with an offshore site highlight dominance of calcification and photosynthesis in summer‐autumn, and dissolution and heterotrophy in winter‐spring. In the seagrass meadow, the pHT, DIC, TA, pCO2, and Ωarag were 8.00±0.09, 1986±68 μmol/kg, 2352±49 μmol/kg, 411±66 μatm, and 4.0±0.3, respectively. The seagrass meadow TA and DIC were consistently lower than offshore water. The mangrove forest showed the highest amplitudes of variation, with pHT, DIC, TA, pCO2, and Ωarag, were 7.95±0.26, 2069±132 μmol/kg, 2438±91 μmol/kg, 493±178 μatm, and 4.1±0.6, respectively. We highlight the need for more research on sources and sinks of DIC and TA in coastal ecosystems.

Continue reading ‘Characterization of the CO2 System in a coral reef, a seagrass meadow, and a mangrove forest in the central Red Sea’

Environmental and biological controls on Na∕Ca ratios in scleractinian cold-water corals (update)

Here we present a comprehensive attempt to correlate aragonitic Na∕Ca ratios from Desmophyllum pertusum (formerly known as Lophelia pertusa), Madrepora oculata and a caryophylliid cold-water coral (CWC) species with different seawater parameters such as temperature, salinity and pH. Living CWC specimens were collected from 16 different locations and analyzed for their Na∕Ca ratios using solution-based inductively coupled plasma-optical emission spectrometry (ICP-OES) measurements.

The results reveal no apparent correlation with salinity (30.1–40.57 g kg−1) but a significant inverse correlation with temperature (0.31±0.04mmolmol1C1). Other marine aragonitic organisms such as Mytilus edulis (inner aragonitic shell portion) and Porites sp. exhibit similar results highlighting the consistency of the calculated CWC regressions. Corresponding Na∕Mg ratios show a similar temperature sensitivity to Na∕Ca ratios, but the combination of two ratios appears to reduce the impact of vital effects and domain-dependent geochemical variation. The high degree of scatter and elemental heterogeneities between the different skeletal features in both Na∕Ca and Na∕Mg, however, limit the use of these ratios as a proxy and/or make a high number of samples necessary. Additionally, we explore two models to explain the observed temperature sensitivity of Na∕Ca ratios for an open and semi-enclosed calcifying space based on temperature-sensitive Na- and Ca-pumping enzymes and transport proteins that change the composition of the calcifying fluid and consequently the skeletal Na∕Ca ratio.

Continue reading ‘Environmental and biological controls on Na∕Ca ratios in scleractinian cold-water corals (update)’

Anomalies in the carbonate system of Red Sea coastal habitats

We use observations of dissolved inorganic carbon (DIC) and total alkalinity (TA) to assess the impact of ecosystem metabolic processes on coastal waters of the eastern Red Sea. A simple, single-end-member mixing model is used to account for the influence of mixing with offshore waters and evaporation/precipitation, and to model ecosystem-driven perturbations on the carbonate system chemistry of coral reefs, seagrass meadows and mangrove forests. We find that (1) along-shelf changes in TA and DIC exhibit strong linear trends that are consistent with basin-scale net calcium carbonate precipitation; (2) ecosystem-driven changes in TA and DIC are larger than offshore variations in > 85 % of sampled seagrass meadows and mangrove forests, changes which are influenced by a combination of longer water residence times and community metabolic rates; and (3) the sampled mangrove forests show strong and consistent contributions from both organic respiration and other sedimentary processes (carbonate dissolution and secondary redox processes), while seagrass meadows display more variability in the relative contributions of photosynthesis and other sedimentary processes (carbonate precipitation and oxidative processes).

Continue reading ‘Anomalies in the carbonate system of Red Sea coastal habitats’

Behavioural responses of fish groups exposed to a predatory threat under elevated CO2

Highlights

• Only a few studies assessed how ocean acidification affects the behaviour of fish in groups.

• Shelter use and group cohesion were assessed with or without a predatory treat at high CO2 levels.

• Fish group behaviour was not affected by elevated CO2 levels in the absence of the predator.

• Fish groups from elevated CO2 were bolder than control ones under a predatory treat.

• When a predator was present, group cohesion increased regardless of CO2 conditions.

Abstract

Most of the studies dealing with the effects of ocean acidification (OA) on fish behaviour tested individuals in isolation, even when the examined species live in shoals in the wild. Here we evaluated the effects of elevated CO2 concentrations (i.e. ∼900 μatm) on the shelter use and group cohesion of the gregarious damselfish Chromis viridis using groups of sub-adults exposed to a predatory threat. Results showed that, under predatory threat, fish reared at elevated CO2 concentrations displayed a risky behaviour (i.e. decreased shelter use), whereas their group cohesion was unaffected. Our findings add on increasing evidence to account for social dynamics in OA experiments, as living in groups may compensate for CO2-induced risky behaviour.

Continue reading ‘Behavioural responses of fish groups exposed to a predatory threat under elevated CO2’

Developmental carryover effects of ocean warming and acidification in corals from a potential climate refugium, the Gulf of Aqaba

Coral reefs are degrading from the effects of anthropogenic activities, including climate change. Under these stressors, their ability to survive depends upon existing phenotypic plasticity, but also transgenerational adaptation. Parental effects are ubiquitous in nature, yet empirical studies of these effects in corals are scarce, particularly in the context of climate change. This study exposed mature colonies of the common reef-building coral Stylophora pistillata from the Gulf of Aqaba to seawater conditions likely to occur just beyond the end of this century during the peak planulae brooding season (Representative Concentration Pathway 8.5: pH −0.4 and +5°C beyond present day). Parent and planulae physiology were assessed at multiple time points during the experimental incubation. After 5 weeks of incubation, the physiology of the parent colonies exhibited limited treatment-induced changes. All significant time-dependent changes in physiology occurred in both ambient and treatment conditions. Planulae were also resistant to future ocean conditions, with protein content, symbiont density, photochemistry, survival and settlement success not significantly different compared with under ambient conditions. High variability in offspring physiology was independent of parental or offspring treatments and indicate the use of a bet-hedging strategy in this population. This study thus demonstrates weak climate-change-associated carryover effects. Furthermore, planulae display temperature and pH resistance similar to those of adult colonies and therefore do not represent a larger future population size bottleneck. The findings add support to the emerging hypothesis that the Gulf of Aqaba may serve as a coral climate change refugium aided by these corals’ inherent broad physiological resistance.

Continue reading ‘Developmental carryover effects of ocean warming and acidification in corals from a potential climate refugium, the Gulf of Aqaba’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,440,951 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book

Archives