Posts Tagged 'Red Sea'

Coral reefs of the Red Sea — challenges and potential solutions

The Red Sea is a unique body of water, hosting some of the most productive and diverse coral reefs. Human populations along coasts of the Red Sea were initially sparse due to the hot and arid climate surrounding it, but this is changing with improved desalination techniques, accessible energy, and increased economic interest in coastal areas. In addition to increasing pressure on reefs from coastal development, global drivers, primarily ocean acidification and seawater warming, are threatening coral reefs of the region. While reefs in southern sections of the Red Sea live near or above their maximum temperature tolerance and have experienced bleaching events in the recent past, coral reefs in northern sections are considered a coral reef refugia from global warming and acidification, at least for the coming decades. Such differential sensitivities along the latitudinal gradient of the Red Sea require differential solutions and management. In an effort to identify the appropriate solutions to conserve and maintain resilience of these reefs along a latitudinal gradient, we used a SWOT analysis (strengths/weaknesses/opportunities/threats) to frame the present situation and to propose policy solutions as useful planning procedures. We highlight the need for immediate action to secure the northern sections of the Red Sea as a coral reef climate change refuge by management and removal of local stressors. There is a need to strengthen the scientific knowledge base for proper management and to encourage regional collaboration on environmental issues. Based on scientific data, solutions such as marine protected areas, fishing regulation, and reef restoration approaches were ranked for five distinct latitudinal sections in the Red Sea and levels of interventions are recommended.

Continue reading ‘Coral reefs of the Red Sea — challenges and potential solutions’

Carbonates dissolution and precipitation in hemipelagic sediments overlaid by supersaturated bottom-waters – Gulf of Aqaba, Red Sea

Whether CaCO3 dissolves within the top centimeters of marine sediments overlaid by deep, supersaturated bottom waters remains an area of debate in geochemistry. This uncertainty stems from the fact that different methods used to assess CaCO3 dissolution rates often provide what appear to be profoundly different results. Here we combine microelectrode and porewater chemistry profiles, core incubation experiments, mineral characterizations and observations of the state of preservation of coccolithophorid exoskeletons for a holistic view of carbonate reactions within the top 30 centimeters of hemipelagic sediments from the Gulf of Aqaba, Red Sea. Calculations based on pH and O2 microelectrode data suggest that rapid metabolic dissolution of carbonate minerals occurs in these sediments within the top two millimeters. Porewater chemistry supports these calculations. The porewater-based observations are further supported by sedimentological characteristics such as aragonite content, and dissolution pitting and fragmentation of coccoliths in sediment layers deposited over the last 200 y. Dissolution appears to be occurring today within surface sediments despite the bulk porewater solution being supersaturated with respect to aragonite and Mg-calcite. In spite of intense dissolution within the sediments, there is no evidence for significant alkalinity and/or calcium fluxes (transport) into bottom waters. It appears that the supersaturated bottom water promotes the removal of all excess alkalinity and calcium produced within the sediment, by CaCO3 precipitation at or above the sediment/ bottom water interface. The precipitation mechanism may be by either benthic organisms (biogenic precipitation) or inorganically (direct precipitation on settling CaCO3 grains). We suggest that authigenic precipitation of (Ca,Mn)CO3 as it becomes supersaturated below 3 cm in the sediments can reconcile the evidence for carbonate dissolution in what appears to be supersaturated conditions. This means that MnCO3 replaces CaCO3 within the nanofossils below ∼3 cm, and that part of the manganese rich CaCO3 is bioturbated upwards into undersaturated conditions, facilitating dissolution of these fossils. Diminished calcite and aragonite concentrations in sediments deposited in recent decades are proposed to be a result of increased manganese cycling rates and greater rates of coupled dissolution within the interfacial sediments, possibly combined with diminished calcareous plankton productivity, in response to increased surface water primary productivity.

Continue reading ‘Carbonates dissolution and precipitation in hemipelagic sediments overlaid by supersaturated bottom-waters – Gulf of Aqaba, Red Sea’

Physicochemical dynamics, microbial community patterns, and reef growth in coral reefs of the central Red Sea

Coral reefs in the Red Sea belong to the most diverse and productive reef ecosystems worldwide, although they are exposed to strong seasonal variability, high temperature, and high salinity. These factors are considered stressful for coral reef biota and challenge reef growth in other oceans, but coral reefs in the Red Sea thrive despite these challenges. In the central Red Sea high temperatures, high salinities, and low dissolved oxygen on the one hand reflect conditions that are predicted for ‘future oceans’ under global warming. On the other hand, alkalinity and other carbonate chemistry parameters are considered favourable for coral growth. In coral reefs of the central Red Sea, temperature and salinity follow a seasonal cycle, while chlorophyll and inorganic nutrients mostly vary spatially, and dissolved oxygen and pH fluctuate on the scale of hours to days. Within these strong environmental gradients micro- and macroscopic reef communities are dynamic and demonstrate plasticity and acclimatisation potential. Epilithic biofilm communities of bacteria and algae, crucial for the recruitment of reef-builders, undergo seasonal community shifts that are mainly driven by changes in temperature, salinity, and dissolved oxygen. These variables are predicted to change with the progression of global environmental change and suggest an immediate effect of climate change on the microbial community composition of biofilms. Corals are so-called holobionts and associate with a variety of microbial organisms that fulfill important functions in coral health and productivity. For instance, coral-associated bacterial communities are more specific and less diverse than those of marine biofilms, and in many coral species in the central Red Sea they are dominated by bacteria from the genus Endozoicomonas. Generally, coral microbiomes align with ecological differences between reef sites. They are similar at sites where these corals are abundant and successful. Coral microbiomes reveal a measurable footprint of anthropogenic influence at polluted sites. Coral-associated communities of endosymbiotic dinoflagellates in central Red Sea corals are dominated by Symbiodinium from clade C. Some corals harbour the same specific symbiont with a high physiological plasticity throughout their distribution range, while others maintain a more flexible association with varying symbionts of high physiological specificity over depths, seasons, or reef locations. The coral-Symbiodinium endosymbiosis drives calcification of the coral skeleton, which is a key process that provides maintenance and formation of the reef framework. Calcification rates and reef growth are not higher than in other coral reef regions, despite the beneficial carbonate chemistry in the central Red Sea. This may be related to the comparatively high temperatures, as indicated by reduced summer calcification and long-term slowing of growth rates that correlate with ocean warming trends. Indeed, thermal limits of abundant coral species in the central Red Sea may have been exceeded, as evidenced by repeated mass bleaching events during previous years. Recent comprehensive baseline data from central Red Sea reefs allow for insight into coral reef functioning and for quantification of the impacts of environmental change in the region.

Continue reading ‘Physicochemical dynamics, microbial community patterns, and reef growth in coral reefs of the central Red Sea’

Calcite and aragonite saturation levels of the Red Sea coastal waters of Yemen during early winter and expected pH decrease (acidification) effects

Seawater samples from different depths of eight stations along the Red Sea coast of Yemen were collected during early winter for the determinations of the temperature, salinity, pH value and total alkalinity profiles. The seawater surface temperature at 100 m) it ranged from 21.7 to 22.1 °C. The salinities were found to range from 36.32 to 37.36‰ at surface seawaters and from 40.27 to 40.35‰ at >100 m depths. The pH ranged from 7.983 to 8.198 at surface seawater and from 7.960 to 8.052 at deeper layers. The total alkalinities were found to range from 2.3268 to 3.6159 meq kg−1 at surface layers and from 2.4082 to 2.9659 meq kg−1 in seawater layers deeper than 100 m. The results showed that the surface seawater layers were several-fold supersaturated with respect to both calcite and aragonite, where the percent degree of saturation values ranged from 511 to 852% with respect to calcite and from 340 to 567% with respect to aragonite. At >100 m depth the percent degree of saturation ranged from 327% to 396% and from 221% to 268% with respect to calcite and aragonite, respectively. The results suggest that low magnesian calcite and aragonite are likely the major carbonate solid phases formed under current saturation levels. Recent studies show that the present oceanic pH values may drop by 0.1 and 0.4 units in 50 and 200 years, respectively. Thus, a projected change of −0.1 pH unit decreases the saturation levels to 426–710% for calcite and 283–473% for aragonite in surface waters and to 286–327% for calcite and 196–221% for aragonite at >100 m depth. A drop of −0.4 pH unit decreases the calcite saturation levels of surface and deep waters to 243–406% and 155–189%, respectively, whereas the saturation levels for aragonite reduce by 184–210% for surface waters and 105–120% for deep waters. These drops will affect the morphology and mineralogy of calcium carbon deposits as well as the distribution of calcifying organisms in the region. Further studies are warranted to investigate the occurrence, distribution and mineralogy of corals and the effects of physical and chemical parameters upon their growth in the region.

Continue reading ‘Calcite and aragonite saturation levels of the Red Sea coastal waters of Yemen during early winter and expected pH decrease (acidification) effects’

Coral reef carbonate budgets and ecological drivers in the central Red Sea – a naturally high temperature and high total alkalinity environment

The structural framework provided by corals is crucial for reef ecosystem function and services, but high seawater temperatures can be detrimental to the calcification capacity of reef-building organisms. The Red Sea is very warm, but total alkalinity (TA) is naturally high and beneficial for reef accretion. To date, we know little about how such detrimental and beneficial abiotic factors affect each other and the balance between calcification and erosion on Red Sea coral reefs, i.e., overall reef growth, in this unique ocean basin. To provide estimates of present-day reef growth dynamics in the central Red Sea, we measured two metrics of reef growth, i.e., in situ net-accretion/-erosion rates (Gnet) determined by deployment of limestone blocks and ecosystem-scale carbonate budgets (Gbudget), along a cross-shelf gradient (25km, encompassing nearshore, midshore, and offshore reefs). Along this gradient, we assessed multiple abiotic (i.e., temperature, salinity, diurnal pH fluctuation, inorganic nutrients, and TA) and biotic (i.e., calcifier and epilithic bioeroder communities) variables. Both reef growth metrics revealed similar patterns from nearshore to offshore: net-erosive, neutral, and net-accretion states. The average cross-shelf Gbudget was 0.66kg CaCO3m−2yr−1, with the highest budget of 2.44kg CaCO3m−2yr−1 measured in the offshore reef. These data are comparable to the contemporary Gbudgets from the western Atlantic and Indian oceans, but lie well below optimal reef production (5–10kg CaCO3m−2yr−1) and below maxima recently recorded in remote high coral cover reef sites. However, the erosive forces observed in the Red Sea nearshore reef contributed less than observed elsewhere. A higher TA accompanied reef growth across the shelf gradient, whereas stronger diurnal pH fluctuations were associated with negative carbonate budgets. Noteworthy for this oligotrophic region was the positive effect of phosphate, which is a central micronutrient for reef building corals. While parrotfish contributed substantially to bioerosion, our dataset also highlights coralline algae as important local reef builders. Altogether, our study establishes a baseline for reef growth in the central Red Sea that should be useful in assessing trajectories of reef growth capacity under current and future ocean scenarios.

Continue reading ‘Coral reef carbonate budgets and ecological drivers in the central Red Sea – a naturally high temperature and high total alkalinity environment’

Water chemistry reveals a significant decline in coral calcification rates in the southern Red Sea

Experimental and field evidence support the assumption that global warming and ocean acidification is decreasing rates of calcification in the oceans. Local measurements of coral growth rates in reefs from various locations have suggested a decline of ~6–10% per decade since the late 1990’s. Here, by measuring open water strontium-to-alkalinity ratios along the Red Sea, we show that the net contribution of hermatypic corals to the CaCO3 budget of the southern and central Red Sea declined by ~100% between 1998 and 2015 and remained low between 2015 and 2018. Measured differences in total alkalinity of the Red Sea surface water indicate a 26 ± 16% decline in total CaCO3 deposition rates along the basin. These findings suggest that coral reefs of the southern Red Sea are under severe stress and demonstrate the strength of geochemical measurements as cost-effective indicators for calcification trends on regional scales.

Continue reading ‘Water chemistry reveals a significant decline in coral calcification rates in the southern Red Sea’

Eutrophication may compromise the resilience of the Red Sea coral Stylophora pistillata to global change


• Interactive effects of stressors are variable; coral reefs should be managed on a local scale in accordance with local data.
• Additive effects of nutrients and global stressors result in changes in coral symbionts leading to shifts in overall health.
• Gulf of Aqaba corals may be resilient to OA and warming, yet a rise in nutrients would severely impede the reef.


Environmental stressors are adversely affecting coral reef ecosystems. There is ample evidence that scleractinian coral growth and physiology may be compromised by reduced pH, and elevated temperature, and that this is exacerbated by local environmental stressors. The Gulf of Aqaba is considered a coral reef refuge from acidification and warming but coastal development and nutrient effluent may pose a local threat. This study examined the effects of select forecasted environmental changes (acidification, warming, and increased nutrients) individually and in combination on the coral holobiont Stylophora pistillata from the Gulf of Aqaba to understand how corals in a potential global climate change refugia may fare in the face of local eutrophication. The results indicate interactions between all stressors, with elevated nutrient concentrations having the broadest individual and additive impacts upon the performance of S. pistillata. These findings highlight the importance of maintaining oligotrophic conditions to secure these reefs as potential refugia.

Continue reading ‘Eutrophication may compromise the resilience of the Red Sea coral Stylophora pistillata to global change’

The Red Sea simulator: a high‐precision climate change mesocosm with automated monitoring for the long‐term study of coral reef organisms

Experimental systems that enable the controlled perturbation of environmental parameters toward future scenarios are in high demand and becoming increasingly advanced. Herein, we describe the design and assess the performance of a large‐scale, flow‐through, mesocosm system. Located in the northern Gulf of Aqaba, the Red Sea simulator (RSS) was constructed in order to expose local coral reef organisms to future ocean scenarios. Seawater temperature and pH are typically set to a delta from incoming seawater readings and thus follow the diel range. This is achieved through automated monitoring (sensor‐carrying robot) and feedback system and a remote‐controlled user interface. Up to six different temperatures and four pH scenarios can be concomitantly operated in a total of 80 experimental aquaria. In addition, the RSS currently facilitates the manipulation of light intensity, light spectra, nutrient concentration, flow, and feeding regime. Monitoring data show that the system performs well; meeting the user‐defined environmental settings. A variety of reef organisms have been housed in the system for several months. Brooding reef building and soft coral species maintained in the simulator for many months have released planulae in synchrony with field colonies. This system boasts a high degree of replication, potential for multistressor manipulation, typical physiochemical environmental variability, and remotely controlled monitoring and data acquisition. These aspects greatly enhance our ability to make ecologically relevant performance assessments in a changing world.

Continue reading ‘The Red Sea simulator: a high‐precision climate change mesocosm with automated monitoring for the long‐term study of coral reef organisms’

Coral reef carbonate budgets and ecological drivers in the naturally high temperature and high total alkalinity environment of the Red Sea

The coral structural framework is crucial for maintaining reef ecosystem function and services. Rising seawater temperatures impair the calcification capacity of reef-building organisms on a global scale, but in the Red Sea total alkalinity is naturally high and beneficial to reef growth. It is currently unknown how beneficial and detrimental factors affect the balance between calcification and erosion, and thereby overall reef growth, in the Red Sea. To provide estimates of present-day carbonate budgets and reef growth dynamics in the central Red Sea, we measured in situ net-accretion and net-erosion rates (Gnet) by deployment of limestone blocks to estimate census-based carbonate budgets (Gbudget) in four reef sites along a cross-shelf gradient (25 km). In addition, we assessed abiotic (i.e., temperature, inorganic nutrients, and carbonate system variables) and biotic (i.e., calcifier and bioeroder abundances) variables. Our data show that aragonite saturation states (Ω = 3.65–4.20) were in the upper range compared to the chemistry of other tropical reef sites. Further, Gnet and Gbudget encompassed positive (offshore) and negative (midshore-lagoon and exposed nearshore site) carbonate budgets. Notably, Gbudget maxima were lower compared to reef growth from undisturbed Indian Ocean reefs, but erosive forces for Red Sea reefs were not as strong as observed elsewhere. In line with this, a comparison with recent historical data from the northern Red Sea suggests that overall reef growth in the Red Sea has remained similar since 1995. When assessing reef sites across the shelf gradient, AT correlated well and positive with reef growth (ρ = 0.9), while temperature (ρ = −0.7), pH variation (ρ = −0.8), and pCO2 (ρ = −0.8) were weaker negative correlates. Noteworthy for this oligotrophic sea was the positive effect of PO43− (ρ = 0.7) on reef growth. In the best-fitting distance-based linear model, AT explained about 64 % of Gbudget. Interestingly, parrotfish abundances added up to 78 % of the explained variation, further corroborating recent studies that highlight the importance of parrotfish to reef ecosystem functioning. Our study provides a baseline for reef growth in the central Red Sea that will be particularly useful in assessing future trajectories of reef growth capacities under current and future ocean warming and acidification scenarios.

Continue reading ‘Coral reef carbonate budgets and ecological drivers in the naturally high temperature and high total alkalinity environment of the Red Sea’

Ocean acidification in the Middle East and North African region

After examining the current state of knowledge about ocean acidification in Middle East and North African (MENA) countries, we model the socio-economic impacts of disasters, ocean acidification and ecological risk. We use Extreme Value Theory and Peak Over Threshold concept to define the critical threshold point for ocean pH value as an Ornstein-Uhlenbeck process, initially with Gaussian noise. We define the benchmark pH based on time series observations which exhibit moderate to large variations and use Monte Carlo simulations and also model non-Gaussian cases to examine the probability of disasters.

Continue reading ‘Ocean acidification in the Middle East and North African region’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,428,460 hits


Ocean acidification in the IPCC AR5 WG II

OUP book