Posts Tagged 'communityMF'

Predator prey interactions between predatory gastropod Reishia clavigera, barnacle Amphibalanus amphitrite amphitrite and mussel Brachidontes variabilis under ocean acidification

Since the response to ocean acidification is species specific, differences in responses between predator and prey will alter their interactions, hence affect the population dynamics of both species. Changes in predator prey interactions between a predatory muricid gastropod Reishia clavigera and its prey, the barnacle Amphibalanus amphitrite amphitrite and mussel Brachidontes variabilis under three pCO2 levels (380, 950, and 1250 μatm) were investigated. The searching time for barnacles increased and the ability to locate them decreased at higher pCO2 levels. The movement speed and the prey consumption rate, however, were independent of pCO2. There was no preference towards either B. variabilis or A. amphitrite amphitrite regardless of pCO2. Exposure experiments involving multiple generations are suggested to assess transgenerational effects of ocean acidification and the potential compensation responses before any realistic predictions on the long term changes of population dynamics of the interacting species can be made.

Continue reading ‘Predator prey interactions between predatory gastropod Reishia clavigera, barnacle Amphibalanus amphitrite amphitrite and mussel Brachidontes variabilis under ocean acidification’

Algal density mediates the photosynthetic responses of a marine macroalga Ulva conglobata (Chlorophyta) to temperature and pH changes

Highlights

• Increased algal densities reduce photosynthesis and respiration of Ulva conglobata.

• Algal density mediates the interactive effect of increased temperature and lowered pH.

• Altered temperature and pH oppositely affect photosynthetic rate and saturation light.

Abstract

Growing of macroalgae increases their biomass densities in natural habitats. To explore how the altered algal density impacts their photosynthetic responses to changes of environmental factors, we compared the photosynthesis versus irradiance characteristics of a marine green macroalga Ulva conglobata under low [2.0 g fresh weight (FW) L−1], medium (6.0 g FW L−1) and high biomass densities (12.0 g FW L−1), and under a matrix of temperatures (20, 25, 30 and 35 °C) and pH levels (7.8, 8.2 and 8.6). Increased algal densities decreased the photosynthetic O2 evolution rate among all combined temperature and pH treatments, in parallel with the decrease of light-utilizing efficiency (α, the initial slope) and maximum photosynthetic rate (Pmax) and the increase of light saturation point (EK). Rising temperature interacted with lowered pH to increase the α under low but not under high algal densities. Rising temperature increased the Pmax and decreased the EK under low algal density, but not under high density. Lowered pH promoted the Pmax and EK under all three algal densities. The increased temperature enhanced the dark respiration (Rd) and light compensation point (EC), while the altered pH showed a limited effect. Moreover, the increased algal density reduced the Rd, and had a limited effect on the EC. In addition, our results indicate that changing algal densities caused the complex photophysiological changes in responses to the temperature and pH changes, and these complex responses resolved into a close relation between Rd and Pmax across the matrix of temperatures and pH levels.

Continue reading ‘Algal density mediates the photosynthetic responses of a marine macroalga Ulva conglobata (Chlorophyta) to temperature and pH changes’

Experimental acidification increases susceptibility of Mercenaria mercenaria to infection by Vibrio species

Highlights

• Clams in high pCO2/low pH were more susceptible to infection by pathogenic Vibrios.

• Growth and abundance of Vibrio spp. were greater under high pCO2/low pH.

• Clams reared under high pCO2/low pH seemed to have a broad tolerance range for pH.

• Long-term effect of acidification and susceptibility to vibriosis is understudied.

Abstract

Ocean acidification alters seawater carbonate chemistry, which can have detrimental impacts for calcifying organisms such as bivalves. This study investigated the physiological cost of resilience to acidification in Mercenaria mercenaria, with a focus on overall immune performance following exposure to Vibrio spp. Larval and juvenile clams reared in seawater with high pCO2 (∼1200 ppm) displayed an enhanced susceptibility to bacterial pathogens. Higher susceptibility to infection in clams grown under acidified conditions was derived from a lower immunity to infection more so than an increase in growth of bacteria under high pCO2. A reciprocal transplant of juvenile clams demonstrated the highest mortality amongst animals transplanted from low pCO2/high pH to high pCO2/low pH conditions and then exposed to bacterial pathogens. Collectively, these results suggest that increased pCO2 will result in immunocompromised larvae and juveniles, which could have complex and pernicious effects on hard clam populations.

Continue reading ‘Experimental acidification increases susceptibility of Mercenaria mercenaria to infection by Vibrio species’

Antioxidant responses of triangle sail mussel Hyriopsis cumingii exposed to harmful algae Microcystis aeruginosa and high pH

Highlights

• The comprehensive effects of toxic cyanobacteria and high pH on mussels were assessed.

• Interaction between cyanobacteria and high pH on physiological indicator were found.

• Compare to high pH, toxic M. aeruginosa induce more severe oxidative stress response.

• Toxic algae or high pH exposure history showed latent effects on Hyriopsis cumingii.

Abstract

In lakes and reservoirs, harmful algal blooms and high pH have been deemed to be two important stressors related to eutrophication, especially in the case of CO2 depletion caused by dense blooms. However, the effects of these stressors on the economically important shellfish that inhabit these waters are still not well-understood. This study evaluated the combined effects of the harmful algae Microcystis aeruginosa (0%, 50%, and 100% of total dietary dry weight) and high pH (8.0, 8.5 and 9.0) on the antioxidant responses of the triangle sail mussel H. cumingii. The mussels were exposed to algae and high pH for 14 d, followed by a 7-day depuration period. Reactive oxygen species (ROS) in the mussel hemolymph, antioxidant and detoxifying enzymes, such as glutathione-S-transferase (GST), glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and malondialdehyde (MDA) in the digestive glands were analyzed during the experimental period. GST, SOD and GPx activity levels and the content of GSH increased following exposure to toxic M. aeruginosa, whereas CAT activity was inhibited. pH showed no significant effects on the immune defense mechanisms and detoxification processes. However, a high pH could cause increased ROS and MDA levels, resulting in oxidative injury. After a 7-day depuration period, exposure to toxic M. aeruginosa or high pH resulted in latent effects for most of the examined parameters. The treatment group exposed to the highest pH (9.0) displayed an increased oxidation state compared with the other pH treatments (8.0 and 8.5) for the same concentrations of toxic M. aeruginosa. The trends observed for ROS, MDA, GPx, GST, SOD and GSH levels indicated that a high density of toxic algae could result in severe and continuous effects on mussel health.

Continue reading ‘Antioxidant responses of triangle sail mussel Hyriopsis cumingii exposed to harmful algae Microcystis aeruginosa and high pH’

Combination of ocean acidification and warming enhances the competitive advantage of Skeletonema costatum over a green tide alga, Ulva linza

Highlights

• Coculture did not affect growth rate of U. linza but decreased it for S. costatum.

• Elevated CO2 relieved the inhibitory effect of U. linza on growth of S. costatum.

• At elevated CO2, higher temperature increased the growth rate of S. costatum.

• At elevated CO2, higher temperature reduced the growth rate of U. linza.

• Coculture did not affect respiration of U. linza but stimulated it for S. costatum.

Abstract

Red tide and green tide are two common algal blooms that frequently occur in many areas in the global oceans. The algae causing red tide and green tide often interact with each other in costal ecosystems. However, little is known on how future CO2-induced ocean acidification combined with temperature variation would affect the interaction of red and green tides. In this study, we cultured the red tide alga Skeletonema costatum and the green tide alga Ulva linza under ambient (400 ppm) and future CO2 (1000 ppm) levels and three temperatures (12, 18, 24 °C) in both monoculture and coculture systems. Coculture did not affect the growth rate of U. linza but significantly decreased it for S. costatum. Elevated CO2 relieved the inhibitory effect of U. linza on the growth of S. costatum, particularly for higher temperatures. At elevated CO2, higher temperature increased the growth rate of S. costatum but reduced it for U. linza. Coculture with U. linza reduced the net photosynthetic rate of S. costatum, which was relieved by elevated CO2. This pattern was also found in Chl a content, indicating that U. linza may inhibit growth of S. costatum via harming pigment synthesis and thus photosynthesis. In monoculture, higher temperature did not affect respiration rate of S. costatum but increased it in U. linza. Coculture did not affect respiration of U. linza but stimulated it for S. costatum, which was a signal of responding to biotic and/abiotic stress. The increased growth of S. costatum at higher temperature and decreased inhibition of U. linza on S. costatum at elevated CO2 suggest that red tides may have more advantages over green tides in future warmer and CO2-enriched oceans.

Continue reading ‘Combination of ocean acidification and warming enhances the competitive advantage of Skeletonema costatum over a green tide alga, Ulva linza’

Reef dissolution : rates and mechanisms of coral dissolution by bioeroding sponges and reef communities

For coral reefs to persist, the rate of CaCO3 production must be greater than the rate of erosion to enable positive growth. Negative impacts of global change (ocean acidification and warming) and local stressors (eutrophication, overfishing) on accretion co-occur with positive effects of these changes on bioerosion capacity and chemical dissolution by excavating euendolithic organisms. This is especially relevant for reefs characterised with low calcifying rates as they will tip faster into net loss. The Caribbean reefs suffered from a decrease by up to 80% in scleractinian coral cover in the past 50 years, their configuration bears very little resemblance with reefs pre1980s, in terms of benthic composition, coral cover and structural complexity. Specifically, excavating sponges can contribute up to 90% of the total macroborer activity on coral reefs and their rates of bioerosion are positively affected by pCO2. The overarching aim of this thesis was to quantify and understand the accretion and loss terms of coral reef communities with a focus on the interactions of anthropogenic ocean acidification and eutrophication with bioerosion by coral-excavating sponges.The use of incubations was central in this piece of work. Changes in the chemical composition of the water overlying sponges and reef communities indicate the relative contribution of metabolic processes such as net calcification/dissolution and net respiration/production. However, we first used fluorescence microscopy to investigate the underlying mechanisms of CaCO3 dissolution by excavating sponges. It revealed that they promote CaCO3 dissolution by decreasing pH at the sponge/coral interface. The high [H+] at this site is achieved through delivery of low-pH vesicles by the etching cells. The enzyme carbonic anhydrase, which is responsible for significantly increasing the speed of the reversible reaction H2O+CO2↔H++HCO3−, has been shown to be associated to the sponge’s etching processes and is therefore thought to play a role in the dissolution of CaCO3. By blocking its activity whilst incubating sponges and analysing the rate of dissolution, CA was found to play an important role in speeding up protonation of HCO3− ions at the dissolution site, enabling CO2 to diffuse out of the etching area. When exposed to different ranges of ocean acidification and eutrophication, bioerosion rates increased with both variables but no synergistic relation was revealed. Incubations performed at the community level around Saba and Curacao yielded net community calcification (NCC) rates which were lower than those reported for reef flats worldwide. Still, Saba coral reefs are considered relatively pristine sites compared to the average within the wider Caribbean. Around Curaçao, incubations on reef assemblages dominated by coral yielded even lower NCC rates. Incubations of other benthic assemblages that currently characterized shallow Caribbean reef substrate (such as bioeroding sponges, benthic cyanobacterial mats and sand) all resulted in net dissolution. For both Saba and Curaçao, results suggest that reef calcification on these sites is barely able to compensate the CaCO3 losses due to dissolution from other opportunistic benthic residents. With the ongoing global and local pressures, the delicate balance between CaCO3 accretion and loss is likely to tip.

Continue reading ‘Reef dissolution : rates and mechanisms of coral dissolution by bioeroding sponges and reef communities’

Influence of the seagrass Thalassia hemprichii on coral reef mesocosms exposed to ocean acidification and experimentally elevated temperatures

Highlights

• The combined effect of OA and rising temperatures stimulated the growth of macroalgae.

• OA resulted in higher coral calcification rates when corals were co-incubated with seagrass.

• Macroalgal growth was lower in seagrass-containing mesocosms.

• Coral and macroalgal, but not seagrass, growth suffered at 31°C under OA conditions.

• Seagrass helped to stabilize the system’s metabolism in response to projected climate change stressors.

Abstract

Ocean acidification (OA) and warming currently threaten coastal ecosystems across the globe. However, it is possible that the former process could actually benefit marine plants, such as seagrasses. The purpose of this study was to examine whether the effects of the seagrass Thalassia hemprichii can increase the resilience of OA-challenged coral reef mesocosms whose temperatures were gradually elevated. It was found that shoot density, photosynthetic efficiency, and leaf growth rate of the seagrass actually increased with rising temperatures under OA. Macroalgal growth rates were higher in the seagrass-free mesocosms, but the calcification rate of the model reef coral Pocillopora damicornis was higher in coral reef mesocosms featuring seagrasses under OA condition at 25 and 28°C. Both the macroalgal growth rate and the coral calcification rate decreased in all mesocosms when the temperature was raised to 31°C under OA conditions. However, the variation in gross primary production, ecosystem respiration, and net ecosystem production in the seagrass mesocosms was lower than in seagrass-free controls, suggesting that the presence of seagrass in the mesocosms helped to stabilize the metabolism of the system in response to simulated climate change.

Continue reading ‘Influence of the seagrass Thalassia hemprichii on coral reef mesocosms exposed to ocean acidification and experimentally elevated temperatures’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,316,138 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book