Posts Tagged 'fisheries'

Effects of climate change and fishing on the Pearl River Estuary ecosystem and fisheries

Climate change poses a challenge to the management of marine ecosystems and fisheries. Estuarine ecosystems in particular are exposed to a broad range of environmental changes caused by the effects of climate change both on land and in the ocean, and such ecosystems have also had a long history of human disturbance from over-exploitation and habitat changes. In this study, we examine the effects of climate change and fishing on the Pearl River Estuary (PRE) ecosystem using Ecopath with Ecosim. Our results show that changes in net primary production and ocean warming are the dominant climatic factors impacting biomass and fisheries productivity in the PRE. Additionally, physiological changes of fishes and invertebrates that are induced by climate change were projected to be modified by trophic interactions. Overall, our study suggests that the combined effects of climate change and fishing will reduce the potential fisheries catches in the PRE. Reducing fishing efforts can reduce the impacts of climate change on selected functional groups; however, some prey fishes are expected to experience higher predation mortality and consequently decreases in biomass under low fishing intensity scenarios. Thus, our study highlights the non-linearity of the responses of estuarine ecosystems when climate change interacts with other human stressors.

Continue reading ‘Effects of climate change and fishing on the Pearl River Estuary ecosystem and fisheries’

Bridging from monitoring to solutions-based thinking: lessons from CalCOFI for understanding and adapting to marine climate change impacts

Multidisciplinary, integrated ocean observing programs provide critical data for monitoring the effects of climate change on marine ecosystems. California Cooperative Oceanic Fisheries Investigations (CalCOFI) samples along the US West Coast and is one of the world’s longest-running and most comprehensive time series, with hydrographic and biological data collected since 1949. The pairing of ecological and physical measurements across this long time series informs our understanding of how the California Current marine ecosystem responds to climate variability. By providing a baseline to monitor change, the CalCOFI time series serves as a Keeling Curve for the California Current. However, challenges remain in connecting the data collected from long-term monitoring programs with the needs of stakeholders concerned with climate change adaptation (i.e., resource managers, policy makers, and the public), including for the fisheries and aquaculture sectors. We use the CalCOFI program as a case study to ask: how can long-term ocean observing programs inform ecosystem based management efforts and create data flows that meet the needs of stakeholders working on climate change adaptation? Addressing this question and identifying solutions requires working across sectors and recognizing stakeholder needs. Lessons learned from CalCOFI can inform other regional monitoring programs around the world, including those done at a smaller scale in developing countries.

Continue reading ‘Bridging from monitoring to solutions-based thinking: lessons from CalCOFI for understanding and adapting to marine climate change impacts’

Impact of climate change and ocean acidification on ocean-based industries and society in Norway

This report presents a review of the scientific literature on how key ecosystems, ecosystem services and ocean-based industries in Norway are affected by climate change and ocean acidification today and under future scenarios. The project has also compiled knowledge on how ocean-based actions can help mitigate and reduce the magnitude of climate change, ocean acidification and environmental problems. Further possible trade-off related to ocean-based action were identified as well as how climate change and ocean acidification may potentially affect these ocean-based opportunities. Finally, the report presents published findings on possible future impacts on society and implications for policy and management.

Continue reading ‘Impact of climate change and ocean acidification on ocean-based industries and society in Norway’

Potential socioeconomic impacts from ocean acidification and climate change effects on Atlantic Canadian fisheries

Ocean acidification is an emerging consequence of anthropogenic carbon dioxide emissions. The full extent of the biological impacts are currently not entirely defined. However, it is expected that invertebrate species that rely on the mineral calcium carbonate will be directly affected. Despite the limited understanding of the full extent of potential impacts and responses there is a need to identify potential pathways for human societies to be affected by ocean acidification. Research on these social implications is a small but developing field. This research contributes to this field by using an impact assessment framework, informed by a biophysical model of future species distributions, to investigate potential impacts facing Atlantic Canadian society from potential changes in shellfish fisheries driven by ocean acidification and climate change. New Brunswick and Nova Scotia are expected to see declines in resource accessibility but are relatively socially insulated from these changes. Conversely, Prince Edward Island, along with Newfoundland and Labrador are more socially vulnerable to potential losses in fisheries, but are expected to experience relatively minor net changes in access.

Continue reading ‘Potential socioeconomic impacts from ocean acidification and climate change effects on Atlantic Canadian fisheries’

Multispecies yield and profit when exploitation rates vary spatially including the impact on mortality of ocean acidification on North Pacific crab stocks

A multi-species size-structured population dynamics model that can account for spatial structure and technical interactions between commercial fisheries was developed and applied to the snow and southern Tanner crab fisheries in the eastern Bering Sea. The model was then used as the basis for forecasts to calculate reference points related to yield and profit under the effects of ocean acidification on snow and southern Tanner crab. Stochastic projections that account for variation about the stock-recruitment relationship were undertaken for a constant F35% harvest strategy, a strategy that sets effort to maximize profit ignoring the effects of environmental variability such as ocean acidification, and the Acceptable Biological Catch control rule, which includes a reduction in fishing mortality rate when stocks are below target levels. Single- and four-area models led to similar fits to abundance and catch data, and provide similar estimates of time-trajectories of mature male biomass. The model is used to compute Maximum Sustainable Yield (MSY) and an upper bound on Maximum Economic Yield (uMEY). The effort levels that achieve MSY and uMEY were sensitive to whether a spatial or non-spatial model was used to calculate reference points and hence how technical interactions among species were accounted for. Dynamic projections based on various management strategies indicated that adopting a uMEY target level of effort leads to some robustness to the effects of ocean acidification, although similar results can be obtained using the Acceptable Biological Catch control rule, which reduces harvest rates as biomass levels decline.

Continue reading ‘Multispecies yield and profit when exploitation rates vary spatially including the impact on mortality of ocean acidification on North Pacific crab stocks’

Climatic projections of Indian Ocean during 2030, 2050, 2080 with implications on fisheries sector

Climatic projections are essential to frame resilient strategies towards futuristic impacts of climate changes on fish species and habitat. The present study projects the variations of climatic variables such as Sea Surface Temperature (SST), Sea Surface Salinity (SSS), Sea Level Rise (SLR), Precipitation (Pr), and pH along the Indian Ocean. Climate projections for 2030, 2050 and 2080 were obtained as MIROC-ESM-CHEM, CMIP5 model output for each Representative Concentration Pathways (RCP) scenarios. Each climatic variable was assessed for any change against the reference year of 2015. The RCP scenarios showed an increasing trend for SLR and SST while a decreasing trend for SSS and pH. The study focuses on assessing the impacts of projected variations on marine and aquaculture system. The climate model projections show that the SST during 2080 is likely to rise by 0.69°C for the lowest emissions scenario and 2.6°C for the highest emissions scenario. Elevated temperature disturbs the homeostasis of fish and subjects to physiological stress in the habitat resulting in mortality. These thermal limits can predict distributional changes of marine species in response to climate change. Projections showed no significant changes in the pattern of precipitation. Changes in sea level rise and sea surface salinity reduce water quality, spawning and seed availability, increased disease incidence and damage to freshwater aquaculture system by salinization of groundwater. The results show that variation in SST and pH have a potential impact on marine fisheries while SSS, SLR, Precipitation affects the aquaculture systems. The synergic effects of climatic variations are found to have negative implications on capture fisheries as well as aquaculture system and are elucidated through this work.

Continue reading ‘Climatic projections of Indian Ocean during 2030, 2050, 2080 with implications on fisheries sector’

The dynamics and impact of ocean acidification and hypoxia: insights from sustained investigations in the Northern California Current Large Marine Ecosystem

Coastal upwelling ecosystems around the world are defined by wind-generated currents that bring deep, nutrient-rich waters to the surface ocean where they fuel exceptionally productive food webs. These ecosystems are also now understood to share a common vulnerability to ocean acidification and hypoxia (OAH). In the California Current Large Marine Ecosystem (CCLME), reports of marine life die-offs by fishers and resource managers triggered research that led to an understanding of the risks posed by hypoxia. Similarly, unprecedented losses from shellfish hatcheries led to novel insights into the coastal expression of ocean acidification. Partnership for Interdisciplinary Studies of Coastal Oceans (PISCO) scientists and other researchers in the CCLME responded to the rise of OAH with new ocean observations and experiments. This work revealed insights into the expression of OAH as coupled environmental stressors, their temporal and spatial variability, and impacts on species, ecological communities, and fisheries. Sustained investigations also deepened the understanding of connections between climate change and the intensification of hypoxia, and are beginning to inform the ecological and eco-evolutionary processes that can structure responses to the progression of ocean acidification and other pathways of global change. Moreover, because the severity of the die-offs and hatchery failures and the subsequent scientific understanding combined to galvanize public attention, these scientific advances have fostered policy advances. Across the CCLME, policymakers are now translating the evolving scientific understanding of OAH into new management actions.

Continue reading ‘The dynamics and impact of ocean acidification and hypoxia: insights from sustained investigations in the Northern California Current Large Marine Ecosystem’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,336,430 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book