Posts Tagged 'fisheries'

Aiding ocean development planning with SDG relationships in small island developing states

Promoting the Sustainable Development Goals (SDGs) must contend with the often siloed nature of governance institutions, making the identification of cooperative institutional networks that promote SDG targets a priority. We develop and apply a method that combines SDG interaction analysis, which helps determine prerequisites for SDG attainment, with the transition management framework, which helps align policy goals with institutional designs. Using Aruba as a case study, we show that prioritizing increased economic benefits from sustainable marine development, including those of tourism, provides the greatest amount of direct co-benefits to other SDGs. When considering indirect co-benefits, reducing marine pollution emerged as a key supporting target to achieve SDGs. The results also show that, as in many other small island states, sustainable ocean development in Aruba depends on international partnerships to address global issues—including climate change mitigation—over which it has little control. Using SDG relationships as a guide for institutional cooperation, we find that the institutions with the most potential to coordinate action for sustainable ocean development are those that address economic, social and international policy, rather than institutions specifically focused on environmental policy. Our results provide key methodologies and insights for sustainable marine development that require coordinated actions across institutions.

Continue reading ‘Aiding ocean development planning with SDG relationships in small island developing states’

Bottom trawling threatens future climate refugia of Rhodoliths globally

Climate driven range shifts are driving the redistribution of marine species and threatening the functioning and stability of marine ecosystems. For species that are the structural basis of marine ecosystems, such effects can be magnified into drastic loss of ecosystem functioning and resilience. Rhodoliths are unattached calcareous red algae that provide key complex three-dimensional habitats for highly diverse biological communities. These globally distributed biodiversity hotspots are increasingly threatened by ongoing environmental changes, mainly ocean acidification and warming, with wide negative impacts anticipated in the years to come. These are superimposed upon major local stressors caused by direct destructive impacts, such as bottom trawling, which act synergistically in the deterioration of the rhodolith ecosystem health and function. Anticipating the potential impacts of future environmental changes on the rhodolith biome may inform timely mitigation strategies integrating local effects of bottom trawling over vulnerable areas at global scales. This study aimed to identify future climate refugia, as regions where persistence is predicted under contrasting climate scenarios, and to analyze their trawling threat levels. This was approached by developing species distribution models with ecologically relevant environmental predictors, combined with the development of a global bottom trawling intensity index to identify heavily fished regions overlaying rhodoliths. Our results revealed the importance of light, thermal stress and pH driving the global distribution of rhodoliths. Future projections showed poleward expansions and contractions of suitable habitats at lower latitudes, structuring cryptic depth refugia, particularly evident under the more severe warming scenario RCP 8.5. Our results suggest that if management and conservation measures are not taken, bottom trawling may directly threaten the persistence of key rhodolith refugia. Since rhodoliths have slow growth rates, high sensitivity and ecological importance, understanding how their current and future distribution might be susceptible to bottom trawling pressure, may contribute to determine the fate of both the species and their associated communities.

Continue reading ‘Bottom trawling threatens future climate refugia of Rhodoliths globally’

Chapter 2: The impact of climate change on oceans: physical, chemical and biological responses

The rising concentrations of carbon dioxide and other greenhouse gases have caused observed physical, chemical and biological changes in the oceans, with further changes projected over coming decades. The impact of climate change on the oceans are profound, with rapid warming in ocean hotspots combined with extreme events such as marine heatwaves changing the distribution and abundance of a wide range of marine species. Further, ocean acidification, sea level rise, and deoxygenation may have important consequences for the marine ecosystems and the ecosystem services derived from the ocean. These observed and future ocean changes are irreversible on the timescale of many centuries. As a result, management of marine resources, for both extractive (for example, fishing) and non-extractive (for example, marine tourism) will need to account for the effects of climate change. For example, changes in abundance of marine species will impact harvesting levels and ecosystem structure, while changes in species’ distribution will challenge place-based management and agreements between nations. Adaptation to some of these changes will be possible; however, without substantial reduction in greenhouse gas emissions the oceans will change and not provide the same support for human activities as currently enjoyed. The changing nature of the ocean, and the impact it may have on ecosystems and communities, represents a huge challenge to future community interactions at local, national and international scales. It also raises the possibility of active intervention in the climate system to minimize the impacts of climate change which will introduce a complex set of issues to be considered before implementing any intervention.

Continue reading ‘Chapter 2: The impact of climate change on oceans: physical, chemical and biological responses’

Effects of climate change on coastal ecosystem food webs: implications for aquaculture

Highlights

  • Food web models and scenarios were used to forecast effects of climate change.
  • Modeled bays were vulnerable to the effects of climate change.
  • In two of three study bays the ability to support bivalve aquaculture disappeared.

Abstract

Coastal ecosystems provide important ecosystem services for millions of people. Climate change is modifying coastal ecosystem food web structure and function and threatens these essential ecosystem services. We used a combination of two new and one existing ecosystem food web models and altered scenarios that are possible with climate change to quantify the impacts of climate change on ecosystem stability in three coastal bays in Maine, United States. We also examined the impact of climate change on bivalve fisheries and aquaculture. Our modeled scenarios explicitly considered the predicted effects of future climatic change and human intervention and included: 1) the influence of increased terrestrial dissolved organic carbon loading on phytoplankton biomass; 2) benthic community change driven by synergisms between climate change, historical overfishing, and increased species invasion; and 3) altered trophic level energy transfer driven by ocean warming and acidification. The effects of climate change strongly negatively influenced ecosystem energy flow and ecosystem stability and negatively affected modeled bivalve carrying capacity in each of our models along the Maine coast of the eastern United States. Our results suggest that the interconnected nature of ecosystem food webs make them extremely vulnerable to synergistic effects of climate change. To better inform fisheries and aquaculture management, the effects of climate change must be explicitly incorporated.

Continue reading ‘Effects of climate change on coastal ecosystem food webs: implications for aquaculture’

Economic impacts of ocean acidification: a meta-analysis

This paper presents the first comprehensive review and synthesis of studies that forecast economic impacts of ocean acidification. The changes in seawater chemistry resulting from increased carbon dioxide emissions, collectively known as ocean acidification, will have detrimental impacts to marine ecosystem services. Those services include wild capture fisheries, aquaculture, recreation, shoreline protection, and others. The current literature valuing expected impacts to those services is rather thin and tends to focus on mollusk harvesting and aquaculture. Despite the paucity of studies, we divide all relevant estimates into seven additively separable economic sectors to provide the first aggregate estimate of economic damages from ocean acidification at the end of this century. We perform non-parametric bootstrap to characterize the distribution of estimates within each sector and the aggregation across sectors. We also perform meta-regressions to explore whether estimates provided by these studies are generally consistent with expectations based on ocean chemistry and economic theory. We find a global average of per capita annual losses in the year 2100 between $47 and $58 and we find strong evidence that estimates are consistent with expectations given future emissions and socio-economic scenarios that underlie the original studies.

Continue reading ‘Economic impacts of ocean acidification: a meta-analysis’

The regulations of varied carbon-nitrogen supplies to physiology and amino acid contents in Gracilariopsis lemaneiformis (Gracilariales, Rhodophyta)

Highlights

  • Growth, photosynthesis, and amino acid accumulation of G. lemaneiformis increases with higher nitrogen application.

  • Application of nitrogen fertiliser maybe an effective way to increase G. lemaneiformis yield with improved nutrient quality.

  • Seawater nitrogen enrichment may alleviate the physiological stress caused by high CO2 on G. lemaneiformis in the future.

Abstract

Gracilariopsis lemaneiformis (Gracilariales, Rhodophyta) is an important economic alga in Southern China. In the present study, G. lemaneiformis thalli collected from Nan’ao Island, China, were cultured in six different treatments with three carbon supply levels (20, 400 and 1000 μatm) and two nitrogen supply levels (15 and 300 μmol L1). The thalli were used in the examination of the effects of altered carbon supply and high nitrogen content in seawater on the growth, photosynthetic characteristics and amino acid (AA) content of this farmed algal species. Regardless of nitrogen levels, the relative growth rate of G. lemaneiformis increased with CO2 supply. Decrease and increase in the carbon supply of the culture both decreased the maximum quantum yield of photosystem PS II (Fv/Fm), initial slope of the rapid light curves (ɑ), non-photochemical quenching, maximum relative electron transport rate and AA content of G. lemaneiformis thalli. Moreover, under low and high CO2 supply conditions, the growth rates, Fv/Fm, antioxidant activities (SOD, CAT and POD) and AAs of G. lemaneiformis increases with higher nitrogen application (300 μmol L1). Our results indicated that the inhibition of growth, photosynthesis, and AA accumulation of G. lemaneiformis can be alleviated by appropriately increasing the concentration of nitrogen in seawater. We suggest that during G. lemaneiformis mariculture, the appropriate application of nitrogen fertiliser may be an effective way to increase algal yield with improved nutrient quality, and seawater nitrogen enrichment may alleviate the physiological stress caused by high CO2 on G. lemaneiformis in the future.

Continue reading ‘The regulations of varied carbon-nitrogen supplies to physiology and amino acid contents in Gracilariopsis lemaneiformis (Gracilariales, Rhodophyta)’

Combining mesocosms with models to unravel the effects of global warming and ocean acidification on temperate marine ecosystems

Ocean warming and species exploitation have already caused large-scale reorganization of biological communities across the world. Accurate projections of future biodiversity change require a comprehensive understanding of how entire communities respond to global change. We combined a time-dynamic integrated food web modelling approach (Ecosim) with a community-level mesocosm experiment to determine the independent and combined effects of ocean warming and acidification, and fisheries exploitation, on a temperate coastal ecosystem. The mesocosm enabled important physiological and behavioural responses to climate stressors to be projected for trophic levels ranging from primary producers to top predators, including sharks. We show that under current-day rates of exploitation, warming and ocean acidification will benefit most species in higher trophic levels (e.g. mammals, birds, demersal finfish) in their current climate ranges, with the exception of small pelagic fish, but these benefits will be reduced or lost when these physical stressors co-occur. We show that increases in exploitation will, in most instances, suppress any positive effects of human-driven climate change, causing individual species biomass to decrease at high-trophic levels. Species diversity at the trailing edges of species distributions is likely to decline in the face of ocean warming, acidification and exploitation. We showcase how multi-level mesocosm food web experiments can be used to directly inform dynamic food web models, enabling the ecological processes that drive the responses of marine ecosystems to scenarios of global change to be captured in model projections and their individual and combined effects to be teased apart. Our approach for blending theoretical and empirical results from mesocosm experiments with computational models will provide resource managers and conservation biologists with improved tools for forecasting biodiversity change and altered ecosystem processes due to climate change.

Continue reading ‘Combining mesocosms with models to unravel the effects of global warming and ocean acidification on temperate marine ecosystems’

Evolved differences in energy metabolism and growth dictate the impacts of ocean acidification on abalone aquaculture

Ocean acidification (OA) poses a major threat to marine ecosystems and shellfish aquaculture. A promising mitigation strategy is the identification and breeding of shellfish varieties exhibiting resilience to acidification stress. We experimentally compared the effects of OA on two populations of red abalone (Haliotis rufescens), a marine mollusc important to fisheries and global aquaculture. Results from our experiments simulating captive aquaculture conditions demonstrated that abalone sourced from a strong upwelling region were tolerant of ongoing OA, whereas a captive-raised population sourced from a region of weaker upwelling exhibited significant mortality and vulnerability to OA. This difference was linked to population-specific variation in the maternal provisioning of lipids to offspring, with a positive correlation between lipid concentrations and survival under OA. This relationship also persisted in experiments on second-generation animals, and larval lipid consumption rates varied among paternal crosses, which is consistent with the presence of genetic variation for physiological traits relevant for OA survival. Across experimental trials, growth rates differed among family lineages, and the highest mortality under OA occurred in the fastest growing crosses. Identifying traits that convey resilience to OA is critical to the continued success of abalone and other shellfish production, and these mitigation efforts should be incorporated into breeding programs for commercial and restoration aquaculture.

Continue reading ‘Evolved differences in energy metabolism and growth dictate the impacts of ocean acidification on abalone aquaculture’

Resilience of cold water aquaculture: a review of likely scenarios as climate changes in the Gulf of Maine

Climate change is one of the biggest challenges facing development and continuation of sustainable aquaculture in temperate regions. We primarily consider the ecological and physical resilience of aquaculture in the Gulf of Maine (GoM), where a thriving industry includes marine algae, extensive and intensive shellfish aquaculture, and a well‐established Atlantic salmon industry, as well as the infrastructure required to support these economically important ventures. The historical record of sea surface temperature in the GoM, estimated from gridded, interpolated in situ measurements, shows considerable interannual and decade‐scale variability superimposed on an overall warming trend. Climate model projections of sea surface temperature indicate that the surface waters in the GoM could warm 0.5–3.5°C beyond recent values by the year 2100. This suggests that, while variability will continue, anomalous warmth of marine heatwaves that have been observed in the past decade could become the norm in the GoM ca. 2050, but with the most significant impacts to existing aquaculture along the southernmost region of the coast. We consider adaptations leading to aquacultural resilience despite the effects of warming, larger numbers of harmful nonindigenous species (including pathogens and parasites), acidification, sea‐level rise, and more frequent storms and storm surges. Some new species will be needed, but immediate attention to adapt existing species (e.g. preserve/define wild biodiversity, breed for temperature tolerance and incorporate greater husbandry) and aquaculture infrastructure can be successful. We predict that these measures and continued collaboration between industry, stakeholders, government and researchers will lead to sustaining a vibrant working waterfront in the GoM.

Continue reading ‘Resilience of cold water aquaculture: a review of likely scenarios as climate changes in the Gulf of Maine’

Carbonate chemistry dynamics in shellfish farming areas along the Chilean coast: natural ranges and biological implications

The increasing shellfish aquaculture requires knowledge about nearshore environmental variability to manage sustainably and create climate change adaptation strategies. We used data from mooring time series and in situ sampling to characterize oceanographic and carbonate system variability in three bivalve aquaculture areas located along a latitudinal gradient off the Humboldt Current System. Our results showed pHT <8 in most coastal sites and occasionally below 7.5 during austral spring–summer in the lower (−30°S) and central (−37°S) latitudes, related to upwelling. Farmed mussels were exposed to undersaturated (Ωarag < 1) and hypoxic (<2 ml l−1) waters during warm seasons at −37°S, while in the higher latitude (43°S) undersaturated waters were only detected during colder seasons, associated with freshwater runoff. We suggest that both Argopecten purpuratus farmed at −30°S and Mytilus chilensis farmed at −43°S may enhance their growth during summer due to higher temperatures, lower pCO2, and oversaturated waters. In contrast, Mytilus galloprovincialis farmed at 37°S grows better during spring–summer, following higher temperatures and high pCO2. This knowledge is relevant for aquaculture, but it must be improved using high-resolution time series and in situ experimentation with farmed species to aid their adaptation to climate change and ocean acidification.

Continue reading ‘Carbonate chemistry dynamics in shellfish farming areas along the Chilean coast: natural ranges and biological implications’


Subscribe to the RSS feed

Follow AnneMarin on Twitter

Archives

Powered by FeedBurner

Blog Stats

  • 1,450,965 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book