Posts Tagged 'mitigation'



Effects of CO2 enrichment on two microalgae species: a toxicity approach using consecutive generations

Highlights

• The paper addresses the potential impacts of CO2 enrichment in the marine environment.
• Two different marine microalgae species were used through four consecutive generations.
• T. chuii showed a slight adaptation through generations, in terms of metabolic activity.
• P. tricornutum was the most sensitive one with almost total growth inhibition in the fourth generation.
• The results give valuable data about the transgenerational effects of CO2 enrichment on microalgae.

Abstract

As a result of the increasing pressure provoked by anthropogenic activities, the world climate is changing and oceans health is in danger. One of the most important factors affecting the marine environment is the well-known process called ocean acidification. Also, there are other natural or anthropogenic processes that produce an enrichment of CO2 in the marine environment (CO2 leakages from Carbon Capture and Storage technologies (CCS), organic matter diagenesis, volcanic vents, etc). Most of the studies related to acidification of the marine environment by enrichment of CO2 have been focused on short-term experiments. To evaluate the effects related to CO2 enrichment, laboratory-scale experiments were performed using the marine microalgae Tetraselmis chuii and Phaeodactylum tricornutum. Three different pH values (two treatments – pH 7.4 and 6.0 – and a control – pH 8.0) were tested on the selected species across four consecutive generations. Seawater was collected and exposed to different scenarios of CO2 enrichment by means of CO2 injection. The results showed different effects depending on the species and the generation used. Effects on T. chuii were shown on cell density, chlorophyll-a and metabolic activity, however, a slight adaptation across generations was found in this last parameter. P. tricornutum was more sensitive to acidification conditions through generations, with practically total growth inhibition in the fourth one. The conclusions obtained in this work are useful to address the potential ecological risk related to acidification by enrichment of CO2 on the marine ecosystem by using consecutive generations of microalgae.

Continue reading ‘Effects of CO2 enrichment on two microalgae species: a toxicity approach using consecutive generations’

Habitat effects of macrophytes and shell on carbonate chemistry and juvenile clam recruitment, survival, and growth

Highlights

• Field experiment testing two substrate treatments as OA adaptation strategies
• Clam growth increased in absence of macrophytes, regardless of shell hash treatment.
• Neither treatment improved clam recruitment or survival.
• pH in water column was higher during the day and outside eelgrass beds.
• Added shell hash improved carbonate chemistry in sediment pore-water.

Abstract

Adverse habitat conditions associated with reduced seawater pH often, but not always, negatively affect bivalves in early life history phases. Improving our understanding of how habitat-specific parameters affect clam recruitment, survival, and growth could assist natural resource managers and researchers in developing appropriate adaptation strategies for increasingly acidified nearshore ecosystems. Two proposed adaptation strategies, the presence of macrophytes and addition of shell hash, have the potential to raise local seawater pH and aragonite saturation state and, therefore, to improve conditions for shell-forming organisms. This field study examined the effects of these two substrate treatments on biological and geochemical response variables. Specifically, we measured (1) recruitment, survival, and growth of juvenile clams (Ruditapes philippinarum) and (2) local water chemistry at Fidalgo Bay and Skokomish Delta, Washington, USA, in response to experimental manipulations. Results showed no effect of macrophyte or shell hash treatment on recruitment or survival of R. philippinarum. Contrary to expectations, clam growth was significantly greater in the absence of macrophytes, regardless of the presence or absence of shell hash. Water column pH was higher outside the macrophyte bed than inside at Skokomish Delta and higher during the day than at night at Fidalgo Bay. Additionally, pore-water pH and aragonite saturation state were higher in the absence of macrophytes and the presence of shell. Based on these results, we propose that with increasingly corrosive conditions shell hash may help provide chemical refugia under future ocean conditions. Thus, we suggest adaptation strategies target the use of shell hash and avoidance of macrophytes to improve carbonate chemistry conditions and promote clam recruitment, survival, and growth.

Continue reading ‘Habitat effects of macrophytes and shell on carbonate chemistry and juvenile clam recruitment, survival, and growth’

Carbon sequestration via enhanced weathering of peridotites and basalts in seawater

Highlights

• Enhanced weathering of ultrafine peridotites and basalts in seawater was studied.
• Open system experiments were performed in batch reactors at ambient conditions.
• Peridotites induced CO2 drawdown directly from the atmosphere via mineralization.
• The basalt did not yield any significant changes in seawater composition.
• The precipitation of sepiolite could reduce the carbon sequestration efficiency.

Abstract

Enhanced weathering of mafic and ultramafic rocks has been suggested as a carbon sequestration strategy for the mitigation of climate change. This study was designed to assess the potential drawdown of CO2 directly from the atmosphere by the enhanced weathering of peridotites and basalts in seawater. Pulverized, and ball milled dunite, harzburgite and olivine basalt were reacted in artificial seawater in batch reactor systems open to the atmosphere for two months. The results demonstrate that the ball-milled dunite and harzburgite changed dramatically the chemical composition of the seawater within a few hours, inducing CO2 drawdown directly from the atmosphere and ultimately the precipitation of aragonite. In contrast, pulverized but unmilled rocks, and the ball-milled basalt, did not yield any significant changes in seawater composition during the two-month experiments. As much as 10 wt percent aragonite was precipitated during the experiment containing the finest-grained dunite. These results demonstrate that ball milling can substantially enhance the weathering rate of peridotites in marine environments, promoting the permanent storage of CO2 as environmentally benign carbonate minerals through enhanced weathering. The precipitation of Mg-silicate clay minerals, however, could reduce the efficiency of this carbon sequestration approach over longer timescales.

 

Continue reading ‘Carbon sequestration via enhanced weathering of peridotites and basalts in seawater’

Negative-CO2-emissions ocean thermal energy conversion

Highlights

•  OTEC can generate electricity while cooling the surface ocean/atmosphere.
•  Vertically transporting fluids other than seawater increases OTEC efficiency.
•  Conversion of OTEC electricity to H2 via electrolysis allows energy transport onshore.
•  Modifying electrolysis to consume CO2 produces negative-CO2-emissions OTEC, NEOTEC.
•  CO2 is converted to ocean alkalinity for carbon storage and for acidity mitigation.

Abstract

Conversion of the ocean’s vertical thermal energy gradient to electricity via Ocean Thermal Energy Conversion (OTEC) has been demonstrated at small scales over the past century, and represents one of the largest (and growing) potential energy sources on the planet. Here we describe how OTEC could be modified to provide a large source of CO2-emissions-negative energy while also allowing heat removal from the surface ocean, helping to directly counter ocean/atmosphere warming. Most OTEC energy potential is far offshore, thus the conversion of the produced electricity to a chemical energy carrier such as H2 or derivatives is required. This can be achieved by employing a method of electrochemically generating H2 that also consumes CO2, converting the carbon to a common form of ocean alkalinity. The addition of such alkalinity to the ocean would provide high-capacity carbon storage while countering the chemical and biological effects of ocean acidification. For each gigawatt (GW) of continuous electric power generated over one year by the preceding negative-emissions OTEC (NEOTEC), roughly 13 GW of surface ocean heat would be directly removed to deep water, while producing 1.3 × 105 tonnes of H2/yr (avoiding 1.1 × 106 tonnes of CO2 emissions/yr), and consuming and storing (as dissolved mineral bicarbonate) approximately 5 × 106 tonnes CO2/yr. The preceding CO2 mitigation would result in an indirect planetary cooling effect of about 2.6 GW. Such negative-emissions energy production and global warming mitigation would avoid the biophysical and land use limitations posed by methods that rely on terrestrial biology.

Continue reading ‘Negative-CO2-emissions ocean thermal energy conversion’

Expected limits on the ocean acidification buffering potential of a temperate seagrass meadow

Ocean acidification threatens many marine organisms, especially marine calcifiers. The only global‐scale solution to ocean acidification remains rapid reduction in CO2 emissions. Nevertheless, interest in localized mitigation strategies has grown rapidly because of the recognized threat ocean acidification imposes on natural communities, including ones important to humans. Protection of seagrass meadows has been considered as a possible approach for localized mitigation of ocean acidification due to their large standing stocks of organic carbon and high productivity. Yet much work remains to constrain the magnitudes and timescales of potential buffering effects from seagrasses. We developed a biogeochemical box model to better understand the potential for a temperate seagrass meadow to locally mitigate the effects of ocean acidification. Then we parameterized the model using data from Tomales Bay, an inlet on the coast of California, USA which supports a major oyster farming industry. We conducted a series of month‐long model simulations to characterize processes that occur during summer and winter. We found that average pH in the seagrass meadows was typically within 0.04 units of the pH of the primary source waters into the meadow, although we did find occasional periods (hours) when seagrass metabolism may modify the pH by up to ±0.2 units. Tidal phasing relative to the diel cycle modulates localized pH buffering within the seagrass meadow such that maximum buffering occurs during periods of the year with midday low tides. Our model results suggest that seagrass metabolism in Tomales Bay would not provide long‐term ocean acidification mitigation. However, we emphasize that our model results may not hold in meadows where assumptions about depth‐averaged net production and seawater residence time within the seagrass meadow differ from our model assumptions. Our modeling approach provides a framework that is easily adaptable to other seagrass meadows in order to evaluate the extent of their individual buffering capacities. Regardless of their ability to buffer ocean acidification, seagrass meadows maintain many critically important ecosystem goods and services that will be increasingly important as humans increasingly affect coastal ecosystems.

Continue reading ‘Expected limits on the ocean acidification buffering potential of a temperate seagrass meadow’

Enhanced rates of regional warming and ocean acidification after termination of large‐scale ocean alkalinization

Termination effects of large‐scale Artificial Ocean Alkalinization (AOA) have received little attention because AOA was assumed to pose low environmental risk. With the Max‐Planck‐Institute Earth System Model, we use emission‐driven AOA simulations following the Representative Concentration Pathway 8.5 (RCP8.5). We find that after termination of AOA warming trends in regions of the Northern hemisphere become ∼50% higher than those in RCP8.5 with rates similar to those caused by termination of solar geoengineering over the following three decades after cessation (up to 0.15 K/year). Rates of ocean acidification after termination of AOA outpace those in RCP8.5. In warm shallow regions where vulnerable coral reefs are located, decreasing trends in surface pH double (0.01 units/year) and the drop in the carbonate saturation state (Ω) becomes up to one order of magnitude larger (0.2 units/year). Thus, termination of AOA poses higher risks to biological systems sensitive to fast‐paced environmental changes than previously thought.

Continue reading ‘Enhanced rates of regional warming and ocean acidification after termination of large‐scale ocean alkalinization’

National environmental limits and footprints based on the Planetary Boundaries framework: the case of Switzerland

Highlights

• Planetary Boundaries: going from bio-physical to related socio-economic indicators.
• Setting limits at country level considering the role of countries and people needs.
• Limits and footprints are computed for the world and for a case study: Switzerland.
• Global priorities: Climate Change, Ocean Acidification, Biodiversity, Nitrogen Loss.

Abstract

The Planetary Boundaries concept is a recent scientific framework, which identifies a set of nine bio-physical limits of the Earth system that should be respected in order to maintain conditions favourable to further human development. Crossing the suggested limits would lead to drastic changes in human society by disrupting some of the ecological bases that underlie the current socio-economic system. As a contribution to the international discussion, and using the case of Switzerland, this study proposes a methodology to apply the Planetary Boundaries concept on the national level. Taking such an approach allows to assess the environmental sustainability of the socio-economic activities (e.g. consumption) by the inhabitants of a country in a long-term global perspective, assuming that past, current and future populations on Earth have similar “rights” to natural resources. The performance of countries is evaluated by comparing the country limits with their environmental footprints according to a consumption-based perspective. An approach was developed to: i) better characterise the Planetary Boundaries and understand which limits can effectively be currently quantified; ii) identify related socio-economic indicators for which both country limits and footprints can be computed; iii) compute values for limits, footprints and performances (at global and country level); and iv) suggest priorities for action based on the assessment of global and national performances. It was found that Switzerland should, as a priority, act on its footprints related to Climate Change, Ocean Acidification, Biodiversity Loss and Nitrogen Loss. The methodology developed herein can be applied to the analysis of other countries or territories, as well as extended to analyse specific economic sectors.

Continue reading ‘National environmental limits and footprints based on the Planetary Boundaries framework: the case of Switzerland’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,212,082 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book