Posts Tagged 'zooplankton'

Impact of ocean acidification on the biogeochemistry and meiofaunal assemblage of carbonate-rich sediments: results from core incubations (Bay of Villefranche, NW Mediterranean Sea)


• A sediment incubation experiment to assess the effect of ocean acidification
• Porewater concentration gradients and sediment-water fluxes (DIC, TA, pH, Ca2+, O2)
• Ocean acidification impacts early diagenesis in carbonate-rich sediments.
• CaCO3 dissolution and the TA release may increase the buffering capacity of bottom water.


Marine sediments are an important carbonate reservoir whose partial dissolution could buffer seawater pH decreases in the water column as a consequence of anthropogenic CO2 uptake by the ocean. This study investigates the impact of ocean acidification on the carbonate chemistry at the sediment-water interface (SWI) of shallow-water carbonate sediments. Twelve sediment cores were sampled at one station in the Bay of Villefranche (NW Mediterranean Sea). Four sediment cores were immediately analyzed in order to determine the initial distribution (T0) of dissolved inorganic carbon (DIC), total alkalinity (TA), pH and dissolved oxygen (O2) in the porewaters and to quantify sediment-water fluxes. Four other cores were kept submerged in the laboratory for 25 days with ambient seawater (pHT = 8.12) and the remaining four cores were incubated with acidified seawater (average pH offset of −0.68). This acidification experiment was carried out in an open-flow system, in the dark and at in-situ temperature (15 °C). Every three days, sediment-water fluxes (DIC, TA, pH, O2 and nutrients) were determined using a whole core 12-h incubation technique. Additionally, vertical O2 and pH microprofiles were regularly recorded in the first 2 cm of the sediment during the entire experiment. At the end of the experiment, TA, DIC and Ca2+ concentrations were analyzed in the porewaters and the abundance and taxonomic composition of meiofaunal organisms were assessed. The saturation states of the porewaters with respect to calcite and aragonite were over-saturated but under-saturated with respect to 12 mol% Mg-calcite, in both acidified and non-acidified treatments. The sediment-water fluxes of TA and DIC increased in the acidified treatment, likely as a consequence of enhanced carbonate dissolution. In contrast, the acidification of the overlying water did not significantly affect the O2 and nutrients fluxes at the SWI. Meiofaunal abundance decreased in both treatments over the duration of the experiment, but the organisms seemed unaffected by the acidification. Our results demonstrate that carbonate dissolution increased under acidified conditions but other parameters, such as microbial redox processes, were apparently not affected by the pH decrease, at least during the duration of our experiment. The dissolution of sedimentary carbonates and the associated release of TA may potentially buffer bottom water, depending on the intensity of the TA flux, the TA/DIC ratio, vertical mixing and, therefore, the residence time of bottom water. Under certain conditions, this process may mitigate the effect of ocean acidification on benthic ecosystems.

Continue reading ‘Impact of ocean acidification on the biogeochemistry and meiofaunal assemblage of carbonate-rich sediments: results from core incubations (Bay of Villefranche, NW Mediterranean Sea)’

Oxidative stress and antioxidant defense responses in Acartia copepods in relation to environmental factors

On a daily basis, planktonic organisms migrate vertically and thus experience widely varying conditions in their physico-chemical environment. In the Gulf of Finland, these changes are larger than values predicted by climate change scenarios predicted for the next century (up to 0.5 units in pH and 5°C in temperature). In this work, we are interested in how temporal variations in physico-chemical characteristics of the water column on a daily and weekly scale influence oxidative stress level and antioxidant responses in the planktonic copepod of the genus Acartia. Responses were determined from samples collected during a two-week field survey in the western Gulf of Finland, Baltic Sea. Our results showed that GST (Glutathione-S-transferase) enzyme activity increased in the surface waters between Weeks I and II, indicating antioxidant defense mechanism activation. This is most likely due to elevating temperature, pH, and dissolved oxygen observed between these two weeks. During Week II also GSSG (oxidized glutathione) was detected, indicating that copepods responded to stressor(s) in the environment. Our results suggest that Acartia copepods seem fairly tolerant to weekly fluctuations in environmental conditions in coastal and estuarine areas, in terms of antioxidant defense and oxidative stress. This could be directly connected to a very efficient glutathione cycling system acting as antioxidant defense system for neutralizing ROS and avoiding elevated levels of LPX.

Continue reading ‘Oxidative stress and antioxidant defense responses in Acartia copepods in relation to environmental factors’

Behavioural responses of Antarctic krill (Euphausia superba) to CO2-induced ocean acidification: would krill really notice?

The Southern Ocean is expected to be significantly affected by future ocean acidification. Antarctic krill (Euphausia superba) is the key species of the Southern Ocean ecosystem. Understanding their behavioural responses to acidification is critical for assessing the impacts of ocean acidification on the ecosystem. Adult Antarctic krill reared in different holding tanks with various CO2 levels for 6 months prior to the experiments were tested for their behavioural responses to different carbon dioxide partial pressures (pCO2) (400, 1000, 1500, 2000, and 4000 μatm pCO2) in a two-channel flume. The time krill occupied either of the flume channels (with high or ambient CO2 levels) was highly variable in all tests. In most cases no significant preference to either side of the flume was found. The krill did not display any systematic discrimination to the sea water with different CO2 levels regardless of the CO2 levels that krill were acclimated for in the 6 months prior to the experiment. Poor ability to discriminate high CO2 waters may have an important implication to their life history in the future as ocean acidification rapidly progresses in parts of Southern Ocean.

Continue reading ‘Behavioural responses of Antarctic krill (Euphausia superba) to CO2-induced ocean acidification: would krill really notice?’

Exposure to CO2 influences metabolism, calcification and gene expression of the thecosome pteropod Limacina retroversa

Thecosomatous pteropods, a group of aragonite shell-bearing zooplankton, are becoming an important sentinel organism for understanding the influence of ocean acidification on pelagic organisms. These animals show vulnerability to changing carbonate chemistry conditions, are geographically widespread, and are both biogeochemically and trophically important. The objective of this study was to determine how increasing duration and severity of CO2 treatment influence the physiology of the thecosome Limacina retroversa, integrating both gene expression and organism-level (respiration and calcification) metrics. We exposed pteropods to over-saturated, near-saturated or under-saturated conditions and sampled individuals at 1, 3, 7, 14 and 21 days of exposure to test for the effect of duration. We found that calcification was affected by borderline and under-saturated conditions by week two, while respiration appeared to be more strongly influenced by an interaction between severity and duration of exposure, showing complex changes by one week of exposure. The organismal metrics were corroborated by specific gene expression responses, with increased expression of biomineralization-associated genes in the medium and high treatments throughout and complex changes in metabolic genes corresponding to both captivity and CO2 treatment. Genes associated with other physiological processes such as lipid metabolism, neural function and ion pumping had complex responses, influenced by both duration and severity. Beyond these responses, our findings detail the captivity effects for these pelagic organisms, providing information to contextualize the conclusions of previous studies, and emphasizing a need for better culturing protocols.

Continue reading ‘Exposure to CO2 influences metabolism, calcification and gene expression of the thecosome pteropod Limacina retroversa’

Influence of ocean acidification on elemental mass balances and particulate organic matter stoichiometry in natural plankton communities  

The oceanic uptake of anthropogenic CO2 leads to a gradual acidification of the ocean. Ocean acidification (OA) is known to affect marine biota from the organism to the ecosystem level but with largely unknown consequences for the cycling of key elements such as carbon, nitrogen, and phosphorus. However, the ocean’s ability to absorb anthropogenic carbon or to provide sufficient food for humankind depends on these oceanic material cycles. This doctoral dissertation thus aimed to assess the influence of OA on biogeochemical cycles of elements in natural pelagic food webs of several trophic levels (up to fish larvae) over extended time scales of weeks to months. Large-scale pelagic mesocosms (up to 75 m3 per unit) were deployed in different marine ecosystems and new methods were developed to quantify the downward flux of particulate organic matter under simulated OA. This thesis reports on the potential influence of OA on element pool partitioning and particulate organic matter stoichiometry with consequences for biogeochemical cycling of elements in the ocean. Furthermore the potential and limitations of biogeochemical measurements inside pelagic mesocosms that host entire plankton communities are elucidated.

Continue reading ‘Influence of ocean acidification on elemental mass balances and particulate organic matter stoichiometry in natural plankton communities  ‘

Food web changes under ocean acidification promote herring larvae survival

Ocean acidification—the decrease in seawater pH due to rising CO2 concentrations—has been shown to lower survival in early life stages of fish and, as a consequence, the recruitment of populations including commercially important species. To date, ocean-acidification studies with fish larvae have focused on the direct physiological impacts of elevated CO2 , but largely ignored the potential effects of ocean acidification on food web interactions. In an in situ mesocosm study on Atlantic herring (Clupea harengus) larvae as top predators in a pelagic food web, we account for indirect CO2 effects on larval survival mediated by changes in food availability. The community was exposed to projected end-of-the-century CO2 conditions (~760 µatm pCO2 ) over a period of 113 days. In contrast with laboratory studies that reported a decrease in fish survival, the survival of the herring larvae in situ was significantly enhanced by 19 ± 2%. Analysis of the plankton community dynamics suggested that the herring larvae benefitted from a CO2 -stimulated increase in primary production. Such indirect effects may counteract the possible direct negative effects of ocean acidification on the survival of fish early life stages. These findings emphasize the need to assess the food web effects of ocean acidification on fish larvae before we can predict even the sign of change in fish recruitment in a high-CO2 ocean.

Continue reading ‘Food web changes under ocean acidification promote herring larvae survival’

Early life stages of Northern shrimp (Pandalus borealis) are sensitive to fish feed containing the anti-parasitic drug diflubenzuron


• Diflubenzuron is used in salmon aquaculture to remove parasitic lice.
• Salmon feed containing diflubenzuron increased mortality of shrimp larvae.
• Additive effects of diflubenzuron and ocean acidification/warming on mortality.
• More serious sublethal effects of diflubenzuron under future climate conditions.
• Use of diflubenzuron in salmon farms is a threat to non-target crustaceans.


Increasing use of fish feed containing the chitin synthesis inhibiting anti-parasitic drug diflubenzuron (DFB) in salmon aquaculture has raised concerns over its impact on coastal ecosystems. Larvae of Northern shrimp (Pandalus borealis) were exposed to DFB medicated feed under Control conditions (7.0 °C, pH 8.0) and under Ocean Acidification and Warming conditions (OAW, 9.5 °C and pH 7.6). Two weeks’ exposure to DFB medicated feed caused significantly increased mortality. The effect of OAW and DFB on mortality of shrimp larvae was additive; 10% mortality in Control, 35% in OAW, 66% in DFB and 92% in OAW + DFB. In OAW + DFB feeding and swimming activity were reduced for stage II larvae and none of the surviving larvae developed to stage IV. Two genes involved in feeding (GAPDH and PRLP) and one gene involved in moulting (DD9B) were significantly downregulated in larvae exposed to OAW + DFB relative to the Control. Due to a shorter intermoult period under OAW conditions, the OAW + DFB larvae were exposed throughout two instead of one critical pre-moult period. This may explain the more serious sub-lethal effects for OAW + DFB than DFB larvae. A single day exposure at 4 days after hatching did not affect DFB larvae, but high mortality was observed for OAW + DFB larvae, possibly because they were exposed closer to moulting. High mortality of shrimp larvae exposed to DFB medicated feed, indicates that the use of DFB in salmon aquaculture is a threat to crustacean zooplankton.

Continue reading ‘Early life stages of Northern shrimp (Pandalus borealis) are sensitive to fish feed containing the anti-parasitic drug diflubenzuron’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,083,817 hits


Ocean acidification in the IPCC AR5 WG II

OUP book