Posts Tagged 'zooplankton'

Degradation of internal organic matter is the main control on pteropod shell dissolution after death

The potential for preservation of thecosome pteropods is thought to be largely governed by the chemical stability of their delicate aragonitic shells in seawater. However, sediment trap studies have found that significant carbonate dissolution can occur above the carbonate saturation horizon. Here we present the results from experiments conducted on two cruises to the Scotia Sea to directly test whether the breakdown of the organic pteropod body influences shell dissolution. We find that, on the timescales of three to thirteen days, the oxidation of organic matter within the shells of dead pteropods is a stronger driver of shell dissolution than the saturation state of seawater. Three to four days after death, shells became milky white and nano‐SEM images reveal smoothing of internal surface features and increased shell porosity, both indicative of aragonite dissolution. These findings have implications for the interpretation of the condition of pteropod shells from sediment traps and the fossil record, as well as for understanding the processes controlling particulate carbonate export from the surface ocean.

Continue reading ‘Degradation of internal organic matter is the main control on pteropod shell dissolution after death’

Systematic review and meta-analysis toward synthesis of thresholds of ocean acidification impacts on calcifying pteropods and interactions with warming

Interpreting the vulnerability of pelagic calcifiers to ocean acidification (OA) is enhanced by an understanding of their critical thresholds and how these thresholds are modified by other climate change stressors (e.g., warming). To address this need, we undertook a three-part data synthesis for pteropods, one of the calcifying zooplankton group. We conducted the first meta-analysis and threshold analysis of literature characterizing pteropod responses to OA and warming by synthetizing dataset comprising of 2,097 datapoints. Meta-analysis revealed the extent to which responses among studies conducted on differing life stages and disparate geographies could be integrated into a common analysis. The results demonstrated reduced calcification, growth, development, and survival to OA with increased magnitude of sensitivity in the early life stages, under prolonged duration, and with the concurrent exposure of OA and warming, but not species-specific sensitivity. Second, breakpoint analyses identified OA thresholds for several endpoints: dissolution (mild and severe), calcification, egg development, shell growth, and survival. Finally, consensus by a panel of pteropod experts was used to verify thresholds and assign confidence scores for five endpoints with a sufficient signal: noise ratio to develop life-stage specific, duration-dependent thresholds. The range of aragonite saturation state from 1.5–0.9 provides a risk range from early warning to lethal impacts, thus providing a rigorous basis for vulnerability assessments to guide climate change management responses, including an evaluation of the efficacy of local pollution management. In addition, meta-analyses with OA, and warming shows increased vulnerability in two pteropod processes, i.e., shell dissolution and survival, and thus pointing toward increased threshold sensitivity under combined stressor effect.

Continue reading ‘Systematic review and meta-analysis toward synthesis of thresholds of ocean acidification impacts on calcifying pteropods and interactions with warming’

Analyzing the impacts of elevated-CO2 levels on the development of a subtropical zooplankton community during oligotrophic conditions and simulated upwelling

Ocean acidification (OA) is affecting marine ecosystems through changes in carbonate chemistry that may influence consumers of phytoplankton, often via trophic pathways. Using a mesocosm approach, we investigated OA effects on a subtropical zooplankton community during oligotrophic, bloom, and post-bloom phases under a range of different pCO2 levels (from ∼400 to ∼1480 μatm). Furthermore, we simulated an upwelling event by adding 650 m-depth nutrient-rich water to the mesocosms, which initiated a phytoplankton bloom. No effects of pCO2 on the zooplankton community were visible in the oligotrophic conditions before the bloom. The zooplankton community responded to phytoplankton bloom by increased abundances in all treatments, although the response was delayed under high-pCO2 conditions. Microzooplankton was dominated by small dinoflagellates and aloricate ciliates, which were more abundant under medium- to high-pCO2 conditions. The most abundant mesozooplankters were calanoid copepods, which did not respond to CO2 treatments during the oligotrophic phase of the experiment but were found in higher abundance under medium- and high-pCO2 conditions toward the end of the experiment, most likely as a response to increased phyto- and microzooplankton standing stocks. The second most abundant mesozooplankton taxon were appendicularians, which did not show a response to the different pCO2 treatments. Overall, CO2 effects on zooplankton seemed to be primarily transmitted through significant CO2 effects on phytoplankton and therefore indirect pathways. We conclude that elevated pCO2 can change trophic cascades with significant effects on zooplankton, what might ultimately affect higher trophic levels in the future.

Continue reading ‘Analyzing the impacts of elevated-CO2 levels on the development of a subtropical zooplankton community during oligotrophic conditions and simulated upwelling’

Ocean acidification regulates the activity, community structure and functional potential of heterotrophic bacterioplankton in an oligotrophic gyre

Ocean acidification (OA), a consequence of increased global carbon dioxide (CO2) emissions, is considered a major threat to marine ecosystems. Its effects on bacterioplankton activity, diversity and community composition have received considerable attention. However, the direct impact of OA on heterotrophic bacterioplankton is often masked by the significant response of phytoplankton due to the close coupling of heterotrophic bacterioplankton and autotrophs. Here, we investigated the responses of a heterotrophic bacterioplankton assemblage to high pCO2 (790 ppm) treatment in warm tropical western Pacific waters by conducting a microcosm experiment in dark for 12 days. Heterotrophic bacterioplankton abundance and production were enhanced by OA over the first 6 days of incubation, while the diversity and species richness were negatively affected. Bacterioplankton community composition in the high pCO2 treatment changed faster than that in the control. The molecular ecological network analysis showed that the elevated CO2changed the overall connections among the bacterial community and resulted in a simple network under high CO2 condition. Species‐specific responses to OA were observed and could be attributed to the different life strategies and to the ability of a given species to adapt to environmental conditions. In addition, high‐throughput functional gene array analysis revealed that genes related to carbon and nitrogen cycling were positively affected by acidification. Together, our findings suggest that OA has direct effects on heterotrophic bacterioplankton in a low‐latitude warm ocean and may therefore affect global biogeochemical cycles.

Continue reading ‘Ocean acidification regulates the activity, community structure and functional potential of heterotrophic bacterioplankton in an oligotrophic gyre’

Eco-physiological responses of copepods and pteropods to ocean warming and acidification

We compare physiological responses of the crustacean copepod Calanus pacificus and pelagic pteropod mollusk Limacina helicina to ocean temperatures and pH by measuring biomarkers of oxidative stress, antioxidant defences, and the activity of the respiratory electron transport system in organisms collected on the 2016 West Coast Ocean Acidification cruise in the California Current System. Copepods and pteropods exhibited strong but divergent responses in the same habitat; copepods had higher oxygen-reactive absorbance capacity, glutathione-S-transferase, and total glutathione content. The ratio between reduced to oxidised glutathione was higher in copepods than in pteropods, indicating lower oxidative stress in copepods. Pteropods showed higher activities of glutathione reductase, catalase, and lipid peroxidation, indicating increased antioxidant defences and oxidative stress. Thus, the antioxidant defence system of the copepods has a greater capacity to respond to oxidative stress, while pteropods already face severe stress and show limited capacity to deal with further changes. The results suggest that copepods have higher adaptive potential, owing to their stronger vertical migration behaviour and efficient glutathione metabolism, whereas pteropods run the risk of oxidative stress and mortality under high CO2 conditions. Our results provide a unique dataset and evidence of stress-inducing mechanisms behind pteropod ocean acidification responses.

Continue reading ‘Eco-physiological responses of copepods and pteropods to ocean warming and acidification’

Direct and indirect effects of elevated CO2 are revealed through shifts in phytoplankton, copepod development, and fatty acid accumulation

Change in the nutritional quality of phytoplankton is a key mechanism through which ocean acidification can affect the function of marine ecosystems. Copepods play an important role transferring energy from phytoplankton to higher trophic levels, including fatty acids (FA)—essential macronutrients synthesized by primary producers that can limit zooplankton and fisheries production. We investigated the direct effects of pCO2 on phytoplankton and copepods in the laboratory, as well as the trophic transfer of effects of pCO2 on food quality. The marine cryptophyte Rhodomonas salina was cultured at 400, 800, and 1200 μatm pCO2 and fed to adult Acartia hudsonica acclimated to the same pCO2 levels. We examined changes in phytoplankton growth rate, cell size, carbon content, and FA content, and copepod FA content, grazing, respiration, egg production, hatching, and naupliar development. This single-factor experiment was repeated at 12°C and at 17°C. At 17°C, the FA content of R. salina responded non-linearly to elevated pCO2 with the greatest FA content at intermediate levels, which was mirrored in A. hudsonica; however, differences in ingestion rate indicate that copepods accumulated FA less efficiently at elevated pCO2. A. hudsonica nauplii developed faster at elevated pCO2 at 12°C in the absence of strong food quality effects, but not at 17°C when food quality varied among treatments. Our results demonstrate that changes to the nutritional quality of phytoplankton are not directly translated to their grazers, and that studies that include trophic links are key to unraveling how ocean acidification will drive changes in marine food webs.

Continue reading ‘Direct and indirect effects of elevated CO2 are revealed through shifts in phytoplankton, copepod development, and fatty acid accumulation’

Insensitivities of a subtropical productive coastal plankton community and trophic transfer to ocean acidification: results from a microcosm study

Highlights
• Lower apparent growth was observed under elevated CO2 of 1000 μatm.

• Primary production and trophic transfer were unaffected by high CO2.

• Fatty acid profiles of phyto-/zooplankton were unaffected by ocean acidification.

Abstract
Ocean acidification (OA) has potential to affect marine phytoplankton in ways that are partly understood, but there is less knowledge about how it may alter the coupling to secondary producers. We investigated the effects of OA on phytoplankton primary production, and its trophic transfer to zooplankton in a subtropical eutrophic water (Wuyuan Bay, China) under present day (400 μatm) and projected end-of-century (1000 μatm) pCO2 levels. Net primary production was unaffected, although OA did lead to small decreases in growth rates. OA had no measurable effect on micro-/mesozooplankton grazing rates. Elevated pCO2 had no effect on phytoplankton fatty acid (FA) concentrations during exponential phase, but saturated FAs increased relative to the control during declining phase. FA profiles of mesozooplankton were unaffected. Our findings show that short-term exposure of plankton communities in eutrophic subtropical waters to projected end-of-century OA conditions has little effect on primary productivity and trophic linkage to mesozooplankton.

Continue reading ‘Insensitivities of a subtropical productive coastal plankton community and trophic transfer to ocean acidification: results from a microcosm study’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,242,894 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book