Posts Tagged 'zooplankton'

Effects of temperature and food concentration on pteropod metabolism along the Western Antarctic Peninsula

Highlights

  • Measured respiration and excretion of the Antarctic pteropod Limacina.
  • Analyzed effects of future temperature and food conditions on pteropod metabolism.
  • Highest metabolism occurred under higher temperatures with less response to food.
  • Metabolic ratios of C, N, and P were all below the canonical Redfield ratio.
  • Pteropod metabolism responsive to ocean change, affecting biogeochemical cycles.

Abstract

Pteropods (pelagic snails) are abundant zooplankton in the Southern Ocean where they are important grazers of phytoplankton, prey for higher trophic levels, and sensitive to environmental change. The Western Antarctic Peninsula (WAP) is a highly dynamic and productive region that has undergone rapid warming, but little is known about how environmental changes there will affect pteropod physiology. In this study, the effects of warming seawater temperatures and shifting food availability on Limacina helicina antarctica metabolism (respiration and excretion) were determined by conducting shipboard experiments that exposed pteropods to a range of temperatures and phytoplankton (food) concentrations. Highest respiration (up to 69 μmol O2 gDW−1 h−1) and usually highest excretion rates occurred under higher temperature with more limited metabolic response to food concentration, indicating these factors do not always have an additive effect on pteropod metabolism. The proportion of dissolved organic matter (DOM) to total organic and inorganic dissolved constituents was high and was also significantly affected by shifts in temperature and food. Dissolved organic carbon, nitrogen, and phosphorus (DOC, DON, and DOP) were on average 27, 51, and 11.5% of the total C, N, and P metabolized, respectively. The proportion of total N excreted as DON and the proportion of total P excreted as DOP were significantly affected by a combination of shifting temperature and food concentrations. There were no effects of temperature or food on DOC excretion (mean 8.79 μmol C gDW−1 h−1; range 0.44 to 44) as a proportion of total C metabolized. Metabolic O2:N ratio ranged from 2 to 9 and decreased significantly with increasing temperature and food, indicating a shift toward increased protein catabolism. Metabolic ratios of C, N, and P were all below the canonical Redfield ratio, which has implications for phytoplankton nutrient uptake and bacterial production. Respiration rates at ambient conditions of other WAP pteropods, and excretion rates for Clio pyramidata, were also measured, with respiration rates ranging from 24.39 (Spongiobranchaea australis) to 28.86 (L. h. antarctica) μmol O2 gDW−1 h−1. Finally, a CO2 perturbation experiment measuring L. h. antarctica metabolism under pre-industrial and elevated dissolved pCO2 conditions showed no significant change in mean L. h. antarctica respiration or excretion rates with higher pCO2. These insights into the metabolic response of pteropods to ocean variability increase our understanding of the role of zooplankton in biogeochemical cycles and help predict future responses to climate change.

Continue reading ‘Effects of temperature and food concentration on pteropod metabolism along the Western Antarctic Peninsula’

Environmental controls on pteropod ecology and physiology along the Western Antarctic Peninsula

Pteropods (pelagic snails) are ubiquitous zooplankton in the Southern Ocean and abundant along the Western Antarctic Peninsula (WAP), one of the most rapidly warming regions on the planet. They are important prey for higher trophic levels, grazers of phytoplankton, and contribute to particulate organic and inorganic carbon export. Pteropods are heralded as bioindicators of ecosystem health due to the vulnerability of their aragonitic shells under ocean acidification conditions, which could greatly affect their abundances in the future. Despite their importance within Antarctic food webs, few studies have analyzed the effects of climate change on pteropod physiology and biogeography in the Southern Ocean. I utilized zooplankton net tows and sediment trap samples collected as part of the Palmer Antarctica Long Term Ecological Research (PAL LTER) program to determine long-term changes in pteropod biogeography and phenology (life history). I also conducted shipboard experiments on PAL LTER research cruises to analyze the effects of shifting temperature and food conditions on pteropod metabolism. Lastly, to examine WAP pteropod feeding ecology, I utilized high-throughput sequencing techniques and analyzed pteropod gut contents at an unprecedented taxonomic resolution. Pteropod populations along the WAP from 1993-2017 either remained stable (shelled pteropods) or increased (non-shelled pteropods) and were most strongly controlled by La Niña conditions the year prior, which led to warmer, ice-free waters. There was a weak relationship between pteropod abundance and carbonate chemistry, and no detectable long-term trend in carbonate chemistry parameters (i.e., aragonite saturation), thus ocean acidification is not presently a factor influencing WAP pteropod abundance. More open-water areas the year prior also increased growth rates of the shelled pteropod, Limacina helicina antarctica, and caused earlier time of appearance in the PAL LTER sediment trap. There was considerable interannual variability in the time of appearance of a new pteropod cohort, which ranged from year day 22 to 255, but no long-term, directional change in time of appearance or growth rate. The effects of warming seawater temperatures and shifting food availability on L. h. antarctica metabolism revealed that highest respiration and usually highest excretion rates occurred under higher temperatures, but the effect of food concentration was more limited. The proportion of dissolved organic matter to total organic and inorganic dissolved constituents was high and the metabolic ratios of C, N, and P were all below the canonical Redfield ratio, which can directly affect phytoplankton growth and bacterial production in the WAP. Analysis of L. h. antarctica gut contents revealed its microbiome for the first time with Mollicutes bacteria the most abundant prokaryote. Pteropods were mainly herbivorous in summer, consuming predominantly diatoms but also supplementing their diet with microzooplankton such as ciliates. My dissertation shows that pteropods along the WAP are sensitive to changes in the environment from daily to interannual time scales. These insights into the metabolic and ecologic responses of pteropods to ocean variability increase our understanding of the role of zooplankton in biogeochemical cycles and help predict future responses to climate change.

Continue reading ‘Environmental controls on pteropod ecology and physiology along the Western Antarctic Peninsula’

The challenges of detecting and attributing ocean acidification impacts on marine ecosystems

A substantial body of research now exists demonstrating sensitivities of marine organisms to ocean acidification (OA) in laboratory settings. However, corresponding in situ observations of marine species or ecosystem changes that can be unequivocally attributed to anthropogenic OA are limited. Challenges remain in detecting and attributing OA effects in nature, in part because multiple environmental changes are co-occurring with OA, all of which have the potential to influence marine ecosystem responses. Furthermore, the change in ocean pH since the industrial revolution is small relative to the natural variability within many systems, making it difficult to detect, and in some cases, has yet to cross physiological thresholds. The small number of studies that clearly document OA impacts in nature cannot be interpreted as a lack of larger-scale attributable impacts at the present time or in the future but highlights the need for innovative research approaches and analyses. We summarize the general findings in four relatively well-studied marine groups (seagrasses, pteropods, oysters, and coral reefs) and integrate overarching themes to highlight the challenges involved in detecting and attributing the effects of OA in natural environments. We then discuss four potential strategies to better evaluate and attribute OA impacts on species and ecosystems. First, we highlight the need for work quantifying the anthropogenic input of CO2 in coastal and open-ocean waters to understand how this increase in CO2 interacts with other physical and chemical factors to drive organismal conditions. Second, understanding OA-induced changes in population-level demography, potentially increased sensitivities in certain life stages, and how these effects scale to ecosystem-level processes (e.g. community metabolism) will improve our ability to attribute impacts to OA among co-varying parameters. Third, there is a great need to understand the potential modulation of OA impacts through the interplay of ecology and evolution (eco–evo dynamics). Lastly, further research efforts designed to detect, quantify, and project the effects of OA on marine organisms and ecosystems utilizing a comparative approach with long-term data sets will also provide critical information for informing the management of marine ecosystems.

Continue reading ‘The challenges of detecting and attributing ocean acidification impacts on marine ecosystems’

Oxidative stress and antioxidant defence responses in two marine copepods in a high CO2 experiment

Highlights

• Temora revealed higher oxidative stress than Calanus in response to treatment CO2

• Food and predators may have controlled the stress levels, both in fjord and experiment

• Calanus migrating deeper than Temora seems more robust against environmental fluctuations

Abstract

We collected samples for oxidative stress and antioxidants in a high CO2 mesocosm experiment for two weeks, focussing on two common crustacean copepods Calanus finmarchicus and Temora longicornis. The samples were collected during a field experiment campaign studying responses of plankton communities to future ocean acidification (OA), off the Norwegian coast south of Bergen. The main results showed that there were species-specific differences between Temora and Calanus, especially in antioxidant defences (glutathione system) and oxidative stress (lipid peroxidation and reduced:oxidised glutathione ratio). Regular monitoring of chlorophyll a and jellyfish abundances taking place during the field campaign revealed that both chl a and predators may have affected the eco-physiological response. Antioxidant and oxidative stress levels are known to respond sensitively to both the food quality and quantity and the predator pressure, apart from environmental (i.e., abiotic) changes. Calanus was more robust towards OA, perhaps due to its high tolerance to a wide range of vertical physical-chemical conditions. Both top-down and bottom-up factors seem to play a role for the outcome of copepod responses to future ocean acidification.

Continue reading ‘Oxidative stress and antioxidant defence responses in two marine copepods in a high CO2 experiment’

Chemical exposure due to anthropogenic ocean acidification increases risks for estuarine calcifiers in the Salish Sea: biogeochemical model scenarios

Ocean acidification (OA) is projected to have profound impacts on marine ecosystems and resources, especially in estuarine habitats. Here, we describe biological risks under current levels of exposure to anthropogenic OA in the Salish Sea, an estuarine system that already experiences inherently low pH and aragonite saturation state (Ωar) conditions. We used the Pacific Northwest National Laboratory and Washington State Department of Ecology Salish Sea biogeochemical model (SSM) informed by a selection of OA-related biological thresholds of ecologically and economically important calcifiers, pteropods, and Dungeness crabs. The SSM was implemented to assess current exposure and associated risk due to reduced Ωar and pH conditions with respect to the magnitude, duration, and severity of exposure below the biological thresholds in the Salish Sea in comparison to the pre-industrial era. We further investigated the individual effects of atmospheric CO2 uptake and nutrient-driven eutrophication on changes in chemical exposure since pre-industrial times. Our model predicts average decreases in Ωar and pH since pre-industrial times of about 0.11 and 0.06, respectively, in the top 100 m of the water column of the Salish Sea. These decreases predispose pelagic calcifiers to increased duration, intensity, and severity of exposure. For pteropods, present-day exposure is below the thresholds related to sublethal effects across the entire Salish Sea basin, while mortality threshold exposure occurs on a spatially limited basis. The greatest risk for larval Dungeness crabs is associated with spatially limited exposures to low calcite saturation state in the South Sound in the springtime, triggering an increase in internal dissolution. The main anthropogenic driver behind the predicted impacts is atmospheric CO2 uptake, while nutrient-driven eutrophication plays only a marginal role over spatially and temporally limited scales. Reduction of CO2 emissions can help sustain biological species vital for ecosystem functions and society.

Continue reading ‘Chemical exposure due to anthropogenic ocean acidification increases risks for estuarine calcifiers in the Salish Sea: biogeochemical model scenarios’

Multi-generational mitigating effects of ocean acidification on in vivo endpoints, antioxidant defense, DNA damage response, and epigenetic modification in an asexual monogonont rotifer

Ocean acidification (OA) is caused by changes in ocean carbon chemistry due to increased atmospheric pCO2 and is predicted to have deleterious effects on marine ecosystems. While the potential impacts of OA on many marine species have been studied, the multi-generational effects on asexual organisms remain unknown. We found that low seawater pH induced oxidative stress and DNA damage, decreasing growth rates, fecundity, and lifespans in the parental generation, whereas deleterious effects on in vivo endpoints in F1 and F2 offspring were less evident. The findings suggest multi-generational adaptive effects play a role in antioxidant abilities and other defenses mechanisms. OA-induced DNA damage, including double-strand breaks (DSBs), was fully repaired in F1 offspring of parents exposed to OA for 7 days, indicating that an adaptation mechanism may be the major driving force behind multi-generational adaptive effects. Analysis of epigenetic modification in response to OA involved examination of histone modification of DNA repair genes and a chromatin immunoprecipitation assay, as B. koreanus has no methylation pattern for CpG in its genome. We conclude that DSBs, DNA repair, and histone modification play important roles in multi-generational plasticity in response to OA in an asexual monogonont rotifer.

Continue reading ‘Multi-generational mitigating effects of ocean acidification on in vivo endpoints, antioxidant defense, DNA damage response, and epigenetic modification in an asexual monogonont rotifer’

Metabolic responses of subtropical microplankton after a simulated deep-water upwelling event suggest a possible dominance of mixotrophy under increasing CO2 levels

In the autumn of 2014, nine large mesocosms were deployed in the oligotrophic subtropical North-Atlantic coastal waters off Gran Canaria (Spain). Their deployment was designed to address the acidification effects of CO2 levels from 400 to 1,400 μatm, on a plankton community experiencing upwelling of nutrient-rich deep water. Among other parameters, chlorophyll a (chl-a), potential respiration (Φ), and biomass in terms of particulate protein (B) were measured in the microplankton community (0.7–50.0 μm) during an oligotrophic phase (Phase I), a phytoplankton-bloom phase (Phase II), and a post-bloom phase (Phase III). Here, we explore the use of the Φ/chl-a ratio in monitoring shifts in the microplankton community composition and its metabolism. Φ/chl-a values below 2.5 μL O2 h−1 (μg chl-a)−1 indicated a community dominated by photoautotrophs. When Φ/chl-a ranged higher, between 2.5 and 7.0 μL O2 h−1 (μg chl-a)−1, it indicated a mixed community of phytoplankton, microzooplankton and heterotrophic prokaryotes. When Φ/chl-a rose above 7.0 μL O2 h−1 (μg chl-a)−1, it indicated a community where microzooplankton proliferated (>10.0 μL O2 h−1 (μg chl-a)−1), because heterotrophic dinoflagellates bloomed. The first derivative of B, as a function of time (dB/dt), indicates the rate of protein build-up when positive and the rate of protein loss, when negative. It revealed that the maximum increase in particulate protein (biomass) occurred between 1 and 2 days before the chl-a peak. A day after this peak, the trough revealed the maximum net biomass loss. This analysis did not detect significant changes in particulate protein, neither in Phase I nor in Phase III. Integral analysis of Φ, chl-a and B, over the duration of each phase, for each mesocosm, reflected a positive relationship between Φ and pCO2 during Phase II [α = 230·10−5 μL O2 h−1 L−1 (μatm CO2)−1 (phase-day)−1, R2 = 0.30] and between chl-a and pCO2 during Phase III [α = 100·10−5 μg chl-a L−1 (μ atmCO2)−1 (phase-day)−1, R2 = 0.84]. At the end of Phase II, a harmful algal species (HAS), Vicicitus globosus, bloomed in the high pCO2 mesocosms. In these mesocosms, microzooplankton did not proliferate, and chl-a retention time in the water column increased. In these V. globosus-disrupted communities, the Φ/chl-a ratio [4.1 ± 1.5 μL O2 h−1 (μg chl-a)−1] was more similar to the Φ/chl-a ratio in a mixed plankton community than to a photoautotroph-dominated one.

Continue reading ‘Metabolic responses of subtropical microplankton after a simulated deep-water upwelling event suggest a possible dominance of mixotrophy under increasing CO2 levels’

High CO2 and warming affect microzooplankton food web dynamics in a Baltic Sea summer plankton community

Aquatic ecosystems face a multitude of environmental stressors, including warming and acidification. While warming is expected to have a pronounced effect on plankton communities, many components of the plankton seem fairly robust towards realistic end-of-century acidification conditions. However, interactions of the two stressors and the inclusion of further factors such as nutrient concentration and trophic interactions are expected to change this outcome. We investigated the effects of warming and high CO2 on a nutrient-deplete late summer plankton community from the Kiel Fjord, Baltic Sea, using a mesocosm setup crossing two temperatures with a gradient of CO2. Phytoplankton and microzooplankton (MZP) growth rates as well as biomass, taxonomic composition, and grazing rates of MZP were analysed. We observed effects of high CO2, warming, and their interactions on all measured parameters. The occurrence and direction of the effects were dependent on the phytoplankton or MZP community composition. In addition, the abundance of small-sized phytoplankton was identified as one of the most important factors in shaping the MZP community composition. Overall, our results indicate that an estuarine MZP community used to strong natural fluctuations in CO2 can still be affected by a moderate increase in CO2 if it occurs in combination with warming and during a nutrient-deplete post-bloom situation. This highlights the importance of including trophic interactions and seasonality aspects when assessing climate change effects on marine zooplankton communities.

Continue reading ‘High CO2 and warming affect microzooplankton food web dynamics in a Baltic Sea summer plankton community’

Combined stress of ocean acidification and warming influence survival and drives differential gene expression patterns in the Antarctic pteropod, Limacina helicina antarctica

The ecologically important thecosome pteropods in the Limacina spp. complex have recently been the focus of studies examining the impacts global change factors – e.g., ocean acidification (OA) and ocean warming (OW) – on their performance and physiology. This focus is driven by conservation concerns where the health of pteropod populations is threatened by the high susceptibility of their shells to dissolution in low aragonite saturation states associated with OA and how coupling of these stressors may push pteropods past the limits of physiological plasticity. In this manipulation experiment, we describe changes in the transcriptome of the Antarctic pteropod, Limacina helicina antarctica, to these combined stressors. The conditions used in the laboratory treatments met or exceeded those projected for the Southern Ocean by the year 2100. We made two general observations regarding the outcome of the data: (1) Temperature was more influential than pH in terms of changing patterns of gene expression, and (2) these Antarctic pteropods appeared to have a significant degree of transcriptomic plasticity to respond to acute abiotic stress in the laboratory. In general, differential gene expression was observed amongst the treatments; here, for example, transcripts associated with maintaining protein structure and cell proliferation were up-regulated. To disentangle the effects of OA and OW, we used a weighted gene co-expression network analysis to explore patterns of change in the transcriptome. This approach identified gene networks associated with OW that were enriched for transcripts proposed to be involved in increasing membrane fluidity at warmer temperatures. Together these data provide evidence that L.h.antarctica has a limited capacity to acclimate to the combined conditions of OA and OW used in this study. This reduced scope of acclimation argues for continued study of how adaptation to polar aquatic environments may limit the plasticity of present-day populations in responding to future environmental change.

Continue reading ‘Combined stress of ocean acidification and warming influence survival and drives differential gene expression patterns in the Antarctic pteropod, Limacina helicina antarctica’

Determining how biotic and abiotic variables affect the shell condition and parameters of Heliconoides inflatus pteropods from a sediment trap in the Cariaco Basin

Pteropods have been nicknamed the “canary in the coal mine” for ocean acidification because they are predicted to be among the first organisms to be affected by changing ocean chemistry. This is due to their fragile, aragonitic shells and high abundances in polar and subpolar regions where the impacts of ocean acidification are most pronounced. For pteropods to be used most effectively as indicators of ocean acidification, the biotic and abiotic factors influencing their shell formation and dissolution in the modern ocean need to be quantified and understood. Here, we measured the shell condition (i.e., the degree to which a shell has dissolved) and shell characteristics, including size, number of whorls, shell thickness, and shell volume (i.e., amount of shell material) of nearly 50 specimens of the pteropod species Heliconoides inflatus sampled from a sediment trap in the Cariaco Basin, Venezuela, over an 11-month period. The shell condition of pteropods from sediment traps has the potential to be altered at three stages: (1) when the organisms are live in the water column associated with ocean acidification, (2) when organisms are dead in the water column associated with biotic decay of organic matter and/or abiotic dissolution associated with ocean acidification, and (3) when organisms are in the closed sediment trap cup associated with abiotic alteration by the preservation solution. Shell condition was assessed using two methods: the Limacina Dissolution Index (LDX) and the opacity method. The opacity method was found to capture changes in shell condition only in the early stages of dissolution, whereas the LDX recorded dissolution changes over a much larger range. Because the water in the Cariaco Basin is supersaturated with respect to aragonite year-round, we assume no dissolution occurred during life, and there is no evidence that shell condition deteriorated with the length of time in the sediment trap. Light microscope and scanning electron microscope (SEM) images show the majority of alteration happened to dead pteropods while in the water column associated with the decay of organic matter. The most altered shells occurred in samples collected in September and October when water temperatures were warmest and when the amount of organic matter degradation, both within the shells of dead specimens and in the water column, was likely to have been the greatest.

Continue reading ‘Determining how biotic and abiotic variables affect the shell condition and parameters of Heliconoides inflatus pteropods from a sediment trap in the Cariaco Basin’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,376,305 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book