Posts Tagged 'annelids'

Marine macroinvertebrate ecosystem services under changing conditions of seagrasses and mangroves

Highlights

  • Overfishing and climate change show potential effects on MMI ES.
  • MMI regulating ES can be quantified using species richness and functional traits.
  • Digital platforms are valuable tools to retrieve data but have limitations.
  • Baseline data and information on environmental changes and MMI ES is provided.

Abstract

This study aimed to investigate the impact of changing environmental conditions on MMI ES in seagrasses and mangroves. We used data from satellite and biodiversity platforms combined with field data to explore the links between ecosystem pressures (habitat conversion, overexploitation, climate change), conditions (environmental quality, ecosystem attributes), and MMI ES (provisioning, regulation, cultural). Both seagrass and mangrove extents increased significantly since 2016. While sea surface temperature showed no significant annual variation, sea surface partial pressure CO2, height above sea level and pH presented significant changes. Among the environmental quality variables only silicate, PO4 and phytoplankton showed significant annual varying trends. The MMI food provisioning increased significantly, indicating overexploitation that needs urgent attention. MMI regulation and cultural ES did not show significant trends overtime. Our results show that MMI ES are affected by multiple factors and their interactions can be complex and non-linear. We identified key research gaps and suggested future directions for research. We also provided relevant data that can support future ES assessments.

Continue reading ‘Marine macroinvertebrate ecosystem services under changing conditions of seagrasses and mangroves’

High sclerobiont calcification in marginal reefs of the eastern tropical Pacific

Graphical abstract.

A sclerobiont is any organism capable of fouling hard substrates. Sclerobionts have recently received attention due to their notable calcium carbonate contributions to reef structures and potential to offset drops in carbonate budgets in degraded reefs. However, due to their encrusting nature, it is difficult to quantify net calcium carbonate production at the level of individual taxonomic groups, and knowledge regarding the main environmental factors that regulate their spatial distributions is limited. In addition, the material types used to create experimental substrates, their orientations, and their overall deployment times can influence settlement and the composition of the resulting communities. Thus, comparative evaluations of these variables are necessary to improve future research efforts. In this study, we used calcification accretion units (CAUs) to quantify the calcium carbonate contributions of sclerobionts at the taxonomic group level and evaluated the effects of two frequently used materials [i.e., polyvinyl chloride (PVC) and terracotta (TCT) tiles] on the recruitment and calcification of the sclerobiont community in the tropical Mexican Pacific and the Midriff Island Region of the Gulf of California over 6 and 15 months [n = 40; 5 CAUs x site (2) x deployment time (2) x material type (2)]. The net sclerobiont calcification rate (mean ± SD) reached maximum values at six months and was higher in the Mexican Pacific (2.15 ± 0.99 kg m−2 y−1) than in the Gulf of California (1.70 ± 0.67 kg m−2 y−1). Moreover, the calcification rate was slightly higher on the PVC-CAUs compared to that of the TCT-CAUs, although these differences were not consistent at the group level. In addition, cryptic microhabitats showed low calcification rates when compared to those of exposed microhabitatsCrustosecoralline algae and barnacles dominated the exposed experimental surfaces, while bryozoans, mollusks, and serpulid polychaetes dominated cryptic surfaces. Regardless of the site, deployment time, or material type, barnacles made the greatest contributions to calcimass production (between 41 and 88%). Our results demonstrate that the orientation of the experimental substrate, and the material to a lesser extent, influence the sclerobiont community and the associated calcification rate. Upwelling-induced surface nutrient levels, low pH levels, and the aragonite saturation state (ΩAr) limit the early cementation of reef-building organisms in the tropical Mexican Pacific and promote high bioerosion rates in corals of the Gulf of California. Our findings demonstrate that sclerobionts significantly contribute to calcium carbonate production even under conditions of high environmental variability.

Continue reading ‘High sclerobiont calcification in marginal reefs of the eastern tropical Pacific’

Ocean acidification modifies behaviour of shelf seabed macrofauna: a laboratory study on two ecosystem engineers, Abra alba and Lanice conchilega

The feeding activity and burrow ventilation by benthic invertebrates importantly affect the biodiversity and functioning of seafloor sediments. Here we investigated how ocean acidification can modify these behavioural activities in two common and abundant macrofaunal ecosystem engineering species in temperate continental shelf communities: the white furrow shell Abra alba and the sand mason Lanice conchilega. Using time-lapse imagery and sediment porewater hydraulic signatures we show that both species adapt their behaviour in response to predicted future pH conditions (−0.3 units). During a three-week laboratory experiment, A. alba reduced the duration per feeding event when suspension and deposit feeding (by 86 and 53%, respectively), and almost completely ceased suspension feeding under reduced seawater pH in comparison to ambient seawater pH (pH ∼ 8.2). This behavioural change reduces the intake of low pH water during feeding and respiration. L. conchilega increased its piston-pumping frequency by 30 and 52%, respectively, after one and two weeks of exposure to future pH conditions (−0.3 units) relative to ambient conditions. This change in irrigation activity suggests higher metabolic demands under low seawater pH, and also extended low water column pH conditions deeper into the seafloor. Because the distribution of other populations depends on the physicochemical setting by our focal species, we argue that the demonstrated behavioural plasticity will likely have cascading effects on seafloor diversity and functioning, highlighting the complexity of how ocean acidification, and climate change in general, will affect seafloor ecology.

Continue reading ‘Ocean acidification modifies behaviour of shelf seabed macrofauna: a laboratory study on two ecosystem engineers, Abra alba and Lanice conchilega’

Assessment of paracetamol toxic effects under varying seawater pH conditions on the marine polychaete Hediste diversicolor using biochemical endpoints

Simple Summary

Context of climate change is being widely studied, nevertheless its effects in the toxicity of other contaminants have been poorly study. Particularly, the effects of ocean acidification on the modulation of pharmaceutical absorption and consequent effects, have not been extensively addressed before. In this study, we aimed to assess the effects of ocean acidification (specifically pH values of 8.2, 7.9, and 7.6) combined with paracetamol exposure (0, 30, 60, and 120 µg/L) on the polychaeta Hediste diversicolor. To do so, specific biomarkers were measured namely (CAT), glutathione S-transferases (GSTs), acetylcholinesterase (AChE), and cyclooxygenase (COX) activities, as well as thiobarbituric acid reactive substance (TBARS), were quantified to serve as ecotoxicological endpoints. Alterations of CAT, and GSTs activities, and TBARS levels indicate an alteration in redox balances. Differences in exposed pH levels indicate the possible modulation of the absorption of this pharmaceutical in ocean acidifications scenarios. Alterations in AChE were only observed following paracetamol exposure, not being altered by media pH. Hereby obtained results suggest that seawater acidification is detrimental to marine wildlife, since it may enhance toxic effects caused by environmental realistic concentrations of pharmaceuticals. This work is crucial to understand the potential effects of pharmaceuticals in a climate change scenario.

Abstract

Increasing atmospheric carbon dioxide (CO2) levels are likely to lower ocean pH values, after its dissolution in seawater. Additionally, pharmaceuticals drugs are environmental stressors due to their intrinsic properties and worldwide occurrence. It is thus of the utmost importance to assess the combined effects of pH decreases and pharmaceutical contamination, considering that their absorption (and effects) are likely to be strongly affected by changes in oceanic pH. To attain this goal, individuals of the marine polychaete Hediste diversicolor were exposed to distinct pH levels (8.2, 7.9, and 7.6) and environmentally relevant concentrations of the acidic drug paracetamol (PAR: 0, 30, 60, and 120 µg/L). Biomarkers such as catalase (CAT), glutathione S-transferases (GSTs), acetylcholinesterase (AChE), and cyclooxygenase (COX) activities, as well as peroxidative damage (through thiobarbituric acid reactive substance (TBARS) quantification), were quantified to serve as ecotoxicological endpoints. Data showed a general increase in CAT and a decrease in GST activities (with significant fluctuations according to the tested conditions of PAR and pH). These changes are likely to be associated with alterations of the redox cycle driven by PAR exposure. In addition, pH levels seemed to condition the toxicity caused by PAR, suggesting that the toxic effects of this drug were in some cases enhanced by more acidic conditions. An inhibition of AChE was observed in animals exposed to the highest concentration of PAR, regardless of the pH value. Moreover, no lipid peroxidation was observed in most individuals, although a significant increase in TBARS levels was observed for polychaetes exposed to the lowest pH. Finally, no alterations of COX activities were recorded on polychaetes exposed to PAR, regardless of the pH level. The obtained results suggest that seawater acidification is detrimental to marine wildlife, since it may enhance toxic effects caused by environmental realistic concentrations of acidic drugs, such as PAR. This work was crucial to evidence that ocean acidification, in the context of a global change scenario of increased levels of both atmospheric and oceanic CO2, is a key factor in understanding the putative enhanced toxicity of most pharmaceutical drugs that are of an acidic nature.

Continue reading ‘Assessment of paracetamol toxic effects under varying seawater pH conditions on the marine polychaete Hediste diversicolor using biochemical endpoints’

Biomineralization: integrating mechanism and evolutionary history

Calcium carbonate (CaCO3) biomineralizing organisms have played major roles in the history of life and the global carbon cycle during the past 541 Ma. Both marine diversification and mass extinctions reflect physiological responses to environmental changes through time. An integrated understanding of carbonate biomineralization is necessary to illuminate this evolutionary record and to understand how modern organisms will respond to 21st century global change. Biomineralization evolved independently but convergently across phyla, suggesting a unity of mechanism that transcends biological differences. In this review, we combine CaCO3 skeleton formation mechanisms with constraints from evolutionary history, omics, and a meta-analysis of isotopic data to develop a plausible model for CaCO3 biomineralization applicable to all phyla. The model provides a framework for understanding the environmental sensitivity of marine calcifiers, past mass extinctions, and resilience in 21st century acidifying oceans. Thus, it frames questions about the past, present, and future of CaCO3 biomineralizing organisms.

Continue reading ‘Biomineralization: integrating mechanism and evolutionary history’

Seasonal carbonate system vis-a-vis pH and salinity in selected tropical estuaries: implications on polychaete diversity and composition towards predicting ecological health

Highlights

  • The role of salinity-pH gradient coupled with carbonate species on the polychaete community distribution was studied.
  • Salinity-pH was positively correlated with carbonate and DOC.
  • pCO2 was positively correlated with POC, DIC and CO2.
  • High levels of carbonate species and low pH have a greater impact on polychaete diversity and richness.

Abstract

Salinity and pH play a fundamental role in structuring spatial patterns of physical properties, biota, and biogeochemical processes in the estuarine ecosystem. In this study, the influence of salinity-pH gradient and carbonate system on polychaete diversity in Ennore, Uppanar, Vellar, and Kaduvaiyar estuaries was investigated. Water and sediment samples were collected from September 2017 to August 2018. Univariate and multivariate statistical analyses were employed to define ecological status. Temperature, Salinity, pH, and partial pressure of carbon-di-oxide varied between 21 and 30°C; 29 and 39 ppt; 7.4 and 8.3; and 89.216 and 1702.558 µatm, respectively. PCA and CCA results revealed that DO, chlorophyll, carbonate species, and sediment TOC have a higher influence on polychaete community structure. Forty-two species such as Ancistrosyllis parva, Cossura coasta, Eunice pennata, Euclymene annandalei, Lumbrineris albidentata, Capitella capitata, Prionospio cirrifera, P. pinnata, P. cirrobranchiata, and Notomastus sp. were found dominantly in all estuaries. Shannon index values ranged between 1.619 (UE-1) and 3.376 (VE-2). Based on these findings, high levels of carbonate species and low pH have a greater impact on polychaete diversity and richness values. The results of the AMBI Index revealed that stations UE-1, UE-2, UE-3 in Uppanar, EC-1, EC-2 in Ennore indicate “moderately disturbed”, while other stations are under the “slightly disturbed” category. This trend was quite evident in M-AMBI as well.

Continue reading ‘Seasonal carbonate system vis-a-vis pH and salinity in selected tropical estuaries: implications on polychaete diversity and composition towards predicting ecological health’

Lead in the marine environment: concentrations and effects on invertebrates

Lead (Pb) is a non-essential metal naturally present in the environment and often complexed with other elements (e.g., copper, selenium, zinc). This metal has been used since ancient Egypt and its extraction has grown in the last centuries. It has been used until recently as a fuel additive and is currently used in the production of vehicle batteries, paint, and plumbing. Marine ecosystems are sinks of terrestrial contaminations; consequently, lead is detected in oceans and seas. Furthermore, lead is not biodegradable. It remains in soil, atmosphere, and water inducing multiple negative impacts on marine invertebrates (key species in trophic chain) disturbing ecological ecosystems. This review established our knowledge on lead accumulation and its effects on marine invertebrates (Annelida, Cnidaria, Crustacea, Echinodermata, and Mollusca). Lead may affect different stages of development from fertilization to larval development and can also lead to disturbance in reproduction and mortality. Furthermore, we discussed changes in the seawater chemistry due to Ocean Acidification, which can affect the solubility, speciation, and distribution of the lead, increasing potentially its toxicity to marine invertebrates.

Continue reading ‘Lead in the marine environment: concentrations and effects on invertebrates’

Behavioural stress propagation in benthic invertebrates caused by acute pH drop-induced metabolites

Studies on pH stress in marine animals typically focus on direct or species-specific aspects. We here test the hypothesis that a drop to pH = 7.6 indirectly affects the intra- and interspecific interactions of benthic invertebrates by means of chemical communication. We recorded fitness-relevant behaviours of small hermit crabs Diogenes pugilator, green shore crabs Carcinus maenas, and harbour ragworms Hediste diversicolor in response to short-term pH drop, and to putative stress metabolites released by conspecifics or gilt-head sea bream Sparus aurata during 30 min of acute pH drop. Not only did acute pH drop itself impair time to find a food cue in small hermit crabs and burrowing in harbour ragworms, but similar effects were observed under exposure to pH drop-induced stress metabolites. Stress metabolites from S. aurata, but not its regular control metabolites, also induced avoidance responses in all recipient species. Here, we confirm that a short-term abrupt pH drop, an abiotic stressor, has the capacity to trigger the release of metabolites which induce behavioural responses in conspecific and heterospecific individuals, which can be interpreted as a behavioural cost. Our findings that stress responses can be indirectly propagated through means of chemical communication warrant further research to confirm the effect size of the behavioural impairments caused by stress metabolites and to characterise their chemical nature.

Continue reading ‘Behavioural stress propagation in benthic invertebrates caused by acute pH drop-induced metabolites’

Climate change alters shellfish reef communities: a temperate mesocosm experiment

Highlights

  • Climate change will cause significant changes to rocky shore diversity.
  • Outdoor mesocosms were used to test predictions of warming and ocean acidification.
  • Elevated carbon dioxide in the atmosphere reduced the growth of the native mussels.
  • Warming and carbon dioxide influenced the species that colonised the mussels.

Abstract

Climate change is expected to cause significant changes to rocky shore diversity. This study used outdoor mesocosms to test the predictions that warming and ocean acidification will alter the responses of native Trichomya hirsuta and introduced Mytilus galloprovincialis mussels, and their associated communities of infauna. Experiments consisted of orthogonal combinations of temperature (ambient 22 °C or elevated 25 °C), pCO2 (ambient 400 μatm or elevated 1000 μatm), mussel species (T. hirsuta or M. galloprovincialis), and mussel configuration (native, introduced, or both), with n = 3 replicates. Elevated pCO2 reduced the growth of T. hirsuta but not that of M. galloprovincialis, and warming and pCO2 influenced the infauna that colonised both species of mussels. There was a reduction in infaunal molluscs and an increase in polychaetes; there was, however, no effect on crustaceans. Results from this study suggest that climate-driven changes from one mussel species to another can significantly influence infaunal communities.

Continue reading ‘Climate change alters shellfish reef communities: a temperate mesocosm experiment’

Biodiversity of coral reef cryptobiota shuffles but does not decline under the combined stressors of ocean warming and acidification

Significance

Although climate change is expected to decimate coral reefs, the combined impacts of ocean-warming and acidification on coral reef biodiversity remains largely unmeasured. Here, we present a two-year mesocosm experiment to simulate future ocean acidification and ocean-warming to quantify the impacts on species richness, community composition, and community structure. We find that species richness is equivalent between the dual-stressor and present-day treatments but that the community shuffles, undoubtedly altering ecosystem function. However, our ability to predict the outcomes of such community shuffling remains limited due to the critical knowledge gap regarding ecological functions, life histories, and distributions for most members of the cryptobenthic community that account for the majority of the biodiversity within these iconic ecosystems.

Abstract

Ocean-warming and acidification are predicted to reduce coral reef biodiversity, but the combined effects of these stressors on overall biodiversity are largely unmeasured. Here, we examined the individual and combined effects of elevated temperature (+2 °C) and reduced pH (−0.2 units) on the biodiversity of coral reef communities that developed on standardized sampling units over a 2-y mesocosm experiment. Biodiversity and species composition were measured using amplicon sequencing libraries targeting the cytochrome oxidase I (COI) barcoding gene. Ocean-warming significantly increased species richness relative to present-day control conditions, whereas acidification significantly reduced richness. Contrary to expectations, species richness in the combined future ocean treatment with both warming and acidification was not significantly different from the present-day control treatment. Rather than the predicted collapse of biodiversity under the dual stressors, we find significant changes in the relative abundance but not in the occurrence of species, resulting in a shuffling of coral reef community structure among the highly species-rich cryptobenthic community. The ultimate outcome of altered community structure for coral reef ecosystems will depend on species-specific ecological functions and community interactions. Given that most species on coral reefs are members of the understudied cryptobenthos, holistic research on reef communities is needed to accurately predict diversity–function relationships and ecosystem responses to future climate conditions.

Continue reading ‘Biodiversity of coral reef cryptobiota shuffles but does not decline under the combined stressors of ocean warming and acidification’

DNA metabarcoding to examine the biodiversity of coral reef cryptobiota

Coral reefs are among the most biologically diverse, complex, and productive of ecosystems. The vast majority of coral reef biodiversity is made up of the small and cryptic organisms living unseen by most within the reef matrix. This hidden community, the cryptobiota, are a critical component of coral reef trophic dynamics and play an essential role in nutrient recycling that enable reefs to thrive in oligotrophic environments. Despite their ecological importance, the cryptobiota are often ignored because they live deep within the reef matrix and require significant taxonomic expertise and time to collect and identify. As a result, our perceptions of coral reef biodiversity across marine gradients and how it will respond to climatic change is based on observable surface-dwelling taxa, such as corals and fish. Using DNA metabarcoding technology, this research fills an extensive knowledge gap about the diversity and distribution of the important and understudied coral reef cryptobiota community. The objectives of this dissertation were to (i) evaluate metabarcoding performance on marine sponges, a prominent and ecologically vital member of the cryptobenthos that is one of the most difficult metazoans to identify to species using both taxonomic and molecular methods; (ii) investigate the individual and combined effects of ocean warming and acidification on cryptobiota biodiversity; and (iii) examine cryptobiota diversity along the most striking macrospatial diversity gradient in the marine tropics. Contrary to expectations, this research (i) demonstrated that the metabarcoding approach performs much better than expected in capturing sponge richness; (ii) discovered that diversity shuffles but does not decline under the combined stressors of ocean warming and acidification; and (iii) cryptobiotic diversity undermines the tropical Pacific longitudinal diversity gradient defined by corals and fish. These results contribute towards reshaping the way we consider coral reef biodiversity under different oceanographic, geographic and climatic regimes.

Continue reading ‘DNA metabarcoding to examine the biodiversity of coral reef cryptobiota’

Role of behaviour in marine organisms: potential effects under future ocean conditions

Over the last 250 years, the intensive burning of fossil fuels along with industrial processes and land uses (e.g. clearing forests and agriculture) has contributed to an increase in atmospheric CO2 from approximately 280 to 410 ppm, with a further increase (from 730 to 1020 ppm) projected by the end of this century. About 30% of the anthropogenic CO2 has been absorbed by the ocean, with a consequent decrease of the ocean’s surface pH causing a phenomenon better known as Ocean Acidification (OA). The average pH of the surface ocean has declined from 8.2 by 0.1 units since pre-industrial times as a result of CO2 emissions and a further reduction of 0.3–0.5 pH units is expected to occur by the 2100.

This increased concentration of atmospheric CO2 has driven an increase in atmospheric and oceanic temperatures enhanced at a rate of ~ 0.2˚C per decade in the past 30 years. These rapid changing ocean conditions in pCO2 and temperature are considered two of the major threats to marine biodiversity, leading to changes in the distribution, physiology and behaviour of marine organisms, with potential consequences in community and ecosystem functioning and structure. Despite the increasing interest and amount of literature on this topic, the effects of OA and ocean warming (OW) on marine fauna is difficult to predict, especially because a wide range of impacts have been found across different life stages-and species suggesting that tolerance thresholds to such stressors can vary among life stages experienced by an organism or even between species. In this regard, an increased number of studies has been conducted to better understand the mechanisms by which species can cope with these rapid environmental changes.

The first response of animals to a changing environment is predominantly through modification of their behaviour. To date, only a few climate change biology studies have considered behavioural plasticity as a way that animals can adjust their performance under rapid climate change, especially for marine ectotherms.

The general objective of this thesis was to evaluate the effects of ocean warming and acidification on different aspects of behaviour in marine ectotherms. To achieve this aim I investigated the behavioural responses of two marine fish and one invertebrate, through field-based and laboratory experiments.

Continue reading ‘Role of behaviour in marine organisms: potential effects under future ocean conditions’

Patterns of element incorporation in calcium carbonate biominerals recapitulate phylogeny for a diverse range of marine calcifiers

Elemental ratios in biogenic marine calcium carbonates are widely used in geobiology, environmental science, and paleoenvironmental reconstructions. It is generally accepted that the elemental abundance of biogenic marine carbonates reflects a combination of the abundance of that ion in seawater, the physical properties of seawater, the mineralogy of the biomineral, and the pathways and mechanisms of biomineralization. Here we report measurements of a suite of nine elemental ratios (Li/Ca, B/Ca, Na/Ca, Mg/Ca, Zn/Ca, Sr/Ca, Cd/Ca, Ba/Ca, and U/Ca) in 18 species of benthic marine invertebrates spanning a range of biogenic carbonate polymorph mineralogies (low-Mg calcite, high-Mg calcite, aragonite, mixed mineralogy) and of phyla (including Mollusca, Echinodermata, Arthropoda, Annelida, Cnidaria, Chlorophyta, and Rhodophyta) cultured at a single temperature (25°C) and a range of pCO2 treatments (ca. 409, 606, 903, and 2856 ppm). This dataset was used to explore various controls over elemental partitioning in biogenic marine carbonates, including species-level and biomineralization-pathway-level controls, the influence of internal pH regulation compared to external pH changes, and biocalcification responses to changes in seawater carbonate chemistry. The dataset also enables exploration of broad scale phylogenetic patterns of elemental partitioning across calcifying species, exhibiting high phylogenetic signals estimated from both uni- and multivariate analyses of the elemental ratio data (univariate: λ = 0–0.889; multivariate: λ = 0.895–0.99). Comparing partial R2 values returned from non-phylogenetic and phylogenetic regression analyses echo the importance of and show that phylogeny explains the elemental ratio data 1.4–59 times better than mineralogy in five out of nine of the elements analyzed. Therefore, the strong associations between biomineral elemental chemistry and species relatedness suggests mechanistic controls over element incorporation rooted in the evolution of biomineralization mechanisms.

Continue reading ‘Patterns of element incorporation in calcium carbonate biominerals recapitulate phylogeny for a diverse range of marine calcifiers’

Reduced seawater pH alters marine biofilms with impacts for marine polychaete larval settlement

Highlights

• Reduced seawater pH strongly influences biofilm community composition, at both eukaryotic and prokaryotic level

• For older biofilms, biofilm age plays no role in community composition

• Incubation under different pH treatments results in variations in apparent colour and structural complexity of marine biofilms

• Incubation of marine biofilms under different pH treatments alters the settlement response in marine invertebrates

• The changes in marine biofilm community composition induced by seawater pH are most likely responsible for the changes observed in invertebrate settlement selectivity

Abstract

Ocean acidification (OA) can negatively affect early-life stages of marine organisms, with the key processes of larval settlement and metamorphosis potentially vulnerable to reduced seawater pH. Settlement success depends strongly on suitable substrates and environmental cues, with marine biofilms as key settlement inducers for a range of marine invertebrate larvae. This study experimentally investigated (1) how seawater pH determines growth and community composition of marine biofilms, and (2) whether marine biofilms developed under different pH conditions can alter settlement success in the New Zealand serpulid polychaete Galeolaria hystrix. Biofilms were developed under six pH(T) treatments (spanning from 7.0 to 8.1 [ambient]) in a flow-through system for up to 14 months. Biofilms of different ages (7, 10 and 14 months) were used to assay successful settlement of competent G. hystrix larvae reared under ambient conditions. Biofilm microbiomes were characterized through amplicon sequencing of the small subunit ribosomal rRNA gene (16S and 18S). Biofilm community composition was stable over time within each pH treatment and biofilm age did not affect larval settlement selectivity. Seawater pH treatment strongly influenced biofilm community composition, as well as subsequent settlement success when biofilms were presented to competent Galeolaria larvae. Exposure to biofilms incubated under OA-treatments caused a decrease in larval settlement of up to 40% compared to the ambient treatments. We observed a decrease in settlement on biofilms relative to ambient pH for slides incubated at pH 7.9 and 7.7. This trend was reversed at pH 7.4, resulting in high settlement, comparable to ambient biofilms. Settlement decreased on biofilms from pH 7.2, and no settlement was observed on biofilms from pH 7.0. For the first time, we show that long-term incubation of marine biofilms under a wide range of reduced seawater pH treatments can alter marine biofilms in such a way that settlement success in marine invertebrates can be compromised.

Continue reading ‘Reduced seawater pH alters marine biofilms with impacts for marine polychaete larval settlement’

Volcanic CO2 seep geochemistry and use in understanding ocean acidification

Ocean acidification is one of the most dramatic effects of the massive atmospheric release of anthropogenic carbon dioxide (CO2) that has occurred since the Industrial Revolution, although its effects on marine ecosystems are not well understood. Submarine volcanic hydrothermal fields have geochemical conditions that provide opportunities to characterise the effects of elevated levels of seawater CO2 on marine life in the field. Here, we review the geochemical aspects of shallow marine CO2-rich seeps worldwide, focusing on both gas composition and water chemistry. We then describe the geochemical effects of volcanic CO2 seepage on the overlying seawater column. We also present new geochemical data and the first synthesis of marine biological community changes from one of the best-studied marine CO2 seep sites in the world (off Vulcano Island, Sicily). In areas of intense bubbling, extremely high levels of pCO2 (> 10,000 μatm) result in low seawater pH (< 6) and undersaturation of aragonite and calcite in an area devoid of calcified organisms such as shelled molluscs and hard corals. Around 100–400 m away from the Vulcano seeps the geochemistry of the seawater becomes analogous to future ocean acidification conditions with dissolved carbon dioxide levels falling from 900 to 420 μatm as seawater pH rises from 7.6 to 8.0. Calcified species such as coralline algae and sea urchins fare increasingly well as sessile communities shift from domination by a few resilient species (such as uncalcified algae and polychaetes) to a diverse and complex community (including abundant calcified algae and sea urchins) as the seawater returns to ambient levels of CO2. Laboratory advances in our understanding of species sensitivity to high CO2 and low pH seawater, reveal how marine organisms react to simulated ocean acidification conditions (e.g., using energetic trade-offs for calcification, reproduction, growth and survival). Research at volcanic marine seeps, such as those off Vulcano, highlight consistent ecosystem responses to rising levels of seawater CO2, with the simplification of food webs, losses in functional diversity and reduced provisioning of goods and services for humans.

Continue reading ‘Volcanic CO2 seep geochemistry and use in understanding ocean acidification’

Seawater acidification affects beta-diversity of benthic communities at a shallow hydrothermal vent in a Mediterranean marine protected area (underwater archaeological park of Baia, Naples, Italy)

One of the most important pieces of climate change evidence is ocean acidification. Acidification effects on marine organisms are widely studied, while very little is known regarding its effects on assemblages’ β-diversity. In this framework, shallow hydrothermal vents within a Marine Protected Area (MPA) represent natural ecosystems acting as laboratory set-ups where the continuous carbon dioxide emissions affect assemblages with consequences that can be reasonably comparable to the effects of global water acidification. The aim of the present study is to test the impact of seawater acidification on the β-diversity of soft-bottom assemblages in a shallow vent field located in the Underwater Archeological Park of Baia MPA (Gulf of Naples, Mediterranean Sea). We investigated macro- and meiofauna communities of the ‘Secca delle fumose’ vent system in sites characterized by sulfurous (G) and carbon dioxide emissions (H) that are compared with control/inactive sites (CN and CS). Statistical analyses were performed on the most represented macrobenthic (MolluscaPolychaeta, and Crustacea), and meiobenthic (Nematoda) taxa. Results show that the lowest synecological values are detected at H and, to a lesser extent, at G. Multivariate analyses show significant differences between hydrothermal vents (G, H) and control/inactive sites; the highest small-scale heterogeneities (measure of β-diversity) are detected at sites H and G and are mainly affected by pH, TOC (Total Organic Carbon), and cations concentrations. Such findings are probably related to acidification effects, since MPA excludes anthropic impacts. In particular, acidification markedly affects β-diversity and an increase in heterogeneity among sample replicates coupled to a decrease in number of taxa is an indicator of redundancy loss and, thus, of resilience capacity. The survival is assured to either tolerant species or those opportunistic taxa that can find good environmental conditions among gravels of sand.

Continue reading ‘Seawater acidification affects beta-diversity of benthic communities at a shallow hydrothermal vent in a Mediterranean marine protected area (underwater archaeological park of Baia, Naples, Italy)’

Current and future trophic interactions in tropical shallow-reef lagoon habitats

Calcium carbonate (CaCO3) sediments are the dominant form of CaCO3 on coral reefs accumulating in lagoon and inter-reefal areas. Owing to their mineralogy and a range of physical parameters, tropical CaCO3 sediments are predicted to be more sensitive to dissolution driven by ocean acidification than the skeleton of living reef organisms. How this scales up to impact infaunal organisms, which are an important food source for higher trophic levels, and thereby ecosystem functioning, is not well explored. We combined seasonal field surveys in a shallow-reef lagoon ecosystem on the Great Barrier Reef, Australia, with stable isotope analyses and a tank-based experiment to examine the potential top-down influence of the deposit-feeding sea cucumber, Stichopus herrmanni, on this infaunal community under current and future ocean pH. Densities of surface-sediment meiofauna were lowest in winter and spring, with harpacticoid copepods (38%) and nematodes (27%) the dominant taxa. Stable isotope analyses showed that S. herrmanni had a top-down influence on meiofauna and microphytes with a distinct δ13C and δ15N trophic position that was homogenous across seasons and locations. Tanks that mimicked sandy shallow-reef lagoon habitats were used to examine the effects of ocean acidification (elevated pCO2) on this trophic interaction. We used outdoor control (sediment only) and experimental (sediment plus S. herrmanni) tanks maintained at present-day and near-future pCO2 (+ 570 µatm) for 24 days, which fluctuated with the diel pCO2 cycle. In sediment-only tanks, copepods were > twofold more abundant at elevated pCO2, with no negative effects documented for any meiofauna group. When included in the community, top-down control by S. herrmanni counteracted the positive effects of low pH on meiofaunal abundance. We highlight a novel perspective in coral reef trophodynamics between surface-sediment meiofauna and deposit-feeding sea cucumbers, and posit that community shifts may occur in shallow-reef lagoon habitats in a future ocean with implications for the functioning of coral reefs from the bottom up.

Continue reading ‘Current and future trophic interactions in tropical shallow-reef lagoon habitats’

Experimental evidence of uncertain future of the keystone ragworm Hediste diversicolor (O.F. Müller, 1776) under climate change conditions

Highlights

  • Temperature enhances the impact of acidification on polychaetes survival and burrowing behavior.
  • Regardless the temperature, acidification results in a reduction on polychaetes feeding rate
  • Faster regeneration at the lowest temperature and less regenerated chaetigers at lower pH levels
  • Climate change induced oxidative stress in H. diversicolor
  • Polychaetes metabolic capacity was enhanced in stressed organisms, with no expenditure of energy reserves.

Abstract

It is currently assumed that climate change related factors pose severe challenges to biodiversity maintenance. This paper assesses the multi-stressor effects of elevated temperature (15 °C as control, 25 °C as elevated) and CO2 levels (pH 8.1 as control, 7.5 and 7.0 representing acidifying conditions) on the physiological (survival, and regenerative capacity), behavioral (feeding and burrowing activities), and biochemical changes (metabolic capacity, oxidative status and biotransformation mechanisms) experienced by the keystone polychaete Hediste diversicolor. Temperature rise enlarged the adverse effect of marine acidification on the survival of H. diversicolor, delayed the beginning of the excavation activity, enhancing the negative effects that pH decrease had in the burrowing behavior of this polychaete. Additionally, regardless of the temperature, exposure of H. diversicolor to acidification results in a reduction in the feeding rate. It is the first time that this decreased feeding capacity is found related to seawater acidification in this species. The healing of the wound and the blastemal formation were retarded due to these two climatic factors which hinder the regenerative process of polychaetes. These vital physiological functions of H. diversicolor can be related to the oxidative stress induced by climate change conditions since free radicals overproduced will impair cells functioning affecting species biochemical and physiological performance, including feeding, and tissue regeneration. The present results also demonstrated that although polychaete’s metabolic capacity was enhanced under stress conditions, organisms were still able to increase or maintain their energy reserves. Our findings are of major environmental relevance considering that predicted climate change conditions will affect species vital and ecological and physiological capacities. These can be translated into shrinking not only at the individual and population level but also in microbial and endofaunal diversities, in the detritus processing in estuaries and biogeochemical cycles at the ecosystem level. Thus the conservation of H. diversicolor populations is vital for the normal functioning of estuarine mudflat ecosystems.

Continue reading ‘Experimental evidence of uncertain future of the keystone ragworm Hediste diversicolor (O.F. Müller, 1776) under climate change conditions’

Fluctuating seawater pCO2/pH induces opposing interactions with copper toxicity for two intertidal invertebrates

Highlights

• Fluctuating pCO2/pH doubled copper-induced antioxidant activity and DNA damage in mussels.

• In contrast, fluctuating conditions mitigated some of the effects of copper for ragworms.

• These effects were associated with the differing acid-base physiology of the two species.

• Physiology was as important as changing copper chemistry in determining overall toxicity.

Abstract

Global ocean pCO2 is increasing as a result of anthropogenic CO2 emissions, driving a decline in seawater pH. However, coastal waters already undergo fluctuations in pCO2/pH conditions over far shorter timescales, with values regularly exceeding those predicted for the open ocean by the year 2100. The speciation of copper, and therefore its potential toxicity, is affected by changing seawater pH, yet little is known concerning how present-day natural fluctuations in seawater pH affect copper toxicity to marine biota. Here, we test the hypothesis that a fluctuating seawater pCO2/pH regime will alter the responses of the mussel Mytilus edulis and the ragworm Alitta virens to sub-lethal copper, compared to a static seawater pCO2/pH scenario. Mussels and worms were exposed to 0.1 and 0.25 μM copper respectively, concentrations determined to produce comparable toxicity responses in these species, for two weeks under a fluctuating 12-hour pCO2/pH cycle (pH 8.14–7.53, pCO2 445–1747 μatm) or a static pH 8.14 (pCO2 432 μatm) treatment. Mussels underwent a haemolymph acidosis of 0.1–0.2 pH units in the fluctuating treatments, alongside two-fold increases in the superoxide dismutase activity and DNA damage induced by copper, compared to those induced by copper under static pH conditions. Conversely, ragworms experienced an alkalosis of 0.3 pH units under fluctuating pH/pCO2, driven by a two-fold increase in coelomic fluid bicarbonate. This mitigated the copper-induced oxidative stress to slightly reduce both antioxidant activity and DNA damage, relative to the static pH + copper treatment. These opposing responses suggest that differences in species acid-base physiology were more important in determining toxicity responses than the pH-induced speciation change. With variability in seawater chemistry predicted to increase as climate change progresses, understanding how fluctuating conditions interact with the toxicity of pH-sensitive contaminants will become more crucial in predicting their risk to coastal biota.

Continue reading ‘Fluctuating seawater pCO2/pH induces opposing interactions with copper toxicity for two intertidal invertebrates’

Physiological and ecotoxicological interactions of copper and ocean acidification in the polychaete worms Hediste diversicolor and Alitta virens

For coastal aquatic habitats the change in seawater pH occurring as a result of ocean acidification has the potential to alter the speciation and toxicity of the many contaminants that remain in high concentrations in coastal systems. Of particular concern are metals, such as copper, whose speciation is pH sensitive within the OA range. A meta-analysis of studies to date investigating OA-contaminant interactions using marine invertebrates reveals that 72% of the 44 studies conducted have indeed focused on metals such as copper, with only a few studies looking at polycyclic aromatic hydrocarbons (PAH) and pharmaceuticals. No clear trends in the pH-effect size on contaminant toxicity for either species or contaminant group were present however, suggesting species specific physiological responses may influence this interaction as well as contaminant chemistry. A relatively understudied group were the polychaetes, a key functional group for many coastal sediments. Sediments act as a sink for contaminants where they can accumulate to high concentrations. Hence there is high potential for polychaetes to experience elevated metal exposures under reduced seawater pH as OA progresses. To address this knowledge gap, the responses of two common coastal polychaete, Alitta virens and Hediste diversicolor, were studied under three different experimental scenarios (both water-borne and sediment based) focusing on the physiological and toxicological responses under combined exposures to ocean acidification and copper. Water-borne exposures of Alitta virens to 0.25 μM copper under ambient seawater (pH 8.10) showed a significant increase in DNA damage, along with a rise in both SOD activity and lipid peroxidation. However, when exposed to copper under OA conditions (pH 7.70) there was no further increase in DNA damage and a significant decrease in SOD activity was observed alongside a fall in lipid peroxidation suggesting that OA looks to buffer the toxicity responses to this species. This is in contrast to previous studies using mussels and sea urchins, where copper toxicity responses were significantly higher when exposed under OA conditions. To assess whether local adaptations to high levels of copper contamination influences this OA-copper interaction, a population comparison using a metal resistance population of the harbour ragworm, Hediste diversicolor and a nearby non-resistant population was then conducted. Exposures were run using copper concentrations that elicit comparable toxicity responses, using 0.50 uM copper for the resistant population, compared to 0.25 uM for the non-resistant population, reflecting the two-fold differences in LC50 values for these population. These experiments reveal a significant increase by 19.70% in metabolic rate effect size (the combined stressor when compared to the control) in the resistant population compared to a decrease by 24.02% the non-resistant population, along with differences in ammonia excretion rate and the O:N ratio, thus revealing an energetic cost of this genetic resistance when faced with the combined stressors of OA and copper. These data are in line with the emerging energy limited tolerance to stressors’ hypothesis which states that tolerance to stress can be energy limited, with bioenergetics playing a central role in the tolerance to environmental stress. Finally, a more environmentally realistic exposure scenario was conducted using Alitta virens to test the influence of sediment and tidal cycles on worm acid-base and oxidative stress responses. Field measurements of sediment pH revealed that the pHNBS range over a tidal cycle varies from 6.97 to 7.87, indicating that polychaetes are already experiencing pH’s lower than the predictions for near future open oceans. In aquarium exposures, with overlying water of pHNBS 8.10, sediment pHNBS remained within the range of 7.45 to 7.31, when the overlying water was manipulated to OA conditions (pHNBS 7.70) sediment pHNBS was within the same range as the ambient treatment. The lack of change in sediment pH, despite a 0.40 unit drop in seawater pH, removed any comparative differences in physiological and toxicity end points in the worms between treatments. Tidal emersion induced a slight reduction in sediment pH, with a significant copper effect on sediment pH causing a further decrease in pH levels. Interestingly emersion resulted in a significant OA-copper interaction for coelomic fluid bicarbonate, which increased over the emersion period, however, there was no emersion driven acidosis within coelomic fluid. Overall this work further points to contaminant-OA interactions being species specific driven, in part driven by animal physiology. It also highlights the importance of environmentally relevant exposures with sediment dwelling organisms experiencing lower pH levels than the overlying seawater which could potentially affect metal speciation and could lead to OA-contaminant interactions occurring very differently in this environment. These are important considerations for ecotoxicology studies in the face of global ocean changes.

Continue reading ‘Physiological and ecotoxicological interactions of copper and ocean acidification in the polychaete worms Hediste diversicolor and Alitta virens’


  • Reset

Subscribe

OA-ICC Highlights


%d bloggers like this: