Posts Tagged 'annelids'

Clam feeding plasticity reduces herbivore vulnerability to ocean warming and acidification

Ocean warming and acidification affect species populations, but how interactions within communities are affected and how this translates into ecosystem functioning and resilience remain poorly understood. Here we demonstrate that experimental ocean warming and acidification significantly alters the interaction network among porewater nutrients, primary producers, herbivores and burrowing invertebrates in a seafloor sediment community, and is linked to behavioural plasticity in the clam Scrobicularia plana. Warming and acidification induced a shift in the clam’s feeding mode from predominantly suspension feeding under ambient conditions to deposit feeding with cascading effects on nutrient supply to primary producers. Surface-dwelling invertebrates were more tolerant to warming and acidification in the presence of S. plana, most probably due to the stimulatory effect of the clam on their microalgal food resources. This study demonstrates that predictions of population resilience to climate change require consideration of non-lethal effects such as behavioural changes of key species.

Continue reading ‘Clam feeding plasticity reduces herbivore vulnerability to ocean warming and acidification’

The effect of elevated CO2 on the production and respiration of a Sargassum thunbergii community: a mesocosm study

Approximately one‐third of anthropogenic carbon dioxide is absorbed into the ocean and causes it to become more acidic. The Intergovernmental Panel on Climate Change (IPCC) suggested that the surface ocean pH, by the year 2100, would drop by a further 0.3 and 0.4 pH units under RCP (Representative Concentration Pathway) 6.0 and 8.5 climate scenarios. The macroalgae communities that consisted of Sargassum thunbergii and naturally attached epibionts were exposed to fluctuations of ambient and manipulated pH (0.3–0.4 units below ambient pH). The production and respiration in S. thunbergii communities were calculated from dissolved oxygen time‐series recorded with optical dissolved oxygen sensors. The pH, irradiance, and dissolved oxygen occurred in parallel with diurnal (day/night) patterns. According to net mesocosm production – photosynthetically active radiation (PAR) model, the saturation and compensation PAR, the mean maximum gross mesocosm production (GMP), and daily mesocosm respiration were higher in the CO2 enrichment, than in the ambient condition, while the mean of photosynthetic coefficient was similar. In conclusion, elevated CO2 stimulated oxygen production and consumption of S. thunbergii communities in the mesocosm. Furthermore, the sensitivity of the GMP of the S. thunbergii community to irradiance was reduced, and achieved maximum production rate at higher PAR. These positive responses to CO2 enrichment suggest that S. thunbergii communities may thrive in under high CO2 conditions.

Continue reading ‘The effect of elevated CO2 on the production and respiration of a Sargassum thunbergii community: a mesocosm study’

Behavioral responses to ocean acidification in marine invertebrates: new insights and future directions

Ocean acidification (OA) affects marine biodiversity and alters the structure and function of marine populations, communities, and ecosystems. Recently, effects of OA on the behavioral responses of marine animals have been given with much attention. While many of previous studies focuses on marine fish. Evidence suggests that marine invertebrate behaviors were also be affected. In this review, we discussed the effects of C02-driven OA on the most common behaviors studied in marine invertebrates, including settlement and habitat selection, feeding, anti-predatory, and swimming behaviors, and explored the related mechanisms behind behaviors. This review summarizes how OA affects marine invertebrate behavior, and provides new insights and highlights novel areas for future research.

Continue reading ‘Behavioral responses to ocean acidification in marine invertebrates: new insights and future directions’

Recoverable impacts of ocean acidification on the tubeworm, Hydroides elegans: implication for biofouling in future coastal oceans

Ocean uptake of anthropogenic CO2 causes ocean acidification (OA), which not only decreases the calcification rate, but also impairs the formation of calcareous shells or tubes in marine invertebrates such as the dominant biofouling tubeworm species, Hydroides elegans. This study examined the ability of tubeworms to resume normal tube calcification when returned to ambient pH 8.1 from a projected near-future OA level of pH 7.8. Tubeworms produced structurally impaired and mechanically weaker calcareous tubes at pH 7.8 compared to at pH 8.1, but were able to recover when the pH was restored to ambient levels. This suggests that tubeworms can physiologically recover from the impacts of OA on tube calcification, composition, density, hardness and stiffness when returned to optimal conditions. These results help understanding of the progression of biofouling communities dominated by tubeworms in future oceans with low pH induced by OA.

Continue reading ‘Recoverable impacts of ocean acidification on the tubeworm, Hydroides elegans: implication for biofouling in future coastal oceans’

Influence of physico-chemical parameters and pCO2 concentration on mangroves-associated polychaetes at Pichavaram, southeast coast of India

Studies related to partial pressure of carbon dioxide (pCO2) concentration linking with polychaete diversity in mangrove ecosystems are limited in time and space. Therefore, the present study was conducted during July 2017–June 2018 on a monthly interval and reported the concentration of pCO2 coupled with physico-chemical parameters in relation to polychaetes diversity in Pichavaram mangroves ecosystem, southeast coast of India. Totally, 41 species were identified and the most dominant species were Prionospio cirrifera, P. cirrobranchiata, P. sexoculata, Prionospio sp. and Capitella capitata. Among the stations, higher polychaete diversity was found in marine zone compared to other zones. The correlation reflected a significant positive linear relationship between dissolved inorganic carbon (DIC), dissolved organic carbon (DOC), particulate organic carbon (POC) and CO2 versus pCO2. The carbon species DIC, DOC, POC and pCO2 concentration ranged from 1100.1 to 2053.3(µmol/kg), 165.7–1954.0(µmol/kg), 4.5–89.2(µmol/kg) and 184.7–3763.1(µatm), respectively. Further, the statistical analyses revealed that there was a strong correlation among carbon species with distribution of polychaete species in various zones of mangroves and thus indicating pivotal role in occurrence of polychaetes in mangroves.

Continue reading ‘Influence of physico-chemical parameters and pCO2 concentration on mangroves-associated polychaetes at Pichavaram, southeast coast of India’

Epibenthic community variation along an acidified tropical estuarine system

The benthic communities associated with hard substrata in tropical estuaries (rocky surfaces and mangrove roots) are underexplored compared to sediment-associated communities. Being unaffected by within-sediment chemistry, rocky surface communities are exposed to water-column chemistry. Natural and anthropogenic acidic inflows into estuaries are common, yet understanding of how low pH estuarine water impacts communities is limited. This study investigated variation in a rocky substratum benthic community along a steep pH and carbonate saturation gradient in a tropical estuary. Samples (n=72) samples were collected from four stations in the Brunei estuarine system, South East Asia (pH 5.78 – 8.1, salinity 0.1 – 29.5 psu). Species richness, diversity and abundance were greatest at the seaward end of the estuary (where pH and salinity were high), reduced in the middle estuary, and relatively high again in the upper estuary. A total of 34 species were recorded, with station abundances varying between 95 and 336 individuals/100 cm2. At a coarse taxonomic level (class/order), multivariate analyses revealed three distinct communities, a tanaid–polychaete dominated community, a mussel–dipteran community, and a mussel–amphipod–dipteran community. The observed shift from amphipod-dominance to polychaete-dominance along a decreasing pH gradient is consistent with the community changes seen in open ocean systems influenced by elevated pCO2. This study is the first description of community structure variation for hard-substratum invertebrates in an old-world tropical estuary. It shows that acidified estuaries offer insights into community-level responses to marine acidification in general.

Continue reading ‘Epibenthic community variation along an acidified tropical estuarine system’

Stress across life stages: impacts, responses and consequences for marine organisms

Highlights

• The published data were analysed to assess carry-over effects on marine organisms.

• The capacity of larvae to recover from early starvation and hypoxia was tested.

• Food limitation is the main driver of negative carry-over effects on juvenile growth.

• Larvae can recover from the early stress without negative imprints as juveniles.

• Carry-over effects depend on the duration of stress relative to larval period.

Abstract

Population dynamics of marine organisms are strongly driven by their survival in early life stages. As life stages are tightly linked, environmental stress experienced by organisms in the early life stage can worsen their performance in the subsequent life stage (i.e. carry-over effect). However, stressful events can be ephemeral and hence organisms may be able to counter the harmful effects of transient stress. Here, we analysed the published data to examine the relative strength of carry-over effects on the juvenile growth of marine organisms, caused by different stressors (hypoxia, salinity, starvation, ocean acidification and stress-induced delayed metamorphosis) experienced in their larval stage. Based on 31 relevant published studies, we revealed that food limitation had the greatest negative carry-over effect on juvenile growth. In the laboratory, we tested the effects of short-term early starvation and hypoxia on the larval growth and development of a model organism, polychaete Hydroides elegans, and assessed whether the larvae can accommodate the early stress to maintain their performance as juveniles (settlement and juvenile growth). Results showed that early starvation for 3 days (∼50% of normal larval period) retarded larval growth and development, leading to subsequent reduced settlement rate and juvenile growth. When the starvation period decreased to 1 day, however, the larvae could recover from early starvation through compensatory growth and performed normal as juveniles (c.f. control). Early exposure to hypoxia did not affect larval growth (body length) and juvenile growth (tube length), but caused malformation of larvae and reduced settlement rate. We conclude that the adverse effects of transient stress can be carried across life stages, but depend on the duration of stressful events relative to larval period. As carry-over effects are primarily driven by energy acquisition, how food availability varies over time and space is fundamental to the population dynamics of marine organisms.

Continue reading ‘Stress across life stages: impacts, responses and consequences for marine organisms’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,317,375 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book