Posts Tagged 'annelids'

Reduced seawater pH alters marine biofilms with impacts for marine polychaete larval settlement

Highlights

• Reduced seawater pH strongly influences biofilm community composition, at both eukaryotic and prokaryotic level

• For older biofilms, biofilm age plays no role in community composition

• Incubation under different pH treatments results in variations in apparent colour and structural complexity of marine biofilms

• Incubation of marine biofilms under different pH treatments alters the settlement response in marine invertebrates

• The changes in marine biofilm community composition induced by seawater pH are most likely responsible for the changes observed in invertebrate settlement selectivity

Abstract

Ocean acidification (OA) can negatively affect early-life stages of marine organisms, with the key processes of larval settlement and metamorphosis potentially vulnerable to reduced seawater pH. Settlement success depends strongly on suitable substrates and environmental cues, with marine biofilms as key settlement inducers for a range of marine invertebrate larvae. This study experimentally investigated (1) how seawater pH determines growth and community composition of marine biofilms, and (2) whether marine biofilms developed under different pH conditions can alter settlement success in the New Zealand serpulid polychaete Galeolaria hystrix. Biofilms were developed under six pH(T) treatments (spanning from 7.0 to 8.1 [ambient]) in a flow-through system for up to 14 months. Biofilms of different ages (7, 10 and 14 months) were used to assay successful settlement of competent G. hystrix larvae reared under ambient conditions. Biofilm microbiomes were characterized through amplicon sequencing of the small subunit ribosomal rRNA gene (16S and 18S). Biofilm community composition was stable over time within each pH treatment and biofilm age did not affect larval settlement selectivity. Seawater pH treatment strongly influenced biofilm community composition, as well as subsequent settlement success when biofilms were presented to competent Galeolaria larvae. Exposure to biofilms incubated under OA-treatments caused a decrease in larval settlement of up to 40% compared to the ambient treatments. We observed a decrease in settlement on biofilms relative to ambient pH for slides incubated at pH 7.9 and 7.7. This trend was reversed at pH 7.4, resulting in high settlement, comparable to ambient biofilms. Settlement decreased on biofilms from pH 7.2, and no settlement was observed on biofilms from pH 7.0. For the first time, we show that long-term incubation of marine biofilms under a wide range of reduced seawater pH treatments can alter marine biofilms in such a way that settlement success in marine invertebrates can be compromised.

Continue reading ‘Reduced seawater pH alters marine biofilms with impacts for marine polychaete larval settlement’

Volcanic CO2 seep geochemistry and use in understanding ocean acidification

Ocean acidification is one of the most dramatic effects of the massive atmospheric release of anthropogenic carbon dioxide (CO2) that has occurred since the Industrial Revolution, although its effects on marine ecosystems are not well understood. Submarine volcanic hydrothermal fields have geochemical conditions that provide opportunities to characterise the effects of elevated levels of seawater CO2 on marine life in the field. Here, we review the geochemical aspects of shallow marine CO2-rich seeps worldwide, focusing on both gas composition and water chemistry. We then describe the geochemical effects of volcanic CO2 seepage on the overlying seawater column. We also present new geochemical data and the first synthesis of marine biological community changes from one of the best-studied marine CO2 seep sites in the world (off Vulcano Island, Sicily). In areas of intense bubbling, extremely high levels of pCO2 (> 10,000 μatm) result in low seawater pH (< 6) and undersaturation of aragonite and calcite in an area devoid of calcified organisms such as shelled molluscs and hard corals. Around 100–400 m away from the Vulcano seeps the geochemistry of the seawater becomes analogous to future ocean acidification conditions with dissolved carbon dioxide levels falling from 900 to 420 μatm as seawater pH rises from 7.6 to 8.0. Calcified species such as coralline algae and sea urchins fare increasingly well as sessile communities shift from domination by a few resilient species (such as uncalcified algae and polychaetes) to a diverse and complex community (including abundant calcified algae and sea urchins) as the seawater returns to ambient levels of CO2. Laboratory advances in our understanding of species sensitivity to high CO2 and low pH seawater, reveal how marine organisms react to simulated ocean acidification conditions (e.g., using energetic trade-offs for calcification, reproduction, growth and survival). Research at volcanic marine seeps, such as those off Vulcano, highlight consistent ecosystem responses to rising levels of seawater CO2, with the simplification of food webs, losses in functional diversity and reduced provisioning of goods and services for humans.

Continue reading ‘Volcanic CO2 seep geochemistry and use in understanding ocean acidification’

Seawater acidification affects beta-diversity of benthic communities at a shallow hydrothermal vent in a Mediterranean marine protected area (underwater archaeological park of Baia, Naples, Italy)

One of the most important pieces of climate change evidence is ocean acidification. Acidification effects on marine organisms are widely studied, while very little is known regarding its effects on assemblages’ β-diversity. In this framework, shallow hydrothermal vents within a Marine Protected Area (MPA) represent natural ecosystems acting as laboratory set-ups where the continuous carbon dioxide emissions affect assemblages with consequences that can be reasonably comparable to the effects of global water acidification. The aim of the present study is to test the impact of seawater acidification on the β-diversity of soft-bottom assemblages in a shallow vent field located in the Underwater Archeological Park of Baia MPA (Gulf of Naples, Mediterranean Sea). We investigated macro- and meiofauna communities of the ‘Secca delle fumose’ vent system in sites characterized by sulfurous (G) and carbon dioxide emissions (H) that are compared with control/inactive sites (CN and CS). Statistical analyses were performed on the most represented macrobenthic (MolluscaPolychaeta, and Crustacea), and meiobenthic (Nematoda) taxa. Results show that the lowest synecological values are detected at H and, to a lesser extent, at G. Multivariate analyses show significant differences between hydrothermal vents (G, H) and control/inactive sites; the highest small-scale heterogeneities (measure of β-diversity) are detected at sites H and G and are mainly affected by pH, TOC (Total Organic Carbon), and cations concentrations. Such findings are probably related to acidification effects, since MPA excludes anthropic impacts. In particular, acidification markedly affects β-diversity and an increase in heterogeneity among sample replicates coupled to a decrease in number of taxa is an indicator of redundancy loss and, thus, of resilience capacity. The survival is assured to either tolerant species or those opportunistic taxa that can find good environmental conditions among gravels of sand.

Continue reading ‘Seawater acidification affects beta-diversity of benthic communities at a shallow hydrothermal vent in a Mediterranean marine protected area (underwater archaeological park of Baia, Naples, Italy)’

Current and future trophic interactions in tropical shallow-reef lagoon habitats

Calcium carbonate (CaCO3) sediments are the dominant form of CaCO3 on coral reefs accumulating in lagoon and inter-reefal areas. Owing to their mineralogy and a range of physical parameters, tropical CaCO3 sediments are predicted to be more sensitive to dissolution driven by ocean acidification than the skeleton of living reef organisms. How this scales up to impact infaunal organisms, which are an important food source for higher trophic levels, and thereby ecosystem functioning, is not well explored. We combined seasonal field surveys in a shallow-reef lagoon ecosystem on the Great Barrier Reef, Australia, with stable isotope analyses and a tank-based experiment to examine the potential top-down influence of the deposit-feeding sea cucumber, Stichopus herrmanni, on this infaunal community under current and future ocean pH. Densities of surface-sediment meiofauna were lowest in winter and spring, with harpacticoid copepods (38%) and nematodes (27%) the dominant taxa. Stable isotope analyses showed that S. herrmanni had a top-down influence on meiofauna and microphytes with a distinct δ13C and δ15N trophic position that was homogenous across seasons and locations. Tanks that mimicked sandy shallow-reef lagoon habitats were used to examine the effects of ocean acidification (elevated pCO2) on this trophic interaction. We used outdoor control (sediment only) and experimental (sediment plus S. herrmanni) tanks maintained at present-day and near-future pCO2 (+ 570 µatm) for 24 days, which fluctuated with the diel pCO2 cycle. In sediment-only tanks, copepods were > twofold more abundant at elevated pCO2, with no negative effects documented for any meiofauna group. When included in the community, top-down control by S. herrmanni counteracted the positive effects of low pH on meiofaunal abundance. We highlight a novel perspective in coral reef trophodynamics between surface-sediment meiofauna and deposit-feeding sea cucumbers, and posit that community shifts may occur in shallow-reef lagoon habitats in a future ocean with implications for the functioning of coral reefs from the bottom up.

Continue reading ‘Current and future trophic interactions in tropical shallow-reef lagoon habitats’

Experimental evidence of uncertain future of the keystone ragworm Hediste diversicolor (O.F. Müller, 1776) under climate change conditions

Highlights

  • Temperature enhances the impact of acidification on polychaetes survival and burrowing behavior.
  • Regardless the temperature, acidification results in a reduction on polychaetes feeding rate
  • Faster regeneration at the lowest temperature and less regenerated chaetigers at lower pH levels
  • Climate change induced oxidative stress in H. diversicolor
  • Polychaetes metabolic capacity was enhanced in stressed organisms, with no expenditure of energy reserves.

Abstract

It is currently assumed that climate change related factors pose severe challenges to biodiversity maintenance. This paper assesses the multi-stressor effects of elevated temperature (15 °C as control, 25 °C as elevated) and CO2 levels (pH 8.1 as control, 7.5 and 7.0 representing acidifying conditions) on the physiological (survival, and regenerative capacity), behavioral (feeding and burrowing activities), and biochemical changes (metabolic capacity, oxidative status and biotransformation mechanisms) experienced by the keystone polychaete Hediste diversicolor. Temperature rise enlarged the adverse effect of marine acidification on the survival of H. diversicolor, delayed the beginning of the excavation activity, enhancing the negative effects that pH decrease had in the burrowing behavior of this polychaete. Additionally, regardless of the temperature, exposure of H. diversicolor to acidification results in a reduction in the feeding rate. It is the first time that this decreased feeding capacity is found related to seawater acidification in this species. The healing of the wound and the blastemal formation were retarded due to these two climatic factors which hinder the regenerative process of polychaetes. These vital physiological functions of H. diversicolor can be related to the oxidative stress induced by climate change conditions since free radicals overproduced will impair cells functioning affecting species biochemical and physiological performance, including feeding, and tissue regeneration. The present results also demonstrated that although polychaete’s metabolic capacity was enhanced under stress conditions, organisms were still able to increase or maintain their energy reserves. Our findings are of major environmental relevance considering that predicted climate change conditions will affect species vital and ecological and physiological capacities. These can be translated into shrinking not only at the individual and population level but also in microbial and endofaunal diversities, in the detritus processing in estuaries and biogeochemical cycles at the ecosystem level. Thus the conservation of H. diversicolor populations is vital for the normal functioning of estuarine mudflat ecosystems.

Continue reading ‘Experimental evidence of uncertain future of the keystone ragworm Hediste diversicolor (O.F. Müller, 1776) under climate change conditions’

Fluctuating seawater pCO2/pH induces opposing interactions with copper toxicity for two intertidal invertebrates

Highlights

• Fluctuating pCO2/pH doubled copper-induced antioxidant activity and DNA damage in mussels.

• In contrast, fluctuating conditions mitigated some of the effects of copper for ragworms.

• These effects were associated with the differing acid-base physiology of the two species.

• Physiology was as important as changing copper chemistry in determining overall toxicity.

Abstract

Global ocean pCO2 is increasing as a result of anthropogenic CO2 emissions, driving a decline in seawater pH. However, coastal waters already undergo fluctuations in pCO2/pH conditions over far shorter timescales, with values regularly exceeding those predicted for the open ocean by the year 2100. The speciation of copper, and therefore its potential toxicity, is affected by changing seawater pH, yet little is known concerning how present-day natural fluctuations in seawater pH affect copper toxicity to marine biota. Here, we test the hypothesis that a fluctuating seawater pCO2/pH regime will alter the responses of the mussel Mytilus edulis and the ragworm Alitta virens to sub-lethal copper, compared to a static seawater pCO2/pH scenario. Mussels and worms were exposed to 0.1 and 0.25 μM copper respectively, concentrations determined to produce comparable toxicity responses in these species, for two weeks under a fluctuating 12-hour pCO2/pH cycle (pH 8.14–7.53, pCO2 445–1747 μatm) or a static pH 8.14 (pCO2 432 μatm) treatment. Mussels underwent a haemolymph acidosis of 0.1–0.2 pH units in the fluctuating treatments, alongside two-fold increases in the superoxide dismutase activity and DNA damage induced by copper, compared to those induced by copper under static pH conditions. Conversely, ragworms experienced an alkalosis of 0.3 pH units under fluctuating pH/pCO2, driven by a two-fold increase in coelomic fluid bicarbonate. This mitigated the copper-induced oxidative stress to slightly reduce both antioxidant activity and DNA damage, relative to the static pH + copper treatment. These opposing responses suggest that differences in species acid-base physiology were more important in determining toxicity responses than the pH-induced speciation change. With variability in seawater chemistry predicted to increase as climate change progresses, understanding how fluctuating conditions interact with the toxicity of pH-sensitive contaminants will become more crucial in predicting their risk to coastal biota.

Continue reading ‘Fluctuating seawater pCO2/pH induces opposing interactions with copper toxicity for two intertidal invertebrates’

Physiological and ecotoxicological interactions of copper and ocean acidification in the polychaete worms Hediste diversicolor and Alitta virens

For coastal aquatic habitats the change in seawater pH occurring as a result of ocean acidification has the potential to alter the speciation and toxicity of the many contaminants that remain in high concentrations in coastal systems. Of particular concern are metals, such as copper, whose speciation is pH sensitive within the OA range. A meta-analysis of studies to date investigating OA-contaminant interactions using marine invertebrates reveals that 72% of the 44 studies conducted have indeed focused on metals such as copper, with only a few studies looking at polycyclic aromatic hydrocarbons (PAH) and pharmaceuticals. No clear trends in the pH-effect size on contaminant toxicity for either species or contaminant group were present however, suggesting species specific physiological responses may influence this interaction as well as contaminant chemistry. A relatively understudied group were the polychaetes, a key functional group for many coastal sediments. Sediments act as a sink for contaminants where they can accumulate to high concentrations. Hence there is high potential for polychaetes to experience elevated metal exposures under reduced seawater pH as OA progresses. To address this knowledge gap, the responses of two common coastal polychaete, Alitta virens and Hediste diversicolor, were studied under three different experimental scenarios (both water-borne and sediment based) focusing on the physiological and toxicological responses under combined exposures to ocean acidification and copper. Water-borne exposures of Alitta virens to 0.25 μM copper under ambient seawater (pH 8.10) showed a significant increase in DNA damage, along with a rise in both SOD activity and lipid peroxidation. However, when exposed to copper under OA conditions (pH 7.70) there was no further increase in DNA damage and a significant decrease in SOD activity was observed alongside a fall in lipid peroxidation suggesting that OA looks to buffer the toxicity responses to this species. This is in contrast to previous studies using mussels and sea urchins, where copper toxicity responses were significantly higher when exposed under OA conditions. To assess whether local adaptations to high levels of copper contamination influences this OA-copper interaction, a population comparison using a metal resistance population of the harbour ragworm, Hediste diversicolor and a nearby non-resistant population was then conducted. Exposures were run using copper concentrations that elicit comparable toxicity responses, using 0.50 uM copper for the resistant population, compared to 0.25 uM for the non-resistant population, reflecting the two-fold differences in LC50 values for these population. These experiments reveal a significant increase by 19.70% in metabolic rate effect size (the combined stressor when compared to the control) in the resistant population compared to a decrease by 24.02% the non-resistant population, along with differences in ammonia excretion rate and the O:N ratio, thus revealing an energetic cost of this genetic resistance when faced with the combined stressors of OA and copper. These data are in line with the emerging energy limited tolerance to stressors’ hypothesis which states that tolerance to stress can be energy limited, with bioenergetics playing a central role in the tolerance to environmental stress. Finally, a more environmentally realistic exposure scenario was conducted using Alitta virens to test the influence of sediment and tidal cycles on worm acid-base and oxidative stress responses. Field measurements of sediment pH revealed that the pHNBS range over a tidal cycle varies from 6.97 to 7.87, indicating that polychaetes are already experiencing pH’s lower than the predictions for near future open oceans. In aquarium exposures, with overlying water of pHNBS 8.10, sediment pHNBS remained within the range of 7.45 to 7.31, when the overlying water was manipulated to OA conditions (pHNBS 7.70) sediment pHNBS was within the same range as the ambient treatment. The lack of change in sediment pH, despite a 0.40 unit drop in seawater pH, removed any comparative differences in physiological and toxicity end points in the worms between treatments. Tidal emersion induced a slight reduction in sediment pH, with a significant copper effect on sediment pH causing a further decrease in pH levels. Interestingly emersion resulted in a significant OA-copper interaction for coelomic fluid bicarbonate, which increased over the emersion period, however, there was no emersion driven acidosis within coelomic fluid. Overall this work further points to contaminant-OA interactions being species specific driven, in part driven by animal physiology. It also highlights the importance of environmentally relevant exposures with sediment dwelling organisms experiencing lower pH levels than the overlying seawater which could potentially affect metal speciation and could lead to OA-contaminant interactions occurring very differently in this environment. These are important considerations for ecotoxicology studies in the face of global ocean changes.

Continue reading ‘Physiological and ecotoxicological interactions of copper and ocean acidification in the polychaete worms Hediste diversicolor and Alitta virens’

Multimarker response of the ragworm Hediste diversicolor (Polychaeta) to seawater acidification derived from potential CO2 leakage from the CCS sub-seabed storage site in the Baltic Sea

Highlights

• Seawater acidification affected physiological traits, LPO and growth of Hediste diversicolor from the southern Baltic Sea.

• Moderate hypercapnia (pH 7.5–7.1) induced an increase in metabolic rate of the polychaetes and a decline of their growth.

• The most acidic environment (pH 6.5) caused metabolic slow down limiting energy turnover and growth.

• Reduced seawater pH did not impact energetic reserves so, proteins were not used as substrates under acidic conditions.

• High tolerance of the ragworms to hypercapnia stems probably from pre-adaptation to natural pH reduction events in sediment.

Abstract

Sub-seabed Carbon Capture and Storage (CCS) is conceived as safe technology with small likehood of negative consequences to the marine ecosystem but CO2 escape from geological reservoir still poses potential environmental risk. If carbon dioxide leakage occurs carbonate chemistry in the bottom zone and sessile benthic fauna are expected to be the most likely affected by elevated levels of CO2. Though generic mechanisms and advisory conclusions on the presumable impact of increased acidity on the marine benthic biota were formulated they cannot be applied uniformly across different environmental variables as specific local conditions may alter biological response to hypercapnia. A laboratory experiment was conducted to quantify the effects of medium-term (8 wk) exposure to seawater acidification (pH 7.7–6.5) on the infaunal polychaete Hediste diversicolor from the southern Baltic Sea using multimarker approach. Under moderate acidity (pH 7.5 and 7.1) the polychaetes were found to increase metabolic rate (by 13.4% and 19.6%, respectively) and reduce their body mass (by 8.1% and 5.5% wet weight, respectively and by 6.1% and 3.0% dry weight, respectively) whilst enhancing synthesis of antioxidant malondialdehyde (by 22.8% and 65.3%, respectively). In the most acidic environment (pH 6.5) the ragworms showed overall metabolic slow down (by 34.8%) and impaired growth (e.g. by 10.2% for length of the first three segments) indicative of low vulnerability to hypercapnia. High implicit tolerance of the polychaetes to increased acidity in the environment stems inevitably from a certain level of pre-adaptation to pH reduction events which occur in organic-rich stratified sediments due to intense aerobic biomineralization leading often to oxygen depletion and formation of toxic hydrogen sulphide. Acidification did not affect energetic reserves suggesting that costs of acid-base maintenance were covered mainly from assimilated food and that proteins were not used as metabolic substrates.

Continue reading ‘Multimarker response of the ragworm Hediste diversicolor (Polychaeta) to seawater acidification derived from potential CO2 leakage from the CCS sub-seabed storage site in the Baltic Sea’

Ocean acidification alters the responses of invertebrates to wound-activated infochemicals produced by epiphytes of the seagrass Posidonia oceanica

Highlights

• First time evaluation of the effect of infochemicals produced at two pH by the epiphytic community and by selected diatoms.

• O.A. alters the fine-tuned chemical cross-talks between seagrass epiphytes and associated invertebrates.

• Algae play their roles at different concentrations and convey different messages to associated animal communities.

• O.A. has consequences on the structure of associated communities and food webs of seagrass ecosystems.

Abstract

Ocean acidification (OA) influences the production of volatile organic compounds (VOCs) by seagrass leaves and their associated epiphytes. We hypothesize that the perception of “odour” produced by seagrass leaf epiphytes will change with seawater acidification, affecting the behaviour of seagrass-associated invertebrates. To test this hypothesis, we collected epiphytes from leaves of Posidonia oceanica growing at two pH conditions (7.7 and 8.1) and identified the most abundant genera of diatoms. We tested the VOCs produced at pH 8.1 by the epiphytic communities in toto, as well as those produced by selected diatoms, on various invertebrates. A complex set of species-specific and concentration-dependent chemotactic reactions was recorded, according to the pH of seawater. In particular, VOCs produced by individual diatoms triggered contrasting reactions in invertebrates, depending on the pH. The perception of epiphyte VOCs is likely to vary due to alteration of species ability to perceive and/or interpret chemical cues as infochemicals or due to changes in the structure of VOCs themselves. Thus, OA alters the fine-tuned chemical cross-talks between seagrass epiphytes and associated invertebrates, with potential consequences for the structure of communities and food webs of seagrass ecosystems.

Continue reading ‘Ocean acidification alters the responses of invertebrates to wound-activated infochemicals produced by epiphytes of the seagrass Posidonia oceanica’

Evolutionary links between intra‐ and extracellular acid–base regulation in fish and other aquatic animals

The acid–base relevant molecules carbon dioxide (CO2), protons (H+), and bicarbonate (HCO3) are substrates and end products of some of the most essential physiological functions including aerobic and anaerobic respiration, ATP hydrolysis, photosynthesis, and calcification. The structure and function of many enzymes and other macromolecules are highly sensitive to changes in pH, and thus maintaining acid–base homeostasis in the face of metabolic and environmental disturbances is essential for proper cellular function. On the other hand, CO2, H+, and HCO3 have regulatory effects on various proteins and processes, both directly through allosteric modulation and indirectly through signal transduction pathways. Life in aquatic environments presents organisms with distinct acid–base challenges that are not found in terrestrial environments. These include a relatively high CO2 relative to O2 solubility that prevents internal CO2/HCO3 accumulation to buffer pH, a lower O2 content that may favor anaerobic metabolism, and variable environmental CO2, pH and O2 levels that require dynamic adjustments in acid–base homeostatic mechanisms. Additionally, some aquatic animals purposely create acidic or alkaline microenvironments that drive specialized physiological functions. For example, acidifying mechanisms can enhance O2 delivery by red blood cells, lead to ammonia trapping for excretion or buoyancy purposes, or lead to CO2 accumulation to promote photosynthesis by endosymbiotic algae. On the other hand, alkalinizing mechanisms can serve to promote calcium carbonate skeletal formation. This nonexhaustive review summarizes some of the distinct acid–base homeostatic mechanisms that have evolved in aquatic organisms to meet the particular challenges of this environment.

Continue reading ‘Evolutionary links between intra‐ and extracellular acid–base regulation in fish and other aquatic animals’

Subscribe to the RSS feed

Follow AnneMarin on Twitter

Archives

Powered by FeedBurner

Blog Stats

  • 1,450,103 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book