Posts Tagged 'annelids'

The sibling polychaetes Platynereis dumerilii and Platynereis massiliensis in the Mediterranean Sea: are phylogeographic patterns related to exposure to ocean acidification?

High pCO2 environments, such as volcanic carbon dioxide (CO2) vents, which mimic predicted near-future scenarios of ocean acidification (OA), offer an opportunity to examine effects of low pH conditions on marine biodiversity and adaptation/acclimatization of marine organisms to such conditions. Based on previous field studies in these systems, it is predicted that the stress owing to increasing CO2 concentrations favours the colonization by invertebrate species with a brooding habit. The goal of this study was to investigate the relative occurrence of the two sibling species Platynereis dumerilii (Audouin & Milne-Edwards, 1834) (free spawner) and Platynereis massiliensis (Moquin-Tandon, 1869) (egg brooder) in two shallow CO2 vents off Ischia and Vulcano islands (Italy, Tyrrhenian Sea), and in various areas with ambient pH conditions, where they represent one of the dominant genera. Phylogeographic analyses were integrated with reproductive biology and life-history observations on some selected populations thriving in the vent areas. This approach revealed the presence of four distinct Platynereis clades. Whereas two clades primarily inhabit CO2 vents and are presumably all brooders, the other two clades dominate the non-acidified sites and appear to be epitokous free spawners. We postulate that one of the brooding, vent-inhabiting clades represents P. massiliensis and one of the free spawning, non-vent-inhabiting clades represents P. dumerilii, although confirmation of the species status with sequence data from the respective-type localities would be desirable.

Continue reading ‘The sibling polychaetes Platynereis dumerilii and Platynereis massiliensis in the Mediterranean Sea: are phylogeographic patterns related to exposure to ocean acidification?’

Ocean acidification as a driver of community simplification via the collapse of higher-order and rise of lower-order consumers

Increasing oceanic uptake of CO2 is predicted to drive ecological change as both a resource (i.e. CO2 enrichment on primary producers) and stressor (i.e. lower pH on consumers). We use the natural ecological complexity of a CO2 vent (i.e. a seagrass system) to assess the potential validity of conceptual models developed from laboratory and mesocosm research. Our observations suggest that the stressor-effect of CO2enrichment combined with its resource-effect drives simplified food web structure of lower trophic diversity and shorter length. The transfer of CO2 enrichment from plants to herbivores through consumption (apparent resource-effect) was not compensated by predation, because carnivores failed to contain herbivore outbreaks. Instead, these higher-order consumers collapsed (apparent stressor-effect on carnivores) suggesting limited trophic propagation to predator populations. The dominance of primary producers and their lower-order consumers along with the loss of carnivores reflects the duality of intensifying ocean acidification acting both as resource-effect (i.e. bottom-up control) and stressor-effect (i.e. top-down control) to simplify community and trophic structure and function. This shifting balance between the propagation of resource enrichment and its consumption across trophic levels provides new insights into how the trophic dynamics might stabilize against or propagate future environmental change.

Continue reading ‘Ocean acidification as a driver of community simplification via the collapse of higher-order and rise of lower-order consumers’

Natural acidification changes the timing and rate of succession, alters community structure, and increases homogeneity in marine biofouling communities

Ocean acidification may have far-reaching consequences for marine community and ecosystem dynamics, but its full impacts remain poorly understood due to the difficulty of manipulating pCO2 at the ecosystem level to mimic realistic fluctuations that occur on a number of different timescales. It is especially unclear how quickly communities at various stages of development respond to intermediate-scale pCO2 change and, if high pCO2 is relieved mid-succession, whether past acidification effects persist, are reversed by alleviation of pCO2 stress, or are worsened by departures from prior high pCO2 conditions to which organisms had acclimatized. Here, we used reciprocal transplant experiments along a shallow water volcanic pCO2 gradient to assess the importance of the timing and duration of high pCO2 exposure (i.e. discrete events at different stages of successional development vs. continuous exposure) on patterns of colonization and succession in a benthic fouling community. We show that succession at the acidified site was initially delayed (less community change by eight weeks) but then caught up over the next four weeks. These changes in succession led to homogenization of communities maintained in or transplanted to acidified conditions, and altered community structure in ways that reflected both short- and longer-term acidification history. These community shifts are likely a result of interspecific variability in response to increased pCO2 and changes in species interactions. High pCO2 altered biofilm development, allowing serpulids to do best at the acidified site by the end of the experiment, although early (pre-transplant), negative effects of pCO2 on recruitment of these worms was still detectable. The ascidians Diplosoma sp. and Botryllus sp. settled later and were more tolerant to acidification. Overall, transient and persistent acidification-driven changes in the biofouling community, via both past and more recent exposure, could have important implications for ecosystem function and food web dynamics.

Continue reading ‘Natural acidification changes the timing and rate of succession, alters community structure, and increases homogeneity in marine biofouling communities’

Effect of ocean acidification and elevated temperature on growth of calcifying tubeworm shells (Spirorbis spirorbis): an in-situ benthocosm approach

The calcareous tubeworm Spirorbis spirorbis is a wide-spread serpulid species in the Baltic Sea, where it commonly grows as an epibiont on brown macroalgae (genus Fucus). It lives within a Mg-calcite shell and could be affected by ocean acidification and temperature rise induced by the predicted future atmospheric CO2 increase. However, Spirorbis tubes grow in a chemically modified boundary layer around the algae, which may mitigate acidification. In order to investigate how increasing temperature and rising pCO2 may influence S. spirorbis shell growth we carried out four seasonal experiments in the ‘Kiel Outdoor Benthocosms’ at elevated pCO2 and temperature conditions. Compared to laboratory batch culture experiments the benthocosm approach provides a better representation of natural conditions for physical and biological ecosystem parameters, including seasonal variations. We find that growth rates of S. spirorbis are significantly controlled by ontogenetic and seasonal effects. The length of the newly grown tube is inversely related to the initial diameter of the shell. Our study showed no significant difference of the growth rates between ambient atmospheric and elevated (1100 ppm) pCO2 conditions. No influence of daily average CaCO3 saturation state on the growth rates of S. spirorbiswas observed. We found, however, net growth of the shells even in temporarily undersaturated bulk solutions, under conditions that concurrently favored selective shell surface dissolution. The results suggest an overall resistance of S. spirorbis growth to acidification levels predicted for the year 2100 in the Baltic Sea. In contrast, S. spirorbis did not survive at mean seasonal temperatures exceeding 24 °C during the summer experiments. In the autumn experiments at ambient pCO2, the growth rates of juvenile S. spirorbis were higher under elevated temperature conditions. The results reveal that S. spirorbis may prefer moderately warmer conditions during their early life stages but will suffer from an excessive temperature increase and from increasing shell corrosion as a consequence of progressing ocean acidification.
Continue reading ‘Effect of ocean acidification and elevated temperature on growth of calcifying tubeworm shells (Spirorbis spirorbis): an in-situ benthocosm approach’

Impacts of ocean acidification on sperm develop with exposure time for a polychaete with long lived sperm

The majority of marine invertebrate species release eggs and sperm into seawater for external fertilisation. Seawater conditions are currently changing at an unprecedented rate as a consequence of ocean acidification (OA). Sperm are thought to be particularly vulnerable to these changes and may be exposed to external environmental conditions for variable periods of time between spawning and fertilisation. Here, we undertook a mechanistic investigation of sperm swimming performance in the coastal polychaete Arenicola marina during an extended exposure to OA conditions (pHNBS 7.77, 1000 μatm pCO2). We found that key fitness-related aspects of sperm functioning declined faster under OA conditions i.e. impacts became apparent with exposure time. Sperm swimming speed (VCL), the number of motile sperm and sperm path linearity all dropped significantly after 4 h under OA conditions whilst remaining constant under ambient conditions at this time point. Our results highlight the importance of sperm exposure duration in ocean acidification experiments and may help towards explaining species specific differences in response.

Continue reading ‘Impacts of ocean acidification on sperm develop with exposure time for a polychaete with long lived sperm’

Physiological and biochemical impacts induced by mercury pollution and seawater acidification in Hediste diversicolor

The present study evaluated the impacts of predicted seawater acidification and Hg pollution, when stressors were acting alone and in combination, on the polychaete Hediste diversicolor. Polychaetes were exposed during 28 days to low pH (7.5), Hg (5 μg/L) and pH 7.5 + Hg, and physiological alterations (respiration rate), biochemical markers related to metabolic potential (glycogen and protein content, electron transport system activity) and oxidative status (activity of antioxidant and biotransformation enzymes, lipid peroxidation) were evaluated. The results obtained clearly showed that polychaetes were sensitive to low pH and Hg contamination, both acting alone or in combination. Organisms used their energy reserves under stressful conditions, which decreased by up to half of the control content, probably to fuel defence mechanisms. Our findings further demonstrated that polychaetes exposed to these stressors presented increased antioxidant defence mechanisms (3 fold compared to control). However, organisms were not able to prevent cellular damage, especially noticed at Hg exposure and pH 7.5. Overall, although all the tested conditions induced oxidative stress in Hediste diversicolor, the combined effect of seawater acidification and Hg contamination did not induce higher impacts in polychaetes than single stressor exposures. These findings may indicate that predicted climate change scenarios may not increase Hediste diversicolor sensitivity towards Hg and may not significantly change the toxicity of this contaminant to this polychaete species.

Continue reading ‘Physiological and biochemical impacts induced by mercury pollution and seawater acidification in Hediste diversicolor’

Altered epiphyte community and sea urchin diet in Posidonia oceanica meadows in the vicinity of submarine volcanic CO2 vents

Ocean acidification (OA) predicted for 2100 is expected to shift seagrass epiphyte communities towards the dominance of more tolerant non-calcifying taxa. However, little is known about the indirect effects of such changes on food provision to key seagrass consumers. We found that epiphyte communities of the seagrass Posidonia oceanica in two naturally acidified sites (i.e. north and south sides of a volcanic CO2 vent) and in a control site away from the vent at the Ischia Island (NW Mediterranean Sea) significantly differed in composition and abundance. Such differences involved a higher abundance of non-calcareous crustose brown algae and a decline of calcifying polychaetes in both acidified sites. A lower epiphytic abundance of crustose coralline algae occurred only in the south side of the vents, thus suggesting that OA may alter epiphyte assemblages in different ways due to interaction with local factors such as differential fish herbivory or hydrodynamics. The OA effects on food items (seagrass, epiphytes, and algae) indirectly propagated into food provision to the sea urchin Paracentrotus lividus, as reflected by a reduced P. oceanica exploitation (i.e. less seagrass and calcareous epiphytes in the diet) in favour of non-calcareous green algae in both vent sites. In contrast, we detected no difference close and outside the vents neither in the composition of sea urchin diet nor in the total abundance of calcareous versus non-calcareous taxa. More research, under realistic scenarios of predicted pH reduction (i.e. ≤ 0.32 units of pH by 2100), is still necessary to better understand cascading effects of this altered urchin exploitation of food resources under acidified conditions on ecosystem diversity and function.

Continue reading ‘Altered epiphyte community and sea urchin diet in Posidonia oceanica meadows in the vicinity of submarine volcanic CO2 vents’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,025,944 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book