Posts Tagged 'bryozoa'

Growth response of calcifying marine epibionts to biogenic pH fluctuations and global ocean acidification scenarios

In coastal marine environments, physical and biological forces can cause dynamic pH fluctuations from microscale (diffusive boundary layer [DBL]) up to ecosystem‐scale (benthic boundary layer [BBL]). In the face of ocean acidification (OA), such natural pH variations may modulate an organism’s response to OA by providing temporal refugia. We investigated the effect of pH fluctuations, generated by the brown alga Fucus serratus‘ biological activity, on the calcifying epibionts Balanus improvisus and Electra pilosa under OA. For this, both epibionts were grown on inactive and biologically active surfaces and exposed to (1) constant pH scenarios under ambient (pH 8.1) or OA conditions (pH 7.7), or (2) oscillating pH scenarios mimicking BBL conditions at ambient (pH 7.7–8.6) or OA scenarios (pH 7.4–8.2). Furthermore, all treatment combinations were tested at 10°C and 15°C. Against our expectations, OA treatments did not affect epibiont growth under constant or fluctuating (BBL) pH conditions, indicating rather high robustness against predicted OA scenarios. Furthermore, epibiont growth was hampered and not fostered on active surfaces (fluctuating DBL conditions), indicating that fluctuating pH conditions of the DBL with elevated daytime pH do not necessarily provide temporal refugia from OA. In contrast, results indicate that factors other than pH may play larger roles for epibiont growth on macrophytes (e.g., surface characteristics, macrophyte antifouling defense, or dynamics of oxygen and nutrient concentrations). Warming enhanced epibiont growth rates significantly, independently of OA, indicating no synergistic effects of pH treatments and temperature within their natural temperature range.

Continue reading ‘Growth response of calcifying marine epibionts to biogenic pH fluctuations and global ocean acidification scenarios’

Summer and winter MgCO3 levels in the skeletons of Arctic bryozoans

Highlights

  • Summer and winter MgCO3 levels in skeleton of Arctic bryozoans by Anna Iglikowska, Małgorzata Krzemińska, Paul E. Renaud, Jørgen Berge, Haakon Hop and Piotr Kukliński.
  • Arctic seawater differs in carbonate saturation state during polar night and day.

  • During summer carbonate saturation gradient is expected related to depth.

  • Carbonate saturation state may influence Mg accumulation in biogenic calcite.

  • No differences between summer and winter levels of skeletal MgCO3 were found.

  • Bryozoans are able to regulate their skeletal MgCO3 concentrations biologically.

Abstract

In the Arctic, seasonal patterns in seawater biochemical conditions are shaped by physical, chemical, and biological processes related to the alternation of seasons, i.e. winter polar night and summer midnight sun. In summertime, CO2 concentration is driven by photosynthetic activity of autotrophs which raises seawater pH and carbonate saturation state (Ω). In addition, restriction of photosynthetic activity to the euphotic zone and establishment of seasonal stratification often leads to depth gradients in pH and Ω. In winter, however, severely reduced primary production along with respiration processes lead to higher CO2 concentrations which consequently decrease seawater pH and Ω.

Many calcifying invertebrates incorporate other minerals, in addition to calcium, into their skeletons, with potential consequences for stability of the mineral matrix and vulnerability to abrasion of predators. We tested whether changes in seawater chemistry due to light-driven activities of marine biota can influence the uptake of Mg into calcified skeletons of Arctic Bryozoa, a dominant faunal group in polar hard-bottom habitats. Our results indicate no clear differences between summer and winter levels of skeletal MgCO3 in five bryozoan species despite differences in Ω between these two seasons. Furthermore, we could not detect any depth-related differences in MgCO3 content in skeletons of selected bryozoans. These results may indicate that Arctic bryozoans are able to control MgCO3 skeletal concentrations biologically. Yet recorded spatial variability in MgCO3 content in skeletons from stations exhibiting different seawater parameters suggests that environmental factors can also, to some extent, shape the skeletal chemistry of Arctic bryozoans.

Continue reading ‘Summer and winter MgCO3 levels in the skeletons of Arctic bryozoans’

Energetic context determines species and community responses to ocean acidification

Physiological responses to ocean acidification are thought to be related to energetic trade‐offs. Although a number of studies have proposed that negative responses to low pH could be minimized in situations where food resources are more readily available, evidence for such effects on individuals remain mixed, and the consequences of such effects at the community level remain untested. We explored the potential for food availability and diet quality to modify the effects of acidification on developing marine fouling communities in field‐deployed mesocosms by supplementing natural food supply with one of two species of phytoplankton, differing in concentration of fatty acids. After twelve weeks, no species demonstrated the interactive effects generally predicted in the literature, where a positive overall effect of diet mitigated the negative overall effects of acidification. Rather, for some species, additional food supply appeared to bring out or exacerbate the negative effects of low pH. Community richness and structure were only altered by acidification, while space occupation and evenness reflected patterns of the most dominant species. Importantly, we find that acidification stress can increase the relative abundance of invasive species, even under resource conditions that otherwise prevented invasive species establishment. Overall, the proposed hypothesis regarding the ability for food addition to mitigate the negative effects of acidification is thus far not widely supported at species or community levels. It is clear that acidification is a strong driving force in these communities but understanding underlying energetic and competitive context is essential to developing mechanistic predictions for climate change responses.

Continue reading ‘Energetic context determines species and community responses to ocean acidification’

Behavioral responses to ocean acidification in marine invertebrates: new insights and future directions

Ocean acidification (OA) affects marine biodiversity and alters the structure and function of marine populations, communities, and ecosystems. Recently, effects of OA on the behavioral responses of marine animals have been given with much attention. While many of previous studies focuses on marine fish. Evidence suggests that marine invertebrate behaviors were also be affected. In this review, we discussed the effects of C02-driven OA on the most common behaviors studied in marine invertebrates, including settlement and habitat selection, feeding, anti-predatory, and swimming behaviors, and explored the related mechanisms behind behaviors. This review summarizes how OA affects marine invertebrate behavior, and provides new insights and highlights novel areas for future research.

Continue reading ‘Behavioral responses to ocean acidification in marine invertebrates: new insights and future directions’

Bryozoans and ocean acidification

Bryozoans are aquatic animals that form colonies of connected individuals. Bryozoans have such highly variable morphology that they are often mistaken for other organisms such as hydroids, corals, colonial ascidians and turfing seaweeds. Some colonies are bushy and moss-like, hence the phylum name, Bryozoa, which means ‘moss animals’ in Greek. Others are flat and encrusting, hence the common name ‘sea mats’. Still others resemble lace, forming erect frondose colonies with holes in their structure or encrustations over sea-weeds and rocks, hence the name ‘lace corals’. Since no single common name is applicable to all species, the name ‘bryozoans’ is the most preferred by researchers of the group.

Continue reading ‘Bryozoans and ocean acidification’

Abiotic and biotic interactions in the diffusive boundary layer of kelp blades create a potential refuge from ocean acidification

  1. Seaweeds are able to modify the chemical environment at their surface, in a micro‐zone called the diffusive boundary layer (DBL), via their metabolic processes controlled by light intensity. Depending on the thickness of the DBL, sessile invertebrates such as calcifying bryozoans or tube‐forming polychaetes living on the surface of the blades can be affected by the chemical variations occurring in this microlayer. Especially in the context of ocean acidification (OA), these microhabitats might be considered as a refuge from lower pH, because during the day photosynthesis temporarily raises the pH to values higher than in the mainstream seawater.
  2. We assessed the thickness and the characteristics of the DBL at two pH levels (today’s average surface ocean pH 8.1 and a reduced pH predicted for the end of the century, pH 7.7) and seawater flows (slow, 0.5 and fast, >8 cm/s) on Ecklonia radiata (kelp) blades. Oxygen and pH profiles from the blade surface to the mainstream seawater were measured with O2 and pH microsensors for both bare blades and blades colonized by the bryozoan Membranipora membranacea.
  3. The DBL was thicker in slow flow compared with fast flow and the presence of bryozoans increased the DBL thickness and shaped the DBL gradient in dark conditions. Net production was increased in the low pH condition, increasing the amount of oxygen in the DBL in both bare and epiphytized blades. This increase drove the daily pH fluctuations at the blade surface, shifting them towards higher values compared with today’s pH. The presence of bryozoans led to lower oxygen concentrations in the DBL and more complex pH fluctuations at the blade surface, particularly at pH 7.7.
  4. Overall, this study, based on microprofiles, shows that, in slow flow, DBL microenvironments at the surface of the kelps may constitute a refuge from OA with pH values higher than those of the mainstream seawater. For calcifying organisms, it could also represent training ground for harsh conditions, with broad daily pH and oxygen fluctuations. These chemical microenvironments, biologically shaped by the macrophytes, are of great interest for the resilience of coastal ecosystems in the context of global change.

Continue reading ‘Abiotic and biotic interactions in the diffusive boundary layer of kelp blades create a potential refuge from ocean acidification’

Natural acidification changes the timing and rate of succession, alters community structure, and increases homogeneity in marine biofouling communities

Ocean acidification may have far-reaching consequences for marine community and ecosystem dynamics, but its full impacts remain poorly understood due to the difficulty of manipulating pCO2 at the ecosystem level to mimic realistic fluctuations that occur on a number of different timescales. It is especially unclear how quickly communities at various stages of development respond to intermediate-scale pCO2 change and, if high pCO2 is relieved mid-succession, whether past acidification effects persist, are reversed by alleviation of pCO2 stress, or are worsened by departures from prior high pCO2 conditions to which organisms had acclimatized. Here, we used reciprocal transplant experiments along a shallow water volcanic pCO2 gradient to assess the importance of the timing and duration of high pCO2 exposure (i.e. discrete events at different stages of successional development vs. continuous exposure) on patterns of colonization and succession in a benthic fouling community. We show that succession at the acidified site was initially delayed (less community change by eight weeks) but then caught up over the next four weeks. These changes in succession led to homogenization of communities maintained in or transplanted to acidified conditions, and altered community structure in ways that reflected both short- and longer-term acidification history. These community shifts are likely a result of interspecific variability in response to increased pCO2 and changes in species interactions. High pCO2 altered biofilm development, allowing serpulids to do best at the acidified site by the end of the experiment, although early (pre-transplant), negative effects of pCO2 on recruitment of these worms was still detectable. The ascidians Diplosoma sp. and Botryllus sp. settled later and were more tolerant to acidification. Overall, transient and persistent acidification-driven changes in the biofouling community, via both past and more recent exposure, could have important implications for ecosystem function and food web dynamics.

Continue reading ‘Natural acidification changes the timing and rate of succession, alters community structure, and increases homogeneity in marine biofouling communities’

Interactive effects of temperature, food and skeletal mineralogy mediate biological responses to ocean acidification in a widely distributed bryozoan

Marine invertebrates with skeletons made of high-magnesium calcite may be especially susceptible to ocean acidification (OA) due to the elevated solubility of this form of calcium carbonate. However, skeletal composition can vary plastically within some species, and it is largely unknown how concurrent changes in multiple oceanographic parameters will interact to affect skeletal mineralogy, growth and vulnerability to future OA. We explored these interactive effects by culturing genetic clones of the bryozoan Jellyella tuberculata (formerly Membranipora tuberculata) under factorial combinations of dissolved carbon dioxide (CO2), temperature and food concentrations. High CO2 and cold temperature induced degeneration of zooids in colonies. However, colonies still maintained high growth efficiencies under these adverse conditions, indicating a compensatory trade-off whereby colonies degenerate more zooids under stress, redirecting energy to the growth and maintenance of new zooids. Low-food concentration and elevated temperatures also had interactive effects on skeletal mineralogy, resulting in skeletal calcite with higher concentrations of magnesium, which readily dissolved under high CO2. For taxa that weakly regulate skeletal magnesium concentration, skeletal dissolution may be a more widespread phenomenon than is currently documented and is a growing concern as oceans continue to warm and acidify.

Continue reading ‘Interactive effects of temperature, food and skeletal mineralogy mediate biological responses to ocean acidification in a widely distributed bryozoan’

Ocean acidification increases larval swimming speed and has limited effects on spawning and settlement of a robust fouling bryozoan, Bugula neritina

Few studies to date have investigated the effects of ocean acidification on non-reef forming marine invertebrates with non-feeding larvae. Here, we exposed adults of the bryozoan Bugula neritina and their larvae to lowered pH. We monitored spawning, larval swimming, settlement, and post-settlement individual sizes at two pHs (7.9 vs. 7.6) and settlement dynamics alone over a broader pH range (8.0 down to 6.5). Our results show that spawning was not affected by adult exposure (48 h at pH 7.6), larvae swam 32% faster and the newly-settled individuals grew significantly larger (5%) at pH 7.6 than in the control. Although larvae required more time to settle when pH was lowered, reduced pH was not lethal, even down to pH 6.5. Overall, this fouling species appeared to be robust to acidification, and yet, indirect effects such as prolonging the pelagic larval duration could increase predation risk, and might negatively impact population dynamics.

Continue reading ‘Ocean acidification increases larval swimming speed and has limited effects on spawning and settlement of a robust fouling bryozoan, Bugula neritina’

Low pH conditions impair module capacity to regenerate in a calcified colonial invertebrate, the bryozoan Cryptosula pallasiana

Many aquatic animals grow into colonies of repeated, genetically identical, modules (zooids). Zooid interconnections enable colonies to behave as integrated functional units, while plastic responses to environmental changes may affect individual zooids. Plasticity includes the variable partitioning of resources to sexual reproduction, colony growth and maintenance. Maintenance often involves regeneration, which is also a routine part of the life history in some organisms, such as bryozoans. Here we investigate changes in regenerative capacity in the encrusting bryozoan Cryptosula pallasiana when cultured at different seawater pCO2 levels. The proportion of active zooids showing polypide regeneration was highest at current oceanic pH (8.1), but decreased progressively as pH declined below that value, reaching a six-fold reduction at pH 7.0. The zone of budding of new zooids at the colony periphery declined in size below pH 7.7. Under elevated pCO2 conditions, already experienced sporadically in coastal areas, skeletal corrosion was accompanied by the proportional reallocation of resources from polypide regeneration in old zooids to the budding of new zooids at the edge of the colony. Thus, future ocean acidification can affect colonial organisms by changing how they allocate resources, with potentially profound impacts on life-history patterns and ecological interactions.

Continue reading ‘Low pH conditions impair module capacity to regenerate in a calcified colonial invertebrate, the bryozoan Cryptosula pallasiana’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,417,549 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book

Archives