Posts Tagged 'Antarctic'



Robustness of Adamussium colbecki shell to ocean acidification in a short-term exposure

Highlights

• Adamussium colbecki shell crystals deposition is not affected by low pH exposure.

• A. colbecki shell resulted robust to low pH exposure in terms of micro and nano-mechanics.

• Larger resilience of Antarctic communities to predation than foreseen in a Global Change scenario.

Abstract

Atmospheric pCO2 has increased since the industrial revolution leading to a lowering of the ocean surface water pH, a phenomenon called ocean acidification (OA). OA is claimed to be a major threat for marine organisms and ecosystems and, particularly, for Polar regions. We explored the impact of OA on the shell mechanical properties of the Antarctic scallop Adamussium colbecki exposed for one month to acidified (pH 7.6) and natural conditions (unmanipulated littoral water), by performing Scanning Electron Microscopy, nanoindentation and Vickers indentation on the scallop shell. No effect of pH could be detected either in crystal deposition or in the mechanical properties. A. colbecki shell was found to be resistant to OA, which suggests this species to be able to face a climate change scenario that may threat the persistence of the endemic Antarctic species. Further investigation should be carried out in order to elucidate the destiny of this key species in light of global change.

Continue reading ‘Robustness of Adamussium colbecki shell to ocean acidification in a short-term exposure’

Calcification and distribution of extant coccolithophores across the Drake Passage during late austral summer 2016

Coccolithophores are globally distributed microscopic marine algae that exert a major influence on the global carbon cycle through calcification and primary productivity. There is recent interest in coccolithophore polar communities, however field observations regarding their biogeographic distribution are scarce for the Southern Ocean. This study documents the latitudinal variability in the coccolithophore assemblage composition and the coccolith mass variation of the ecologically dominant Emiliania huxleyi across the Drake Passage. Ninety-six water samples were taken between 10 and 150 m water depth from 18 stations during POLARSTERN Expedition PS97 (February–April, 2016). A minimum of 200 coccospheres per sample were classified in scanning electron microscope and coccolith mass was estimated with light microscopy, using the C-Calcita software. We find that coccolithophore abundance and diversity decrease southwards marking different oceanographic fronts as ecological boundaries. We characterize three zones: (1) the Chilean margin, where E. huxleyi type A (normal and overcalcified) and type R are present; (2) the Subantarctic Zone (SAZ), where E. huxleyi reaches maximum values of 212.5×103cells/L and types B/C, C, O are dominant. (3) The Polar Front Zone (PFZ), where E. huxleyi types B/C and C dominate. We link the decreasing trend in E. huxleyi coccolith mass to the poleward latitudinal succesion from type A to type B group. Remarkably, we find that coccolith mass is strongly anticorrelated to total alkalinity, total CO2, bicarbonate ion and pH. We speculate that low temperatures are a greater limiting factor than carbonate chemistry in the Southern Ocean. However, further in situ oceanographical data is needed to verify the proposed relationships. We hypothesize that assemblage composition and calcification modes of E. huxleyi in the Drake Passage will be strongly influenced by the ongoing climate change.

Continue reading ‘Calcification and distribution of extant coccolithophores across the Drake Passage during late austral summer 2016’

Degradation of internal organic matter is the main control on pteropod shell dissolution after death

The potential for preservation of thecosome pteropods is thought to be largely governed by the chemical stability of their delicate aragonitic shells in seawater. However, sediment trap studies have found that significant carbonate dissolution can occur above the carbonate saturation horizon. Here we present the results from experiments conducted on two cruises to the Scotia Sea to directly test whether the breakdown of the organic pteropod body influences shell dissolution. We find that, on the timescales of three to thirteen days, the oxidation of organic matter within the shells of dead pteropods is a stronger driver of shell dissolution than the saturation state of seawater. Three to four days after death, shells became milky white and nano‐SEM images reveal smoothing of internal surface features and increased shell porosity, both indicative of aragonite dissolution. These findings have implications for the interpretation of the condition of pteropod shells from sediment traps and the fossil record, as well as for understanding the processes controlling particulate carbonate export from the surface ocean.

Continue reading ‘Degradation of internal organic matter is the main control on pteropod shell dissolution after death’

In situ response of Antarctic under-ice primary producers to experimentally altered pH

Elevated atmospheric CO2 concentrations are contributing to ocean acidification (reduced seawater pH and carbonate concentrations), with potentially major ramifications for marine ecosystems and their functioning. Using a novel in situ experiment we examined impacts of reduced seawater pH on Antarctic sea ice-associated microalgal communities, key primary producers and contributors to food webs. pH levels projected for the following decades-to-end of century (7.86, 7.75, 7.61), and ambient levels (7.99), were maintained for 15 d in under-ice incubation chambers. Light, temperature and dissolved oxygen within the chambers were logged to track diurnal variation, with pH, O2, salinity and nutrients assessed daily. Uptake of CO2 occurred in all treatments, with pH levels significantly elevated in the two extreme treatments. At the lowest pH, despite the utilisation of CO2 by the productive microalgae, pH did not return to ambient levels and carbonate saturation states remained low; a potential concern for organisms utilising this under-ice habitat. However, microalgal community biomass and composition were not significantly affected and only modest productivity increases were noted, suggesting subtle or slightly positive effects on under-ice algae. This in situ information enables assessment of the influence of future ocean acidification on under-ice community characteristics in a key coastal Antarctic habitat.

Continue reading ‘In situ response of Antarctic under-ice primary producers to experimentally altered pH’

Impact of ocean acidification and high solar radiation on productivity and species composition of a late summer phytoplankton community of the coastal Western Antarctic Peninsula

The Western Antarctic Peninsula (WAP), one of the most productive regions of the Southern Ocean, is currently undergoing rapid environmental changes such as ocean acidification (OA) and increased daily irradiances from enhanced surface‐water stratification. To assess the potential for future biological CO2 sequestration of this region, we incubated a natural phytoplankton assemblage from Ryder Bay, WAP, under a range of pCO2 levels (180 μatm, 450 μatm, and 1000 μatm) combined with either moderate or high natural solar radiation (MSR: 124 μmol photons m−2 s−1 and HSR: 435 μmol photons m−2 s−1, respectively). The initial and final phytoplankton communities were numerically dominated by the prymnesiophyte Phaeocystis antarctica, with the single cells initially being predominant and solitary and colonial cells reaching similar high abundances by the end. Only when communities were grown under ambient pCO2 in conjunction with HSR did the small diatom Fragilariopsis pseudonana outcompete P. antarctica at the end of the experiment. Such positive light‐dependent growth response of the diatom was, however, dampened by OA. These changes in community composition were caused by an enhanced photosensitivity of diatoms, especially F. pseudonana, under OA and HSR, reducing thereby their competitiveness toward P. antarctica. Moreover, community primary production (PP) of all treatments yielded similar high rates at the start and the end of the experiment, but with the main contributors shifting from initially large to small cells toward the end. Even though community PP of Ryder Bay phytoplankton was insensitive to the changes in light and CO2 availability, the observed size‐dependent shift in productivity could, however, weaken the biological CO2 sequestration potential of this region in the future.

Continue reading ‘Impact of ocean acidification and high solar radiation on productivity and species composition of a late summer phytoplankton community of the coastal Western Antarctic Peninsula’

The impact of ocean acidification on the gonads of three key Antarctic benthic macroinvertebrates

Highlights

• Ocean Acidification may act as an endocrine disruptor on invertebrate gonads

• Different species show different response to low pH in a simultaneous exposure

• Gametogenic stage and feeding condition affect the species response to low pH

Abstract

CO2 atmospheric pressure is increasing since industrial revolution, leading to a lowering of the ocean surface water pH, a phenomenon known as ocean acidification, with several reported effects on individual species and cascading effects on marine ecosystems. Despite the great amount of literature on ocean acidification effects on calcifying organisms, the response of their reproductive system still remains poorly known. In the present study, we investigated the histopathological effects of low pH on the gonads of three key macroinvertebrates of the Terra Nova Bay (Ross Sea) littoral area: the sea urchin Sterechinus neumayeri, the sea star Odontaster validus and the scallop Adamussium colbecki. After 1 month of exposure at control (8.12) and reduced (7.8 and 7.6) pH levels, we dissected the gonads and performed histological analyses to detect potential differences among treatments. Results showed significant effects on reproductive conditions of A. colbecki and S. neumayeri, while O. validus did not show any kind of alteration. Present results reinforce the need to focus on ocean acidification effects on soft tissues, particularly the gonads, whose damage may exert large effects on the individual fitness, with cascading effects on the population dynamic of the species.

Continue reading ‘The impact of ocean acidification on the gonads of three key Antarctic benthic macroinvertebrates’

In-situ behavioural and physiological responses of Antarctic microphytobenthos to ocean acidification

Ocean acidification (OA) is predicted to alter benthic marine community structure and function, however, there is a paucity of field experiments in benthic soft sediment communities and ecosystems. Benthic diatoms are important components of Antarctic coastal ecosystems, however very little is known of how they will respond to ocean acidification. Ocean acidification conditions were maintained by incremental computer controlled addition of high fCO2 seawater representing OA conditions predicted for the year 2100. Respiration chambers and PAM fluorescence techniques were used to investigate acute behavioural, photosynthetic and net production responses of benthic microalgae communities to OA in in-situ field experiments. We demonstrate how OA can modify behavioural ecology, which changes photo-physiology and net production of benthic microalgae. Ocean acidification treatments significantly altered behavioural ecology, which in turn altered photo-physiology. The ecological trends presented here have the potential to manifest into significant ecological change over longer time periods.

Continue reading ‘In-situ behavioural and physiological responses of Antarctic microphytobenthos to ocean acidification’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,292,135 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book