Posts Tagged 'reproduction'

Adaptive responses of fishes to climate change: feedback between physiology and behaviour


• We studied long-term effects of climate change on fish physiology and behaviour.

• Fish responses were tested from cellular to organismal levels in mesocosms/aquaria.

• Fish altered their growth and behaviour as an adaptive response to climate change.

• Fish showed trade-offs between cellular defences and behaviour.

• Adaptive responses show species strategies to prevail under future climate change.


The adaptive capacity of individuals, from their cells to their overall performance, allows species to adjust to environmental change. We assess a hierarchy of responses (from cells to organismal growth and behaviour) to understand the flexibility of adaptive responses to future ocean conditions (warming and acidification) in two species of fish with short lifespans by conducting a long-term mesocosm/aquarium experiment. Fishes were exposed to elevated CO2 and temperature in a factorial design for a five-month period. We found a feedback mechanism between cellular defence and behavioural responses. In circumstances where their antioxidant defence mechanism was activated (i.e. warming or acidification), increased feeding rates prevented oxidative damage (i.e. during warming). However, when feeding rates failed to increase to provide additional energy needed for antioxidant defence, oxidative damage could not be prevented (warming + acidification). In contrast, when the activation of antioxidant defence was not required, energy intake from increased feeding was redirected to increased fish growth (acidification, warming + acidification), whilst no gain in growth rate was observed where feeding remained unchanged (acidification or warming). This adaptive strategy seems to rely on the inherent behavioural response of fishes to their environment and such adjustability shows the kind of responses that organisms may express to prevail in future ocean climate. Indeed, assessing the link between responses from cellular to organismal levels, using a diversity of fitness indicators and behaviour, provides a fundamental understanding of how organisms as a whole may adjust to prevail in a future world.

Continue reading ‘Adaptive responses of fishes to climate change: feedback between physiology and behaviour’

Ocean acidification and elevated temperature negatively affect recruitment, oxygen consumption and calcification of the reef-building Dendropoma cristatum early life stages: evidence from a manipulative field study


• Effects of pH and temperature in a Mediterranean intertidal reef-building species were tested for the first time;

• Portions of vermetid reefs have been transplanted in a natural CO2 vent and air-temperature was manipulated;

• The combination of high temperature and low pH reduced the oxygen consumption of the vermetid D. cristatum;

• Reproductive success, recruitment, and calcification of early life stages of D. cristatum were impacted by temperature and pH;

• Shell of embryos and recruits exposed to high pCO2 showed an increase in Mg concentration and a higher dissolution.


Expected temperature rise and seawater pH decrease may affect marine organism fitness. By a transplant experiment involving air-temperature manipulation along a natural CO2 gradient, we investigated the effects of high pCO2 (~1100 μatm) and elevated temperature (up to +2 °C than ambient conditions) on the reproductive success, recruitment, growth, shell chemical composition and oxygen consumption of the early life stages of the intertidal reef-building vermetid Dendropoma cristatum. Reproductive success was predominantly affected by temperature increase, with encapsulated embryos exhibiting higher survival in control than elevated temperature conditions, which were in turn unaffected by altered seawater pH levels. Decreasing pH (alone or in combination with temperature) significantly affected the shell growth and shell chemical composition of both embryos and recruits. Elevated temperatures along with lower pH led to decreases of ~30% oxygen consumption and ~60% recruitment. Our results suggest that the early life stages of the reef-builder D. cristatum are highly sensitive to expected environmental change, with major consequences on the intertidal vermetid reefs they build and indirectly on the high biodiversity levels they support.

Continue reading ‘Ocean acidification and elevated temperature negatively affect recruitment, oxygen consumption and calcification of the reef-building Dendropoma cristatum early life stages: evidence from a manipulative field study’

Ocean acidification has little effect on the biochemical composition of the coccolithophore Emiliania huxleyi

Owing to the hierarchical organization of biology, from genomes over transcriptomes and proteomes down to metabolomes, there is continuous debate about the extent to which data and interpretations derived from one level, e.g. the transcriptome, are in agreement with other levels, e.g. the metabolome. Here, we tested the effect of ocean acidification (OA; 400 vs. 1000 μatm CO2) and its modulation by light intensity (50 vs. 300 μmol photons m-2 s-1) on the biomass composition (represented by 75 key metabolites) of diploid and haploid life-cycle stages of the coccolithophore Emiliania huxleyi (RCC1216 and RCC1217) and compared these data with interpretations from previous physiological and gene expression screenings. The metabolite patterns showed minor responses to OA in both life-cycle stages. Whereas previous gene expression analyses suggested that the observed increased biomass buildup derived from lipid and carbohydrate storage, this dataset suggests that OA slightly increases overall biomass of cells, but does not significantly alter their metabolite composition. Generally, light was shown to be a more dominant driver of metabolite composition than OA, increasing the relative abundances of amino acids, mannitol and storage lipids, and shifting pigment contents to accommodate increased irradiance levels. The diploid stage was shown to contain vastly more osmolytes and mannitol than the haploid stage, which in turn had a higher relative content of amino acids, especially aromatic ones. Besides the differences between the investigated cell types and the general effects on biomass buildup, our analyses indicate that OA imposes only negligible effects on E. huxleyi´s biomass composition.

Continue reading ‘Ocean acidification has little effect on the biochemical composition of the coccolithophore Emiliania huxleyi’

Cryptic genetic variation underpins rapid adaptation to ocean acidification

Global climate change has intensified the need to assess the capacity for natural populations to adapt to abrupt shifts in the environment. Reductions in seawater pH constitute a conspicuous stressor associated with increasing atmospheric carbon dioxide that is affecting ecosystems throughout the world’s oceans. Here, we quantify the phenotypic and genetic modifications associated with rapid adaptation to reduced seawater pH in the marine mussel, Mytilus galloprovincialis. We reared a genetically diverse larval population in ambient and extreme low pH conditions (pHT 8.1 and 7.4) and tracked changes in the larval size and allele frequency distributions through settlement. Additionally, we separated larvae by size to link a fitness-related trait to its underlying genetic background in each treatment. Both phenotypic and genetic data show that M. galloprovincialis can evolve in response to a decrease in seawater pH. This process is polygenic and characterized by genotype-environment interactions, suggesting the role of cryptic genetic variation in adaptation to future climate change. Holistically, this work provides insight into the processes underpinning rapid evolution, and demonstrates the importance of maintaining standing variation within natural populations to bolster species’ adaptive capacity as global change progresses.

Continue reading ‘Cryptic genetic variation underpins rapid adaptation to ocean acidification’

Effect of pH on the bacterial community present in larvae and spat of Crassostrea gigas

Changes in marine environments, including pH changes, have been correlated to alterations in the physiology and disease susceptibility of cultured organisms at the early stages of development. In this study, high-throughput sequencing of the V3-V4 region of the 16S rRNA gene was performed to evaluate the bacterial
biodiversity of Crassostrea gigas pediveliger larvae and spat under acidic stress compared to that of larvae at normal pH value. The evaluation was performed in an experimental system with continuous water flow and pH
manipulation by CO2 bubbling to simulate acidification (pH 7.38 ± 0.039), using the current ocean pH conditions (pH 8.116 ± 0.023) as a reference. The results indicated that the bacterial communities associated with both pediveliger larvae and spat were modified in response to acidic conditions. The families Rhodobacteraceae and Campylobacteraceae were the most affected by the change in pH, with increases in Vibrionaceae in pediveliger larvae and Planctomycetaceae and Phyllobacteriaceae in spat detected. The results of this study demonstrate that the bacterial communities associated with C. gigas pediveliger larvae and spat are responsive to changes in ocean acidification

Continue reading ‘Effect of pH on the bacterial community present in larvae and spat of Crassostrea gigas’

Paleobiological traits that determined Scleractinian coral survival and proliferation during the late Paleocene and early Eocene hyperthermals

Coral reefs are particularly sensitive to environmental disturbances, such as rapid shifts in temperature or carbonate saturation. Work on modern reefs has suggested that some corals will fare better than others in times of stress and that their life history traits might correlate with species survival. These same traits can be applied to fossil taxa to assess whether life history traits correspond with coral survival through past intervals of stress similar to future climate predictions. This study aims to identify whether ecological selection (based on physiology, behavior, habitat, etc.) plays a role in the long‐term survival of corals during the late Paleocene and early Eocene. The late Paleocene‐early Eocene interval is associated with multiple hyperthermal events that correspond to rises in atmospheric pCO2 and sea surface temperature, ocean acidification, and increases in weathering and turbidity. Coral reefs are rare during the late Paleocene and early Eocene, but despite the lack of reef habitat, corals do not experience an extinction at the generic level and there is little extinction at the species level. In fact, generic and species richness increases throughout the late Paleocene and early Eocene. We show that corals with certain traits (coloniality, carnivorous, or suspension feeding diet, hermaphroditic brooding reproduction, living in clastic settings) are more likely to survive climate change in the early Eocene. These findings have important implications for modern coral ecology and allow us to make more nuanced predictions about which taxa will have higher extinction risk in present‐day climate change.

Continue reading ‘Paleobiological traits that determined Scleractinian coral survival and proliferation during the late Paleocene and early Eocene hyperthermals’

Comparison of larval development in domesticated and naturalized stocks of the Pacific oyster Crassostrea gigas exposed to high pCO2 conditions

Ocean acidification (OA) has had significant negative effects on oyster populations on the west coast of North America over the past decade. Many studies have focused on the physiological challenges experienced by young oyster larvae in high pCO2/low pH seawater with reduced aragonite saturation state (Ωarag), which is characteristic of OA. Relatively few, by contrast, have evaluated these impacts upon fitness traits across multiple larval stages and between discrete oyster populations. In this study, we conducted 2 replicated experiments, in 2015 and 2016, using larvae from naturalized ‘wild’ and selectively bred stocks of the Pacific oyster Crassostrea gigas from the US Pacific Northwest and reared them in ambient (~400 µatm) or high (~1600 µatm) pCO2 seawater from fertilization through final metamorphosis to juvenile ‘spat.’ In each year, high pCO2 seawater inhibited early larval development and affected the timing, but not the magnitude, of mortality during this stage. The effects of acidified seawater on metamorphosis of pediveligers to spat were variable between years, with no effect of seawater pCO2 in the first experiment but a ~42% reduction in spat in the second. Despite this variability, larvae from selectively bred oysters produced, on average, more (+ 55 and 37%) and larger (+ 5 and 23%) spat in ambient and high pCO2 seawater, respectively. These findings highlight the variable and stage-specific sensitivity of larval oysters to acidified seawater and the influence that genetic factors have in determining the larval performance of C. gigas exposed to high pCO2 seawater.

Continue reading ‘Comparison of larval development in domesticated and naturalized stocks of the Pacific oyster Crassostrea gigas exposed to high pCO2 conditions’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,279,026 hits


Ocean acidification in the IPCC AR5 WG II

OUP book