Posts Tagged 'reproduction'

Elevated temperature, but not decreased pH, impairs reproduction in a temperate fish

Fish reproductive success is linked to the ability of couples to mate and produce clutches that successfully hatch. Environmental stressors like high temperature and low pH can jeopardize this energetically costly process. In this study, exposure to high temperature and low pH was tested on a marine temperate species, Gobiusculus flavescens, to evaluate effects on reproductive performance. Breeding pairs were assigned to different temperatures (+ 0 °C, + 3 °C relative to in situ temperature) and pH levels (8.0, 7.6), in a cross-factorial design for a 3-month period. Reproduction activity, success, and paternal investment were measured throughout the exposure period. Results show reproduction is impaired by elevated temperature, while low pH had little impact. Breeding pairs under high temperature had 3% to 10% hatching success, up to 30% less eggs and eggs up to 20% smaller. Although paternal investment was not affected by tested parameters, males of breeding pairs exposed to elevated temperature had smaller gonadosomatic indexes, which might indicate a lack of investment in the reproductive process. Overall, results show that elevated temperature, expected more frequently in the near future, as a consequence of global warming, may impair key processes like reproduction in temperate fish, with potential consequences for fitness and population replenishment.

Continue reading ‘Elevated temperature, but not decreased pH, impairs reproduction in a temperate fish’

Simulated climate change scenarios impact the reproduction and early life stages of a soft coral


  • A change in the timing of onset of the soft coral breeding event occurred under elevated temperature and reduced pH seawater conditions.
  • A disruption of the synchronicity of the breeding event occurred under elevated temperature and reduced pH seawater conditions.
  • End-of-the-century seawater conditions are expected to affect the reproduction of the soft coral Rhytisma fulvum.
  • Planula survival and polyp metamorphosis rates were significantly reduced under both end-of-the-century seawater conditions compared to propagules reared under ambient conditions.
  • The photosynthetic capacity of the parent soft coral colonies was reduced under the end-of-the-century seawater conditions in comparison to those under the ambient conditions.


Coral reefs are threatened worldwide by global climate change, manifested in anthropogenic ocean warming and acidification. Despite the importance of coral sexual reproduction for the continuity of coral reefs, our understanding of the extent of the impact of climate change on coral sexual reproduction, particularly on coral reproductive phenology and early life stages, is limited. Here, we experimentally examined the effects of predicted end-of-the-century seawater conditions on the sexual reproduction and photosynthetic capacity of a Red-Sea zooxanthellate octocoral, Rhytisma fulvum. Sexually mature colonies were exposed to ambient temperature and pH conditions and to Representative Concentration Pathway (RCP) conditions (4.5 and 8.5), five weeks prior to their expected surface-brooding event. The reproductive phenology of the colonies under the simulated seawater conditions was compared to that on the natural reef. In addition, subsequent planulae development and their metamorphosis into primary polyps under the same RCP conditions as their parent colonies were monitored in a running seawater system. The results reveal that both RCP conditions led to a change in the timing of onset of the surface-brooding event and its synchronicity. In contrast, the surface-brooding event under ambient conditions co-occurred with that of the in-situ reef colonies and maintained its synchrony. Similarly, planula survival and polyp metamorphosis rate were significantly reduced under both RCP conditions compared to propagules reared under ambient conditions. In addition, the photosynthetic capacity of the parent colonies under both RCPs showed a reduction relative to that under the ambient conditions in the experiment, suggesting a reduction in carbon fixation during the late stages of gametogenesis. While our findings indicate that octocoral reproductive phenology is affected by environmental changes, further work is required in order to elucidate the long-term implications for the R. fulvum population in the northern Red Sea.

Continue reading ‘Simulated climate change scenarios impact the reproduction and early life stages of a soft coral’

Impact of temperature increase and acidification on growth and the reproductive potential of the clam Ruditapes philippinarum using DEB


  • A simulation model based on DEB theory was parameterized for the Manila clam.
  • The pH forecast in 2100 will limit the growth of Manila clam.
  • The temperature forecast in 2100 enhances the reproductive potential of Manila clam.


We built a simulation model based on Dynamic Energy Budget theory (DEB) to assess the growth and reproductive potential of the Manila clam Ruditapes philippinarum under different temperature and pH conditions, based on environmental values forecasted for the end of the 21st c. under climate change scenarios. The parameters of the DEB model were calibrated with the results of seasonal growth experiments under two levels of temperature (ambient and plus 2–3 °C) and three levels of pH (8.1 used as control and 7.7 and 7.3 representing acidification). The results showed that R. philippinarum is expected to have moderate growth in length or individual body mass (ultimate length and body weight would be larger than current values by 2–3%) when taking into account only the effect of temperature increase. However, acidification is likely to have a deleterious effect on growth, with a decrease of 2–5% length or body weight under the pH value of 7.7 forecasted for the end of the 21st c, or 10–15% under a more extreme scenario (pH = 7.3). However, the aggregated reproductive potential, integrated along a lifetime of 10 years, is likely to increase by 30% with temperature increase. Decreasing pH would impact negatively on reproductive potential, but in all simulations under warmer conditions, reproductive potential values were higher than current, suggesting that temperature increase would compensate losses due to acidification. The results are discussed in relation to their possible impact on aquaculture and fisheries of this important commercial bivalve.

Continue reading ‘Impact of temperature increase and acidification on growth and the reproductive potential of the clam Ruditapes philippinarum using DEB’

The effect of ocean acidification on the enzyme activity of Apostichopus japonicus


  • The long-time impact of ocean acidification on enzyme activity of sea cucumbers were studied.
  • The significant difference of enzyme assemblage existed among three experimental groups by the multivariate statistical results.
  • The acidic environment has a great effect on immune process by influencing the elimination of reactive oxygen species (ROS).


The influence of ocean acidification (OA) is particularly significant on calcifying organisms. The sea cucumber Apostichopus japonicus is an important cultured calcifying organism in the northern China seas. Little was known about the effects of OA on this economically important species. In this study, individuals from embryo to juveniles stage of A. japonicus, cultured in different levels of acidified seawater, were measured their enzymes activities, including five metabolic enzymes and three immune enzymes. The activity of acid phosphatase (ACP) and alkaline phosphatase (ALP) was significantly lower in the severely acid group (pH 7.1), while the content of lactate dehydrogenase (LDH) was significantly higher. Superoxide dismutase (SOD) and catalase (CAT) were significantly lower in the severely acid group. The multivariate statistical results showed that the significant difference of enzyme assemblage existed among three experimental groups. This study indicated that OA could reduce the biomineralization capacity, influence the anaerobic metabolism and severely affect the immune process of A. japonicas. More researches are needed in the future to reveal the mechanisms of enzyme regulation and expression of A. japonicas underlying mixture environmental stress.

Continue reading ‘The effect of ocean acidification on the enzyme activity of Apostichopus japonicus’

Predicting potential impacts of ocean acidification on marine calcifiers from the Southern Ocean

Understanding the vulnerability of marine calcifiers to ocean acidification is a critical issue, especially in the Southern Ocean (SO), which is likely to be the one of the first, and most severely affected regions. Since the industrial revolution, ~30% of anthropogenic CO2 has been absorbed by the oceans. Seawater pH levels have already decreased by 0.1 and are predicted to decline by ~ 0.3 by the year 2100. This process, known as ocean acidification (OA), is shallowing the saturation horizon, which is the depth below which calcium carbonate (CaCO3) dissolves, likely increasing the vulnerability of many marine calcifiers to dissolution. The negative impact of OA may be seen first in species depositing more soluble CaCO3 mineral phases such as aragonite and high-Mg calcite (HMC). These negative effects may become even exacerbated by increasing sea temperatures. Here we combine a review and a quantitative meta-analysis to provide an overview of the current state of knowledge about skeletal mineralogy of major taxonomic groups of SO marine calcifiers and to make predictions about how OA might affect different taxa. We consider their geographic range, skeletal mineralogy, biological traits and potential strategies to overcome OA. The meta-analysis of studies investigating the effects of the OA on a range of biological responses such as shell state, development and growth rate shows response variation depending on mineralogical composition. Species-specific responses due to mineralogical composition suggest taxa with calcitic, aragonitic and HMC skeletons may be more vulnerable to the expected carbonate chemistry alterations, and low magnesium calcite (LMC) species may be mostly resilient. Environmental and biological control on the calcification process and/or Mg content in calcite, biological traits and physiological processes are also expected to influence species specific responses.

Continue reading ‘Predicting potential impacts of ocean acidification on marine calcifiers from the Southern Ocean’

Diffusive boundary layers and ocean acidification: implications for sea urchin settlement and growth

Chemical changes in the diffusive boundary layer (DBL) generated by photosynthesising macroalgae are expected to play an important role in modulating the effects of ocean acidification (OA), but little is known about the effects on early life stages of marine invertebrates in modified DBLs. Larvae that settle to macroalgal surfaces and remain within the DBL will experience pH conditions markedly different from the bulk seawater. We investigated the interactive effects of seawater pH and DBL thickness on settlement and early post-settlement growth of the sea urchin Pseudechinus huttoni, testing whether coralline-algal DBLs act as an environmental buffer to OA. DBL thickness and pH levels (estimated from well-established relationships with oxygen concentration) above the crustose coralline algal surfaces varied with light availability (with photosynthesis increasing pH to as high as pH 9.0 and respiration reducing pH to as low as pH 7.4 under light and dark conditions, respectively), independent of bulk seawater pH (7.5, 7.7, and 8.1). Settlement success of P. huttoni increased over time for all treatments, irrespective of estimated pH in the DBL. Juvenile test growth was similar in all DBL manipulations, showing resilience to variable and low seawater pH. Spine development, however, displayed greater variance with spine growth being negatively affected by reduced seawater pH in the DBL only in the dark treatments. Scanning electron microscopy revealed no observable differences in structural integrity or morphology of the sea urchin spines among pH treatments. Our results suggest that early juvenile stages of P. huttoni are well adapted to variable pH regimes in the DBL of macroalgae across a range of bulk seawater pH treatments.

Continue reading ‘Diffusive boundary layers and ocean acidification: implications for sea urchin settlement and growth’

DNA methylation changes in response to ocean acidification at the time of larval metamorphosis in the edible oyster, Crassostrea hongkongensis


  • Low pH stress resulted in hyper- and hypo-methylated genes in the pediveliger larvae of the Hong Kong oyster
  • Differentially methylated loci were concentrated in the exon region within the gene bodies
  • High capability of oyster larvae to acclimate and adapt to low pH condition within single generation despite poor habitat selection for attachment
  • Differential methylation is associated to higher metamorphosis success rate and poor larval substratum selection under low pH stress.


Unprecedented rate of increased CO2 level in the ocean and the subsequent changes in carbonate system including decreased pH, known as ocean acidification (OA), is predicted to disrupt not only the calcification process but also several other physiological and developmental processes in a variety of marine organisms, including edible oysters. Nonetheless, not all species are vulnerable to those OA threats, e.g. some species may be able to cope with OA stress using environmentally induced modifications on gene and protein expressions. For example, external environmental stressors including OA can influence the addition and removal of methyl groups through epigenetic modification (e.g. DNA methylation) process to turn gene expression “on or off” as part of a rapid adaptive mechanism to cope with OA. In this study, we tested the above hypothesis through testing the effect of OA, using decreased pH 7.4 as proxy, on DNA methylation pattern of an endemic and a commercially important estuary oyster species, Crassostrea hongkongensis at the time of larval habitat selection and metamorphosis. Larval growth rate did not differ between control pH 8.1 and treatment pH 7.4. The metamorphosis rate of the pediveliger larvae was higher at pH 7.4 than those in control pH 8.1, however over one-third of the larvae raised at pH 7.4 failed to attach on optimal substrate as defined by biofilm presence. During larval development, a total of 130 genes were differentially methylated across the two treatments. The differential methylation in the larval genes may have partially accounted for the higher metamorphosis success rate under decreased pH 7.4 but with poor substratum selection ability. Differentially methylated loci were concentrated in the exon regions and appear to be associated with cytoskeletal and signal transduction, oxidative stress, metabolic processes, and larval metamorphosis, which implies the high potential of C. hongkongensis larvae to acclimate and adapt through non-genetic ways to OA threats within a single generation.

Continue reading ‘DNA methylation changes in response to ocean acidification at the time of larval metamorphosis in the edible oyster, Crassostrea hongkongensis’

Impact of ocean warming and acidification on symbiosis establishment and gene expression profiles in recruits of reef coral Acropora intermedia

The onset of symbiosis and the early development of most broadcast spawning corals play pivotal roles in recruitment success, yet these critical early stages are threatened by multiple stressors. However, molecular mechanisms governing these critical processes under ocean warming and acidification are still poorly understood. The present study investigated the interactive impact of elevated temperature (∼28.0°C and ∼30.5°C) and partial pressure of carbon dioxide (pCO2) (∼600 and ∼1,200 μatm) on early development and the gene expression patterns in juvenile Acropora intermedia over 33 days. The results showed that coral survival was >89% and was unaffected by high temperature, pCO2, or the combined treatment. Notably, high temperature completely arrested successful symbiosis establishment and the budding process, whereas acidification had a negligible effect. Moreover, there was a positive exponential relationship between symbiosis establishment and budding rates (y = 0.0004e6.43xR = 0.72, P < 0.0001), which indicated the importance of symbiosis in fueling asexual budding. Compared with corals at the control temperature (28°C), those under elevated temperature preferentially harbored Durusdinium spp., despite unsuccessful symbiosis establishment. In addition, compared to the control, 351 and 153 differentially expressed genes were detected in the symbiont and coral host in response to experimental conditions, respectively. In coral host, some genes involved in nutrient transportation and tissue fluorescence were affected by high temperature. In the symbionts, a suite of genes related to cell growth, ribosomal proteins, photosynthesis, and energy production was downregulated under high temperatures, which may have severely hampered successful cell proliferation of the endosymbionts and explains the failure of symbiosis establishment. Therefore, our results suggest that the responses of symbionts to future ocean conditions could play a vital role in shaping successful symbiosis in juvenile coral.

Continue reading ‘Impact of ocean warming and acidification on symbiosis establishment and gene expression profiles in recruits of reef coral Acropora intermedia’

Declines over the last two decades of five intertidal invertebrate species in the western North Atlantic

Climate change has already altered the environmental conditions of the world’s oceans. Here we report declines in gastropod abundances and recruitment of mussels (Mytilus edulis) and barnacles (Semibalanus balanoides) over the last two decades that are correlated with changes in temperature and ocean conditions. Mussel recruitment is declining by 15.7% per year, barnacle recruitment by 5.0% per year, and abundances of three common gastropods are declining by an average of 3.1% per year (Testudinalia testudinalisLittorina littorea, and Nucella lapillus). The declines in mussels and the common periwinkle (L. littorea) are correlated with warming sea temperatures and the declines in T. testudinalis and N. lapillus are correlated with aragonite saturation state, which affects rates of shell calcification. These species are common on shores throughout the North Atlantic and their loss is likely to lead to simplification of an important food web on rocky shores.

Continue reading ‘Declines over the last two decades of five intertidal invertebrate species in the western North Atlantic’

Early development and metabolic rate of the sea louse Caligus rogercresseyi under different scenarios of temperature and pCO2


  • The temperature has a significant effect on the hatching time of C. royercresseyi.

  • Combination of pCO2 and temperature has a significant effect on survival in C. rogercresseyi.

  • The combination of pCO2 and temperature had no impact on the size of nauplius I, nauplius II and copepodid stage.

  • Only the temperature has a significant effect on oxygen consumption rate of C. royercresseyi.


Anthropogenic CO2 emissions have led to ocean acidification and a rise in the temperature. The present study evaluates the effects of temperature (10, 15 and 20 °C) and pCO2 (400 and 1200 μatm) on the early development and oxygen consumption rate (OCR) of the sea louse Caligus rogercresseyi. Only temperature has an effect on the hatching and development times of nauplius I. But both factors affected the development time of nauplius II (<temperature = longer development time). Copepodid survival time was also affected by temperature and pCO2, at 10 °C and 400 μatm, survival was 30 and 44% longer than at 15 and 20 °C. OCRs were impacted by temperature but not by pCO2. In all treatments, OCR was lower for nauplius II than for the copepodid. Our results show the need to further evaluate the effects of a combination of environmental drivers on the performance of C. rogercresseyi, in a changing and uncertain future.

Continue reading ‘Early development and metabolic rate of the sea louse Caligus rogercresseyi under different scenarios of temperature and pCO2’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,417,172 hits


Ocean acidification in the IPCC AR5 WG II

OUP book