Posts Tagged 'algae'



Seagrass can mitigate negative ocean acidification effects on calcifying algae

The ultimate effect that ocean acidification (OA) and warming will have on the physiology of calcifying algae is still largely uncertain. Responses depend on the complex interactions between seawater chemistry, global/local stressors and species-specific physiologies. There is a significant gap regarding the effect that metabolic interactions between coexisting species may have on local seawater chemistry and the concurrent effect of OA. Here, we manipulated CO2 and temperature to evaluate the physiological responses of two common photoautotrophs from shallow tropical marine coastal ecosystems in Brazil: the calcifying alga Halimeda cuneata, and the seagrass Halodule wrightii. We tested whether or not seagrass presence can influence the calcification rate of a widespread and abundant species of Halimeda under OA and warming. Our results demonstrate that under elevated CO2, the high photosynthetic rates of H. wrightii contribute to raise H. cuneata calcification more than two-fold and thus we suggest that H. cuneata populations coexisting with H. wrightii may have a higher resilience to OA conditions. This conclusion supports the more general hypothesis that, in coastal and shallow reef environments, the metabolic interactions between calcifying and non-calcifying organisms are instrumental in providing refuge against OA effects and increasing the resilience of the more OA-susceptible species.

Continue reading ‘Seagrass can mitigate negative ocean acidification effects on calcifying algae’

Implicações fisiológicas e ecológicas de interações interespecíficas nos bentos marinho-subsídio para o entendimento de cenários atuais e futuros (in Portuguese)

Biotic interactions are increasingly known to shape ecosystem community structure. Recently, there has been a renewed focus on species interactions in light of global change, especially ocean warming (OW) and ocean acidification (OA) in marine ecosystems. In coastal environments, macroalgae are among the most important taxa as they are often the most abundant primary producers and form the base of food webs. However, due to their sedentary nature, they are also vulnerable to the effects of climate change. In order to better understand how species interactions will be affected by climate change stressors, a solid understanding of how interspecies interactions operate under present-day conditions is needed. The first chapter of this thesis attempts to characterize seasonal variation in macroalgal physiology and biochemistry, and how interspecific interactions might affect algal fitness and palatability to a sea urchin herbivore (Echinometra lucunter). Specimens of Jania rubens, Sargassum cymosum, and Ulva lactuca were collected from monospecific patches or from associations , where individuals were in physical contact with another species, in both summer and winter. Net photosynthesis, nitrogen reductase activity, and pigment, phenolic and carbonate content of algae were evaluated among different associations across the two seasons. The results indicate that in addition to seasonal variation in most parameters measured, interactions between algae could change in both magnitude and sign (positive, negative or neutral) in different seasons. The no-choice herbivory assay (conducted in winter) revealed that both Jania and Ulva were consumed at higher rates when they were associated with each other, whereas Sargassum was not affected. These results suggest that macroalgae may influence the physiology and biochemical composition of neighboring species and subsequently affect their palatability, which may influence local community structure. To further evaluate effects of species interactions under climate change stressors, an experiment was performed to assess algal-herbivore interactions under OW and OA conditions. The most preferentially consumed algae from the first experiment (Jania rubens) and the sea urchin E. lucunter were evaluated in a 21-day mesocosm study with treatments of control, OW, OA, and OW+OA. Algal physiology was unaffected by increased temperature (+4°C) and pCO2 (1,000 ppm), but changes in the biochemical composition of the algal tissue were found. Metabolic rates of the sea urchin E. lucunter were higher in the ambient temperature, high pCO2 treatment, and feeding assays showed that this influenced consumption, with increased feeding rates in this treatment. The results here show that although algal biochemical composition was affected by future pCO2, at least in the short term, direct effects to sea urchin metabolism were more important for impacting this algae-herbivore interaction.

Continue reading ‘Implicações fisiológicas e ecológicas de interações interespecíficas nos bentos marinho-subsídio para o entendimento de cenários atuais e futuros (in Portuguese)’

Future climate change is predicted to affect the microbiome and condition of habitat-forming kelp

Climate change is driving global declines of marine habitat-forming species through physiological effects and through changes to ecological interactions, with projected trajectories for ocean warming and acidification likely to exacerbate such impacts in coming decades. Interactions between habitat-formers and their microbiomes are fundamental for host functioning and resilience, but how such relationships will change in future conditions is largely unknown. We investigated independent and interactive effects of warming and acidification on a large brown seaweed, the kelp Ecklonia radiata, and its associated microbiome in experimental mesocosms. Microbial communities were affected by warming and, during the first week, by acidification. During the second week, kelp developed disease-like symptoms previously observed in the field. The tissue of some kelp blistered, bleached and eventually degraded, particularly under the acidification treatments, affecting photosynthetic efficiency. Microbial communities differed between blistered and healthy kelp for all treatments, except for those under future conditions of warming and acidification, which after two weeks resembled assemblages associated with healthy hosts. This indicates that changes in the microbiome were not easily predictable as the severity of future climate scenarios increased. Future ocean conditions can change kelp microbiomes and may lead to host disease, with potentially cascading impacts on associated ecosystems.

Continue reading ‘Future climate change is predicted to affect the microbiome and condition of habitat-forming kelp’

Ocean acidification in the Baltic Sea: involved processes, metrology of pH in brackish waters, and calcification under fluctuating conditions

The oceanic uptake of anthropogenic CO2 emissions counteracts global warming, but comes at the cost of Ocean Acidification, which is a threat to many marine organisms. In the Baltic Sea, the acidification process and its impact could so far not be quantified due to a lack of appropriate pH measurement techniques and the large pH variability. Looking back, in the first focus of this study acidification scenarios are derived from a detailed analysis of past alkalinity trends in the Baltic Sea water, which are put into context of the atmospheric CO2 forcing. In the second focus, the scientific basis for meaningful pH measurements in brackish waters is formed. Therefore, pH buffer solutions are characterized as primary standards and used to calibrate high-quality spectrophotometric pH measurements. In the last focus, pH fluctuations in benthic ecosystems are quantified. The importance of periods with high pH, during which organisms can maintain calcification rates even under acidified conditions, are highlighted.

Continue reading ‘Ocean acidification in the Baltic Sea: involved processes, metrology of pH in brackish waters, and calcification under fluctuating conditions’

Sporophytic photosynthesis and gametophytic growth of the kelp Ecklonia stolonifera affected by ocean acidification and warming

Juvenile sporophytes and gametophytes of Ecklonia stolonifera were incubated in combinations of three pCO2 levels (360, 720 and 980 ppmv) and two temperatures (10 and 15°C for sporophytes; 15 and 20°C for gametophytes) to examine potential effects of climate change on photosynthesis and growth. Sporophytes had significantly higher maximum quantum yields (Fv/Fm) and maximum relative electron transport rates (rETRmax) at 720 ppmv than 360 and 980 ppmv. Also, these parameters were significantly lower at higher temperature of 15°C than at 10°C. Growth of female gametophytes was maximal at 360 ppmv rather than enriched pCO2 levels. Female gametophytes had significantly lower growth at higher temperature of 20°C than at 15°C. These results indicate effects of elevated pCO2 varied between generations: stimulating sporophytic photosynthesis and inhibiting gametophytic growth. Ocean acidification and warming would constitute a grave threat to seedling cultivation of E. stolonifera caused by growth inhibition of gametophytes at high pCO2 levels and temperatures.

Continue reading ‘Sporophytic photosynthesis and gametophytic growth of the kelp Ecklonia stolonifera affected by ocean acidification and warming’

Elevated CO2 leads to enhanced photosynthesis but decreased growth in early life stages of reef building coralline algae

Crustose coralline algae (CCA) are key organisms in coral reef ecosystems, where they contribute to reef building and substrate stabilization. While ocean acidification due to increasing CO2 can affect the biology, physiology and ecology of fully developed CCA, the impacts of elevated CO2 on the early life stages of CCA are much less explored. We assessed the photosynthetic activity and growth of 10-day-old recruits of the reef-building crustose coralline alga Porolithon cf. onkodes exposed to ambient and enhanced CO2 seawater concentration causing a downward shift in pH of ∼0.3 units. Growth of the CCA was estimated using measurements of crust thickness and marginal expansion, while photosynthetic activity was studied with O2 microsensors. We found that elevated seawater CO2 enhanced gross photosynthesis and respiration, but significantly reduced vertical and marginal growth of the early life stages of P. cf. onkodes. Elevated CO2 stimulated photosynthesis, particularly at high irradiance, likely due to increased availability of CO2, but this increase did not translate into increased algal growth as expected, suggesting a decoupling of these two processes under ocean acidification scenarios. This study confirms the sensitivity of early stages of CCA to elevated CO2 and identifies complexities in the physiological processes underlying the decreased growth and abundance in these important coral reef builders upon ocean acidification.

Continue reading ‘Elevated CO2 leads to enhanced photosynthesis but decreased growth in early life stages of reef building coralline algae’

Ability of eelgrass to alter oyster growth and physiology is spatially limited and offset by increasing predation risk

Marine foundation species have strong effects on sympatric species, but the strength may vary along environmental gradients. Climate change is shifting the distribution and magnitude of environmental gradients, making identification of when and where foundation species effects occur necessary for effective management. We reviewed existing work to identify expected mechanisms by which seagrass affect suspension feeding bivalves, then tested whether these effects shifted across estuarine conditions for two species of oysters (native Ostrea lurida and non-native Crassostrea gigas) grown in and out of eelgrass (Zostera marina) at six estuarine sites in Washington state. Hypothesized mechanisms of eelgrass influence include reduced predation pressure, reduced or altered food availability, and amelioration of environmental (pH) stress. We analyzed oyster survival, shell and tissue growth, shell strength, and stable isotope (SI) and fatty acid (FA) biomarkers. Oyster survival was > 20% lower in eelgrass at lower-estuary sites, but not up-estuary sites. Both species grew faster in eelgrass at one low-estuary (higher pH) site, but not elsewhere. Shell strength in eelgrass increased by 21.1% for native but decreased by 12.6% for non-native oysters. FA and SI biomarkers only differed in eelgrass at one site but correlated significantly to growth among individuals. No measurement showed a consistent response to eelgrass across estuarine conditions and taxa, and responses were often opposite of expectations based on published literature. These results have important implications for management and restoration of oysters in areas with eelgrass.

Continue reading ‘Ability of eelgrass to alter oyster growth and physiology is spatially limited and offset by increasing predation risk’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,182,929 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book