Posts Tagged 'fish'



Global climate change and the Baltic Sea ecosystem: direct and indirect effects on species, communities and ecosystem functioning

Climate change has multiple effects on Baltic Sea species, communities and ecosystem functioning through changes in physical and biogeochemical environmental characteristics of the sea. Associated indirect and secondary effects on species interactions, trophic dynamics and ecosystem function are expected to be significant. We review studies investigating species-, population- and ecosystem-level effects of abiotic factors that may change due to global climate change, such as temperature, salinity, oxygen, pH, nutrient levels, and the more indirect biogeochemical and food web processes, primarily based on peer-reviewed literature published since 2010.

For phytoplankton, clear symptoms of climate change, such as prolongation of the growing season, are evident and can be explained by the warming, but otherwise climate effects vary from species to species and area to area. Several modelling studies project a decrease of phytoplankton bloom in spring and an increase in cyanobacteria blooms in summer. The associated increase in N:P ratio may contribute to maintaining the “vicious circle of eutrophication”. However, uncertainties remain because some field studies claim that cyanobacteria have not increased and some experimental studies show that responses of cyanobacteria to temperature, salinity and pH vary from species to species. An increase of riverine dissolved organic matter (DOM) may also decrease primary production, but the relative importance of this process in different sea areas is not well known. Bacteria growth is favoured by increasing temperature and DOM, but complex effects in the microbial food web are probable. Warming of seawater in spring also speeds up zooplankton growth and shortens the time lag between phytoplankton and zooplankton peaks, which may lead to decreasing of phytoplankton in spring. In summer, a shift towards smaller-sized zooplankton and a decline of marine copepod species has been projected.

In deep benthic communities, continued eutrophication promotes high sedimentation and maintains good food conditions for zoobenthos. If nutrient abatement proceeds, improving oxygen conditions will first increase zoobenthos biomass, but the subsequent decrease of sedimenting matter will disrupt the pelagic–benthic coupling and lead to a decreased zoobenthos biomass. In the shallower photic systems, heatwaves may produce eutrophication-like effects, e.g. overgrowth of bladderwrack by epiphytes, due to a trophic cascade. If salinity also declines, marine species such as bladderwrack, eelgrass and blue mussel may decline. Freshwater vascular plants will be favoured but they cannot replace macroalgae on rocky substrates. Consequently invertebrates and fish benefiting from macroalgal belts may also suffer. Climate-induced changes in the environment also favour establishment of non-indigenous species, potentially affecting food web dynamics in the Baltic Sea.

As for fish, salinity decline and continuing of hypoxia is projected to keep cod stocks low, whereas the increasing temperature has been projected to favour sprat and certain coastal fish. Regime shifts and cascading effects have been observed in both pelagic and benthic systems as a result of several climatic and environmental effects acting synergistically.

Knowledge gaps include uncertainties in projecting the future salinity level, as well as stratification and potential rate of internal loading, under different climate forcings. This weakens our ability to project how pelagic productivity, fish populations and macroalgal communities may change in the future. The 3D ecosystem models, food web models and 2D species distribution models would benefit from integration, but progress is slowed down by scale problems and inability of models to consider the complex interactions between species. Experimental work should be better integrated into empirical and modelling studies of food web dynamics to get a more comprehensive view of the responses of the pelagic and benthic systems to climate change, from bacteria to fish. In addition, to better understand the effects of climate change on the biodiversity of the Baltic Sea, more emphasis should be placed on studies of shallow photic environments.

The fate of the Baltic Sea ecosystem will depend on various intertwined environmental factors and on development of the society. Climate change will probably delay the effects of nutrient abatement and tend to keep the ecosystem in its “novel” state. However, several modelling studies conclude that nutrient reductions will be a stronger driver for ecosystem functioning of the Baltic Sea than climate change. Such studies highlight the importance of studying the Baltic Sea as an interlinked socio-ecological system.

Continue reading ‘Global climate change and the Baltic Sea ecosystem: direct and indirect effects on species, communities and ecosystem functioning’

Impaired hatching exacerbates the high CO2 sensitivity of embryonic sand lance Ammodytes dubius

Rising oceanic pCO2 levels could affect many traits in fish early life stages, but only few species to date have shown direct CO2-induced survival reductions. This might partly be because species from less CO2-variable, offshore environments in higher latitudes are currently underrepresented in the literature. We conducted new experimental work on northern sand lance Ammodytes dubius, a keystone forage fish on offshore Northwest Atlantic sand banks, which was recently suggested to be highly CO2-sensitive. In two complementary trials, we produced embryos from wild, Gulf of Maine (GoM) spawners and reared them at several pCO2 levels (~400–2000 µatm) in combination with static (6, 7, 10°C) and dynamic (10 → 5°C) temperature treatments. Again, we consistently observed large, CO2-induced reductions in hatching success (–23% at 1000 µatm, -61% at ~2000 µatm), and the effects were temperature-independent. To distinguish pCO2 effects during development from potential impacts on hatching itself, some embryos were switched between high and control pCO2 treatments just prior to hatch. This indeed altered hatching patterns consistent with the CO2-impaired hatching hypothesis. High CO2 also delayed the day of first hatch in one trial and peak hatch in the other, where later-hatched larvae were of similar size but with progressively less endogenous energy reserves. For context, we extracted seasonal pCO2 projections for Stellwagen Bank (GoM) from regional ensemble simulations, which indicated a CO2-induced reduction in sand lance hatching success to 71% of contemporary levels by 2100. The species’ unusual CO2 sensitivity has large ecological and scientific ramifications that warrant future in-depth research.

Continue reading ‘Impaired hatching exacerbates the high CO2 sensitivity of embryonic sand lance Ammodytes dubius’

Phenotypic responses in fish behaviour narrow as climate ramps up

Natural selection alters the distribution of phenotypes as animals adjust their behaviour and physiology to environmental change. We have little understanding of the magnitude and direction of environmental filtering of phenotypes, and therefore how species might adapt to future climate, as trait selection under future conditions is challenging to study. Here, we test whether climate stressors drive shifts in the frequency distribution of behavioural and physiological phenotypic traits (17 fish species) at natural analogues of climate change (CO2 vents and warming hotspots) and controlled laboratory analogues (mesocosms and aquaria). We discovered that fish from natural populations (4 out of 6 species) narrowed their phenotypic distribution towards behaviourally bolder individuals as oceans acidify, representing loss of shyer phenotypes. In contrast, ocean warming drove both a loss (2/11 species) and gain (2/11 species) of bolder phenotypes in natural and laboratory conditions. The phenotypic variance within populations was reduced at CO2 vents and warming hotspots compared to control conditions, but this pattern was absent from laboratory systems. Fishes that experienced bolder behaviour generally showed increased densities in the wild. Yet, phenotypic alterations did not affect body condition, as all 17 species generally maintained their physiological homeostasis (measured across 5 different traits). Boldness is a highly heritable trait that is related to both loss (increased mortality risk) and gain (increased growth, reproduction) of fitness. Hence, climate conditions that mediate the relative occurrence of shy and bold phenotypes may reshape the strength of species interactions and consequently alter fish population and community dynamics in a future ocean.

Continue reading ‘Phenotypic responses in fish behaviour narrow as climate ramps up’

Resilience of black sea bass embryos to increased levels of carbon dioxide

After a decade of research on how embryonic fish will respond to the increased dissolved carbon dioxide (ρCO2) levels predicted for the next century, no uniform response to near future acidification has been observed among marine species. We exposed Black Sea Bass Centropristis striata (BSB) embryos to varied levels of ρCO2 (microatmospheres [μatm]) for 48 h during seasonal experiments conducted in 2013–2015 to compare embryonic response among multiple broodstocks. The relationship between ρCO2 concentration and hatching success was inconsistent among years, with a nonlinear, inverse relationship noted in 2014 only, explaining 13% of observed variance. Conversely, ρCO2 was a good predictor of unhatched BSB embryos after 48 h for all years combined (39%) and for 2013 (38%). The ρCO2 concentration was a good predictor of the frequency of vertebral column anomalies for individual years (2013: 40%; 2014: 12%; 2015: 38%) but not when data were pooled for all years. In 2013 and 2015, vertebral column anomalies were relatively consistent below 1,000 μatm and were elevated above that threshold. Preliminary results suggest that BSB embryos may demonstrate resilience to future ρCO2 levels, but the results also highlight the challenges associated with drawing broad conclusions given observed variability in results obtained from different broodstocks and study years.

Continue reading ‘Resilience of black sea bass embryos to increased levels of carbon dioxide’

pH regulates the formation and hatching of Cryptocaryon irritans tomonts, which affects cryptocaryoniasis occurrence in Larimichthys crocea aquaculture

Abstract

Cryptocaryon irritans are the main pathogens of white spot disease in marine teleost. However, the occurrence of cryptocaryoniasis is influenced by several abiotic factors including the pH. To explore the effect of pH on the life cycle of C. irritans (encystment, cleavage, and hatchability), protomonts and tomonts of C. irritans were incubated in seawater of 10 different pH levels (2–11). pH 8 was used as the control. The change in morphology and infectivity of theronts that hatched from tomonts against Larimichthys crocea were then recorded. We found that pH 6–9 had no significant effect on the encystment, cleavage, and hatching of the parasites. However, pH beyond this limit decreased the cleavage and hatching of the tomonts. Furthermore, extreme pH decreased the number of theronts hatched by each tomont and the pathogenicity of the theronts, but increased the aspect ratio of the theronts. Infectivity experiments further revealed that extreme pH significantly decreased the infectivity of C. irritans against L. crocea. In conclusion, the C. irritans can survive in pH of 5 to 10, but pH 6–9 is the optimal range for the reproduction and infectivity of C. irritans. However, extreme pH negatively affects these aspects.

Importance

Cryptocaryon irritans is a ciliate parasite that causes “white spot disease” in marine teleosts. The disease outbreak is influenced by hosts and a range of abiotic factors, such as temperature, salinity, and pH. Studies have shown that change in pH of seawater affects the structure (diversity and abundance of marine organisms) of marine ecosystem. However, how pH affects the life cycle and survival of C. irritans, and how future ocean acidification will affect the occurrence of cryptocaryoniasis, are not well understood. In this study, we explored the effect of pH on the formation and hatching of C. irritans tomonts. The findings of this study provide the foundation of the environmental adaptation of C. irritans, the occurrence of cryptocaryoniasis, and better management of marine fish culture.

Continue reading ‘pH regulates the formation and hatching of Cryptocaryon irritans tomonts, which affects cryptocaryoniasis occurrence in Larimichthys crocea aquaculture’

Swimming performance of sharks and rays under climate change

Climate change stressors (e.g., warming and ocean acidification) are an imminent challenge to the physiological performance of marine organisms. Several studies spanning the last decade have reported widespread effects of warming and acidification on marine fishes, especially teleosts, but more work is needed to elucidate the responses in marine elasmobranchs, i.e., sharks and rays. Dispersal capacity, as a result of locomotor performance, is a crucial trait that will determine which group of elasmobranchs will be more or less vulnerable to changes in the environment. In fact, efficient and high locomotor performance may determine the capacity for elasmobranchs to relocate to a more favorable area. In this review we integrate findings from work on locomotion of marine sharks and rays to identify characteristics that outline potential vulnerabilities and strength of sharks and rays under climate change. Traits such as intraspecific variability in response to climatic stressors, wide geographic range, thermotaxis, fast swimming or low energetic costs of locomotion are likely to enhance the capacity to disperse. Future studies may focus on understanding the interacting effect of climatic stressors on morphology, biomechanics and energetics of steady and unsteady swimming, across ontogeny and species.

Continue reading ‘Swimming performance of sharks and rays under climate change’

GABA receptors in the olfactory epithelium of the gilthead seabream (Sparus aurata)

Exposure to high PCO2/low pH seawater induces behavioural alterations in fish; a possible explanation for this is a reversal of Cl/HCO3 currents through GABAA receptors (the GABAA receptor theory). However, the main evidence for this is that gabazine, a GABAA receptor antagonist, reverses these effects when applied to the water, assuming that exposure to systems other than the CNS would be without effect. Here, we show the expression of both metabotropic and ionotropic GABA receptors, and the presence of GABAA receptor protein, in the olfactory epithelium of gilthead seabream. Furthermore, exposure of the olfactory epithelium to muscimol (a specific GABAA receptor agonist) increases or decreases the apparent olfactory sensitivity to some odorants. Thus, although the exact function of GABAA receptors in the olfactory epithelium is not yet clear, this may complicate the interpretation of studies wherein water-borne gabazine is used to reverse the effects of high CO2 levels on olfactory-driven behaviour in fish.

Continue reading ‘GABA receptors in the olfactory epithelium of the gilthead seabream (Sparus aurata)’

Ocean acidification affects the expression of neuroplasticity and neuromodulation markers in seabream

A possible explanation for acidification-induced changes in fish behaviour is that acidification interferes with neurogenesis and modifies the plasticity of neuronal circuitry in the brain. We tested the effects on the olfactory system and brain of gilthead seabream (Sparus aurata) of four weeks’ exposure to OA. Olfactory epithelium (OE) morphology changed shortly after OA exposure and persisted over the four-weeks. Expression of genes related to olfactory transduction, neuronal excitability, synaptic plasticity, GABAergic innervation, and cell proliferation were unchanged in the OE and olfactory bulb (OB) after four weeks’ exposure. Short-term changes in the ionic content of plasma and extradural fluid (EDF) returned to control levels after four weeks exposure, except for [Cl-] which remained elevated. This suggests that, in general, there is an early physiological response to OA and by four weeks a new homeostatic status is achieved. However, expression of genes involved in proliferation, differentiation and survival of undifferentiated neurons were modified in the brain. In the same brain areas, expression of thyroid hormone signalling genes was altered suggesting modifications in the thyroid-system may be linked to the changes in neuroplasticity and neurogenesis. Overall, the results of the current study are consistent with and effect of OA on neuroplasticity.

Continue reading ‘Ocean acidification affects the expression of neuroplasticity and neuromodulation markers in seabream’

A systematic review of the behavioural changes and physiological adjustments of elasmobranchs and teleost’s to ocean acidification with a focus on sharks

In recent years, much attention has been focused on the impact of climate change, particularly via ocean acidification (OA), on marine organisms. Studying the impact of OA on long-living organisms, such as sharks, is especially challenging. When the ocean waters absorb anthropogenic carbon dioxide (CO2), slow-growing shark species with long generation times may be subjected to stress, leading to a decrease in functionality. Our goal was to examine the behavioral and physiological responses of sharks to OA and the possible impacts on their fitness and resilience. We conducted a systematic review in line with PRISMA-Analyses, of previously reported scientific experiments. We found that most studies used CO2 partial pressures (pCO2) that reflect representative concentration pathways for the year 2100 (e.g., pH ~7.8, pCO2 ~1000 μatm). Since there is a considerable knowledge gap on the effect of OA on sharks, we utilized existing data on bony fish to synthesize the available knowledge. Given the similarities between the behaviors and physiology of these two superclasses’ to changes in CO2 and pH levels, there is merit in including the available information on bony fish as well. Several studies indicated a decrease in shark fitness in relation to increased OA and CO2 levels. However, the decrease was species-specific and influenced by the intensity of the change in atmospheric CO2 concentration and other anthropogenic and environmental factors (e.g., fishing, temperature). Most studies involved only limited exposure to future environmental conditions and were conducted on benthic shark species studied in the laboratory rather than on apex predator species. While knowledge gaps exist, and more research is required, we conclude that anthropogenic factors are likely contributing to shark species’ vulnerability worldwide. However, the impact of OA on the long-term stability of shark populations is not unequivocal.

Continue reading ‘A systematic review of the behavioural changes and physiological adjustments of elasmobranchs and teleost’s to ocean acidification with a focus on sharks’

Rapid evolution fuels transcriptional plasticity to ocean acidification

Ocean acidification (OA) is postulated to affect the physiology, behavior, and life-history of marine species, but potential for acclimation or adaptation to elevated pCO2 in wild populations remains largely untested. We measured brain transcriptomes of six coral reef fish species at a natural volcanic CO2 seep and an adjacent control reef in Papua New Guinea. We show that elevated pCO2 induced common molecular responses related to circadian rhythm and immune system but different magnitudes of molecular response across the six species. Notably, elevated transcriptional plasticity was associated with core circadian genes affecting the regulation of intracellular pH and neural activity in Acanthochromis polyacanthus. Gene expression patterns were reversible in this species as evidenced upon reduction of CO2 following a natural storm-event. Compared with other species, Acpolyacanthus has a more rapid evolutionary rate and more positively selected genes in key functions under the influence of elevated CO2, thus fueling increased transcriptional plasticity. Our study reveals the basis to variable gene expression changes across species, with some species possessing evolved molecular toolkits to cope with future OA.

Continue reading ‘Rapid evolution fuels transcriptional plasticity to ocean acidification’

High pCO2 does not alter the thermal plasticity of developing Pacific herring embryos during a marine heatwave

Forage fish tend to respond strongly to environmental variability and therefore may be particularly sensitive to marine climate stressors. We used controlled laboratory experiments to assess the vulnerability of Pacific herring (Clupea pallasii) embryos to the combined effects of high pCO2 and a simulated marine heatwave. The two pCO2 treatments reflected current conditions (∼550 µatm) and a future extreme level (∼2,300 µatm). The dynamics of heatwave (i.e., rate of onset: ∼0.85°C d−1; maximum intensity: +4.4°C) were modeled from the most extreme events detected by a long-term regional temperature dataset. Simultaneous exposure to these potential stressors did not affect embryo survival. However, the heatwave did elicit significant metabolic effects that included higher rates of routine metabolism (Q10=1.15 – 1.72), growth (Q10=1.87), rate of development to hatch (Q10=3.01), and yolk consumption (Q10=3.21) as well as a significant reduction in production efficiency (-10.8%) and a three-fold increase in the rate of developmental anomalies. By contrast, high pCO2 conditions produced comparatively small effects to vital rates, including a significant increase in time to hatch (+0.88 d) and a reduction in routine metabolic rate (-6.3%) under the ambient temperature regime only. We found no evidence that high pCO2 increased routine metabolic rate at either temperature. These results indicate that Pacific herring embryos possess sufficient physiological plasticity to cope with extreme seawater acidification under optimal and heatwave temperature conditions, although lingering metabolic inefficiencies induced by the heatwave may lead to important carry-over effects in later life-stages.

Continue reading ‘High pCO2 does not alter the thermal plasticity of developing Pacific herring embryos during a marine heatwave’

Elucidating the acid-base mechanisms underlying otolith overgrowth in fish exposed to ocean acidification

Highlights

  • Rockfish regulated blood & endolymph pH despite ocean acidification (OA) exposure.
  • Endolymph of OA-exposed fish had higher [HCO3], [CO32−], and Ωaragonite.
  • Preexisting ATPase was sufficient for the increased H+ removal.
  • First evidence linking endolymph of OA-exposed fish favors otolith overgrowth.

Abstract

Over a decade ago, ocean acidification (OA) exposure was reported to induce otolith overgrowth in teleost fish. This phenomenon was subsequently confirmed in multiple species; however, the underlying physiological causes remain unknown. Here, we report that splitnose rockfish (Sebastes diploproa) exposed to ~1600 μatm pCO2 (pH ~7.5) were able to fully regulated the pH of both blood and endolymph (the fluid that surrounds the otolith within the inner ear). However, while blood was regulated around pH 7.80, the endolymph was regulated around pH ~8.30. These different pH setpoints result in increased pCO2 diffusion into the endolymph, which in turn leads to proportional increases in endolymph [HCO3] and [CO32−]. Endolymph pH regulation despite the increased pCO2 suggests enhanced H+ removal. However, a lack of differences in inner ear bulk and cell-specific Na+/K+-ATPase and vacuolar type H+-ATPase protein abundance localization pointed out to activation of preexisting ATPases, non-bicarbonate pH buffering, or both, as the mechanism for endolymph pH-regulation. These results provide the first direct evidence showcasing the acid-base chemistry of the endolymph of OA-exposed fish favors otolith overgrowth, and suggests that this phenomenon will be more pronounced in species that count with more robust blood and endolymph pH regulatory mechanisms.

Continue reading ‘Elucidating the acid-base mechanisms underlying otolith overgrowth in fish exposed to ocean acidification’

Meta-analysis reveals an extreme “decline effect” in the impacts of ocean acidification on fish behavior

Ocean acidification—decreasing oceanic pH resulting from the uptake of excess atmospheric CO2—has the potential to affect marine life in the future. Among the possible consequences, a series of studies on coral reef fish suggested that the direct effects of acidification on fish behavior may be extreme and have broad ecological ramifications. Recent studies documenting a lack of effect of experimental ocean acidification on fish behavior, however, call this prediction into question. Indeed, the phenomenon of decreasing effect sizes over time is not uncommon and is typically referred to as the “decline effect.” Here, we explore the consistency and robustness of scientific evidence over the past decade regarding direct effects of ocean acidification on fish behavior. Using a systematic review and meta-analysis of 91 studies empirically testing effects of ocean acidification on fish behavior, we provide quantitative evidence that the research to date on this topic is characterized by a decline effect, where large effects in initial studies have all but disappeared in subsequent studies over a decade. The decline effect in this field cannot be explained by 3 likely biological explanations, including increasing proportions of studies examining (1) cold-water species; (2) nonolfactory-associated behaviors; and (3) nonlarval life stages. Furthermore, the vast majority of studies with large effect sizes in this field tend to be characterized by low sample sizes, yet are published in high-impact journals and have a disproportionate influence on the field in terms of citations. We contend that ocean acidification has a negligible direct impact on fish behavior, and we advocate for improved approaches to minimize the potential for a decline effect in future avenues of research.

Continue reading ‘Meta-analysis reveals an extreme “decline effect” in the impacts of ocean acidification on fish behavior’

Effect of low pH and salinity conditions on the antioxidant response and hepatocyte damage in juvenile olive flounder Paralichthys olivaceus

Highlights

  • Salinity and pH are major environmental factors in the ocean.
  • Changes in salinity and pH in the ocean can cause oxidative stress in marine life.
  • Acidification stress does not exceed hyposalinity stress.
  • Juvenile olive flounder has the potential to adapt to an acidified environment.

Abstract

Climate change due to increasing CO2 emissions results in the increase in water temperatures, which is accompanied by the decrease in pH and salinity levels of the ocean. Ocean acidification reflects the gradual pH reduction due to changes in the carbon chemistry, which is caused by the increase in anthropogenic CO2 emissions. The subsequent changes in the water temperatures and carbon chemistry of the oceans affect the survival and distribution of aquatic animals. In this study, we analyzed the levels of cortisol, superoxide dismutase, catalase, and caspase-3 in the plasma of juvenile olive flounder Paralichthys olivaceus under combined hyposalinity and acidification. To evaluate the physiological response to these changes, the superoxide dismutase activity and apoptosis were analyzed in the liver cells. Hyposalinity caused oxidative stress and cell damage, while also activating the antioxidant system. Environmental acidification affected the stress response and antioxidant mechanism of Polivaceus in the early stage of acclimation but did not appear to exceed hyposalinity stress. These findings suggest that a hyposaline environment may be a stronger environmental stressor than an acidifying environment for P. olivaceus, and will help understand the capacity of P. olivaceus to cope with expected future ocean acidification.

Continue reading ‘Effect of low pH and salinity conditions on the antioxidant response and hepatocyte damage in juvenile olive flounder Paralichthys olivaceus’

Shark teeth can resist ocean acidification

Ocean acidification can cause dissolution of calcium carbonate minerals in biological structures of many marine organisms, which can be exacerbated by warming. However, it is still unclear whether this also affects organisms that have body parts made of calcium phosphate minerals (e.g. shark teeth), which may also be impacted by the ‘corrosive’ effect of acidified seawater. Thus, we examined the effect of ocean acidification and warming on the mechanical properties of shark teeth (Port Jackson shark, Heterodontus portusjacksoni), and assessed whether their mineralogical properties can be modified in response to predicted near-future seawater pH (–0.3 units) and temperature (+3°C) changes. We found that warming resulted in the production of more brittle teeth (higher elastic modulus and lower mechanical resilience) that were more vulnerable to physical damage. Yet, when combined with ocean acidification, the durability of teeth increased (i.e. less prone to physical damage due to the production of more elastic teeth) so that they did not differ from those raised under ambient conditions. The teeth were chiefly made of fluorapatite (Ca5(PO4)3F), with increased fluoride content under ocean acidification that was associated with increased crystallinity. The increased precipitation of this highly insoluble mineral under ocean acidification suggests that the sharks could modulate and enhance biomineralization to produce teeth which are more resistant to corrosion. This adaptive mineralogical adjustment could allow some shark species to maintain durability and functionality of their teeth, which underpins a fundamental component of predation and sustenance of the trophic dynamics of future oceans.

Continue reading ‘Shark teeth can resist ocean acidification’

The combined effects of ocean acidification and heavy metals on marine organisms: a meta-analysis

Ocean acidification (OA) may interact with anthropogenic pollutants, such as heavy metals (HM), to represent a threat to marine organisms and ecosystems. Here, we perform a quantitative meta-analysis to examine the combined effects of OA and heavy metals on marine organisms. The results reveal predominantly additive interactions (67%), with a considerable proportion of synergistic interactions (25%) and a few antagonistic interactions (8%). The overall adverse effects of heavy metals on marine organisms were alleviated by OA, leading to a neutral impact of heavy metals in combination with OA. However, different taxonomic groups showed large variabilities in their responses, with microalgae being the most sensitive when exposed to heavy metals and OA, and having the highest proportion of antagonistic interactions. Furthermore, the variations in interaction type frequencies are related to climate regions and heavy metal properties, with antagonistic interactions accounting for the highest proportion in temperate regions (28%) and when exposed to Zn (52%). Our study provides a comprehensive insight into the interactive effects of OA and HM on marine organisms, and highlights the importance of further investigating the responses of different marine taxonomic groups from various geographic locations to the combined stress of OA and HM.

Continue reading ‘The combined effects of ocean acidification and heavy metals on marine organisms: a meta-analysis’

Ocean warming and acidification degrade shoaling performance and lateralization of novel tropical–temperate fish shoals

Gregarious behaviours are common in animals and provide various benefits such as food acquisition and protection against predators. Many gregarious tropical species are shifting poleward under current ocean warming, creating novel species and social interactions with local temperate taxa. However, how the dynamics of these novel shoals might be altered by future ocean warming and acidification remains untested. Here we evaluate how novel species interactions, ocean acidification and warming affect shoaling dynamics, motor lateralization and boldness of range-extending tropical and co-shoaling temperate fishes under controlled laboratory conditions. Fishes were exposed to 1 of 12 treatments (combinations of three temperature levels, two pCO2 levels and two shoal type levels: mixed species or temperate only) for 38 days. Lateralization (a measure of asymmetric expression of cognitive function in group coordination and predator escape) of tropical and temperate species was right-side biased under present-day conditions, but side bias significantly diminished in tropical and temperate fishes under ocean acidification. Ocean acidification also decreased shoal cohesion irrespective of shoaling type, with mixed-species shoals showing significantly lower cohesion than temperate-only shoals irrespective of climate stressors. Tropical fish became bolder under ocean acidification (after 4 weeks), and temperate fish became bolder with increasing temperature, while ocean acidification dampened temperate fish boldness. Our findings highlight the direct effect of climate stressors on fish behaviour and the interplay with the indirect effects of novel species interactions. Because strong shoal cohesion and lateralization are key determinants of species fitness, their degradation under ocean warming and acidification could adversely affect species performance in novel assemblages in a future ocean, and might slow down tropical species range extensions.

Continue reading ‘Ocean warming and acidification degrade shoaling performance and lateralization of novel tropical–temperate fish shoals’

Molecular basis of parental contributions to the behavioural tolerance of elevated pCO2 in a coral reef fish

Knowledge of adaptive potential is crucial to predicting the impacts of ocean acidification (OA) on marine organisms. In the spiny damselfish, Acanthochromis polyacanthus, individual variation in behavioural tolerance to elevated pCO2 has been observed and is associated with offspring gene expression patterns in the brain. However, the maternal and paternal contributions of this variation are unknown. To investigate parental influence of behavioural pCO2 tolerance, we crossed pCO2-tolerant fathers with pCO2-sensitive mothers and vice versa, reared their offspring at control and elevated pCO2 levels, and compared the juveniles’ brain transcriptional programme. We identified a large influence of parental phenotype on expression patterns of offspring, irrespective of environmental conditions. Circadian rhythm genes, associated with a tolerant parental phenotype, were uniquely expressed in tolerant mother offspring, while tolerant fathers had a greater role in expression of genes associated with histone binding. Expression changes in genes associated with neural plasticity were identified in both offspring types: the maternal line had a greater effect on genes related to neuron growth while paternal influence impacted the expression of synaptic development genes. Our results confirm cellular mechanisms involved in responses to varying lengths of OA exposure, while highlighting the parental phenotype’s influence on offspring molecular phenotype.

Continue reading ‘Molecular basis of parental contributions to the behavioural tolerance of elevated pCO2 in a coral reef fish’

Elucidating the acid-base mechanisms underlying otolith overgrowth in fish exposed to ocean acidification

Over a decade ago, ocean acidification (OA) exposure was reported to induce otolith overgrowth in teleost fish. This phenomenon was subsequently confirmed in multiple species; however, the underlying physiological causes remain unknown. Here, we report that splitnose rockfish (Sebastes diploproa) exposed to ~1,600 μatm pCO2 (pH ~7.5) were able to fully regulated the pH of both blood and endolymph (the fluid that surrounds the otolith within the inner ear). However, while blood was regulated around pH 7.80, the endolymph was regulated around pH ~8.30. These different pH setpoints result in increased pCO2 diffusion into the endolymph, which in turn leads to proportional increases in endolymph [HCO3] and [CO32−]. Endolymph pH regulation despite the increased pCO2 suggests enhanced H+ removal. However, a lack of differences in inner ear bulk and cell-specific Na+/K+-ATPase and vacuolar type H+-ATPase protein abundance localization pointed out to activation of preexisting ATPases, non-bicarbonate pH buffering, or both, as the mechanism for endolymph pH-regulation. These results provide the first direct evidence showcasing the acid-base chemistry of the endolymph of OA-exposed fish favors otolith overgrowth, and suggests that this phenomenon will be more pronounced in species that count with more robust blood and endolymph pH regulatory mechanisms.

Continue reading ‘Elucidating the acid-base mechanisms underlying otolith overgrowth in fish exposed to ocean acidification’

Behavioural stress propagation in benthic invertebrates caused by acute pH drop-induced metabolites

Studies on pH stress in marine animals typically focus on direct or species-specific aspects. We here test the hypothesis that a drop to pH = 7.6 indirectly affects the intra- and interspecific interactions of benthic invertebrates by means of chemical communication. We recorded fitness-relevant behaviours of small hermit crabs Diogenes pugilator, green shore crabs Carcinus maenas, and harbour ragworms Hediste diversicolor in response to short-term pH drop, and to putative stress metabolites released by conspecifics or gilt-head sea bream Sparus aurata during 30 min of acute pH drop. Not only did acute pH drop itself impair time to find a food cue in small hermit crabs and burrowing in harbour ragworms, but similar effects were observed under exposure to pH drop-induced stress metabolites. Stress metabolites from S. aurata, but not its regular control metabolites, also induced avoidance responses in all recipient species. Here, we confirm that a short-term abrupt pH drop, an abiotic stressor, has the capacity to trigger the release of metabolites which induce behavioural responses in conspecific and heterospecific individuals, which can be interpreted as a behavioural cost. Our findings that stress responses can be indirectly propagated through means of chemical communication warrant further research to confirm the effect size of the behavioural impairments caused by stress metabolites and to characterise their chemical nature.

Continue reading ‘Behavioural stress propagation in benthic invertebrates caused by acute pH drop-induced metabolites’

  • Reset

Subscribe

OA-ICC Highlights


%d bloggers like this: