Posts Tagged 'growth'



Response of coralline algae Porolithon onkodes to elevated seawater temperature and reduced pH

Coralline algae (CA), a type of primary calcifying producer presented in coastal ecosystems, are considered one of the highly sensitive organisms to marine environmental change. However, experimental studies on coralline algae responses to elevated seawater temperature and reduced pH have documented either contradictory or opposite results. In this study, we analysed the growth and physiological responses of coralline algae Porolithon onkodes to the elevated temperature (30.8°C) and reduced pH (7.8). The aim of this analysis was to observe the direct and combined effects, while elucidating the growth and photosynthesis in this response. It was demonstrated that the algae thallus growth rate and photosynthesis under elevated temperature were depressed by 21.5% and 14.9% respectively. High pCO2 enhanced the growth and photosynthesis of the thallus at ambient temperature, while they were deceased when both temperature and pCO2 were elevated. CA is among the most sensitive organisms to ocean acidification (OA) because of their precipitate high Mg-calcite. We hypothesize that coralline algae could increase their calcification rate in order to counteract the effects of moderate acidification, but offset by the effect of elevated temperature. Accordingly, our results also support the conclusion that global warming (GW) is a stronger threat to algal performance than OA. Our findings are also proposed that coralline algae may be more
resilient under OA than GW.

Continue reading ‘Response of coralline algae Porolithon onkodes to elevated seawater temperature and reduced pH’

Paradise lost: end‐of‐century warming and acidification under business‐as‐usual emissions have severe consequences for symbiotic corals

Despite recent efforts to curtail greenhouse gas emissions, current global emission trajectories are still following the business‐as‐usual RCP8.5 emission pathway. The resulting ocean warming and acidification have transformative impacts on coral reef ecosystems, detrimentally affecting coral physiology and health, and these impacts are predicted to worsen in the near future. In this study, we kept fragments of the symbiotic corals Acropora intermedia (thermally sensitive) and Porites lobata (thermally tolerant) for 7 weeks under an orthogonal design of predicted end‐of‐century RCP8.5 conditions for temperature and pCO2 (3.5 °C and 570 ppm above present‐day respectively) to unravel how temperature and acidification, individually or interactively, influence metabolic and physiological performance. Our results pinpoint thermal stress as the dominant driver of deteriorating health in both species because of its propensity to destabilize coral‐dinoflagellate symbiosis (bleaching). Acidification had no influence on metabolism but had a significant negative effect on skeleton growth, particularly when photosynthesis was absent such as in bleached corals or under dark conditions. Total loss of photosynthesis after bleaching caused an exhaustion of protein and lipid stores and collapse of calcification that ultimately led to A. intermedia mortality. Despite complete loss of symbionts from its tissue, P. lobata maintained small amounts of photosynthesis and experienced a weaker decline in lipid and protein reserves that presumably contributed to higher survival of this species. Our results indicate that ocean warming and acidification under business‐as‐usual CO2 emission scenarios will likely extirpate thermally‐sensitive coral species before the end of the century, while slowing the recovery of more thermally‐tolerant species from increasingly severe mass coral bleaching and mortality. This could ultimately lead to the gradual disappearance of tropical coral reefs globally, and a shift on surviving reefs to only the most resilient coral species.

Continue reading ‘Paradise lost: end‐of‐century warming and acidification under business‐as‐usual emissions have severe consequences for symbiotic corals’

A coralline alga gains tolerance to ocean acidification over multiple generations of exposure

Crustose coralline algae play a crucial role in the building of reefs in the photic zones of nearshore ecosystems globally, and are highly susceptible to ocean acidification. Nevertheless, the extent to which ecologically important crustose coralline algae can gain tolerance to ocean acidification over multiple generations of exposure is unknown. We show that, while calcification of juvenile crustose coralline algae is initially highly sensitive to ocean acidification, after six generations of exposure the effects of ocean acidification disappear. A reciprocal transplant experiment conducted on the seventh generation, where half of all replicates were interchanged across treatments, confirmed that they had acquired tolerance to low pH and not simply to laboratory conditions. Neither exposure to greater pH variability, nor chemical conditions within the micro-scale calcifying fluid internally, appeared to play a role in fostering this capacity. Our results demonstrate that reef-accreting taxa can gain tolerance to ocean acidification over multiple generations of exposure, suggesting that some of these cosmopolitan species could maintain their critical ecological role in reef formation.

Continue reading ‘A coralline alga gains tolerance to ocean acidification over multiple generations of exposure’

Combined effects of CO2 level, light intensity, and nutrient availability on the coccolithophore Emiliania huxleyi

Continuous accumulation of fossil CO2 in the atmosphere and increasingly dissolved CO2 in seawater leads to ocean acidification (OA), which is known to affect phytoplankton physiology directly and/or indirectly. Since increasing attention has been paid to the effects of OA under the influences of multiple drivers, in this study, we investigated effects of elevated CO2 concentration under different levels of light and nutrients on growth rate, particulate organic (POC) and inorganic (PIC) carbon quotas of the coccolithophorid Emiliania huxleyi. We found that OA treatment (pH 7.84, CO2 = 920 μatm) reduced the maximum growth rate at all levels of the nutrients tested, and exacerbated photo-inhibition of growth rate under reduced availability of phosphate (from 10.5 to 0.4 μmol l−1). Low nutrient levels, especially lower nitrate concentration (8.8 μmol l−1 compared with 101 μmol l−1), decreased maximum growth rates. Nevertheless, the reduced levels of nutrients increased the maximum PIC production rate. Decreased availability of nutrients influenced growth, POC and PIC quotas more than changes in CO2 concentrations. Our results suggest that reduced nutrient availability due to reduced upward advective supply because of ocean warming may partially counteract the negative effects of OA on calcification of the coccolithophorid.

Continue reading ‘Combined effects of CO2 level, light intensity, and nutrient availability on the coccolithophore Emiliania huxleyi’

An integrated investigation of the effects of ocean acidification on adult abalone (Haliotis tuberculata)

Ocean acidification (OA) and its subsequent changes in seawater carbonate chemistry are threatening the survival of calcifying organisms. Due to their use of calcium carbonate to build their shells, marine molluscs are particularly vulnerable. This study investigated the effect of CO2-induced OA on adult European abalone (Haliotis tuberculata) using a multi-parameter approach. Biological (survival, growth), physiological (pHT of haemolymph, phagocytosis, metabolism, gene expression), and structural responses (shell strength, nano-indentation measurements, Scanning electron microscopy imaging of microstructure) were evaluated throughout a 5-month exposure to ambient (8.0) and low (7.7) pH conditions. During the first 2 months, the haemolymph pH was reduced, indicating that abalone do not compensate for the pH decrease of their internal fluid. Overall metabolism and immune status were not affected, suggesting that abalone maintain their vital functions when facing OA. However, after 4 months of exposure, adverse effects on shell growth, calcification, microstructure, and resistance were highlighted, whereas the haemolymph pH was compensated. Significant reduction in shell mechanical properties was revealed at pH 7.7, suggesting that OA altered the biomineral architecture leading to a more fragile shell. It is concluded that under lower pH, abalone metabolism is maintained at a cost to growth and shell integrity. This may impact both abalone ecology and aquaculture.

Continue reading ‘An integrated investigation of the effects of ocean acidification on adult abalone (Haliotis tuberculata)’

Harmful algal traits and bloom dynamics under climate change

Anthropogenic activities have caused a rapid increase in greenhouse gas emissions, such as CO2, which also led to a rise in global mean temperatures. Next to changes in climate conditions, anthropogenic perturbations also include the release of vast amounts of nutrients into coastal waters. These global alterations in environmental conditions have severe consequences for marine phytoplankton species, which are responsible for half of all primary production on Earth. Some phytoplankton species, however, can become a nuisance for the environment through the formation of dense harmful algal blooms (HABs). Especially HABs caused by dinoflagellates can have far-reaching consequences, as they are known to produce potent toxins that may be detrimental for the environmental and human health. The aims of this thesis were to assess the environmental drivers behind HAB development, determine the extent of intraspecific trait variation in HAB populations, and to evaluate the impact of climate change on HAB proliferations. Although nutrient dynamics play a substantial role in the emergence of HABs, other biotic and abiotic factors may strongly modulate the magnitude and duration of bloom events. For instance, low salinities due to excessive rainfall and increased wind speeds led to significant reductions in Alexandrium ostenfeldii bloom densities in the Netherlands, while highest population densities generally corresponded to high temperatures, low N:P ratios and low grazer densities. This demonstrates the important role of the combination of physical, chemical and biological factors in the development of HABs. An important factor that may contribute to the success of HAB species is the considerable intraspecific trait variation that can be found within populations. Strains derived from two A. ostenfeldii populations expressed substantial phenotypic variation in functional traits, such as growth rate, cell size, toxin production, allelopathic potency, elemental stoichiometry, and nitrogen uptake kinetics. This observed high trait variation may facilitate development and resilience of HABs, especially under changing environmental conditions. Different environmental variables may also influence phenotypic trait expression. For instance, elevated CO2 concentrations caused an increase in growth rates in three A. ostenfeldii strains derived from the same population. Phenotypic plasticity in trait responses, and variation therein, towards environmental stressors may be important for species adaptation, especially on the short term. Although substantial variation in trait responses of HAB species towards climate change variables can be found, I did identify clear trends when combining data from a multitude of culture experiments. Specifically, HAB growth rates showed an overall increase in response to elevated pCO2. This may represent a competitive advantage for HAB species in future waters, particularly since a similar trend was not found for other phytoplankton species. In addition, elevated temperatures also led to an increase in growth rates, but only for HAB species isolated at higher latitudes. Since the success of HAB species ultimately depends on growth rates, these findings warn for a greater potential of HAB development in future oceans, particularly in temperate regions. Overall, the results of this thesis contribute to a better understanding of dinoflagellate HAB dynamics and the potential impacts of climate change on HAB proliferations. show less

Continue reading ‘Harmful algal traits and bloom dynamics under climate change’

Ocean acidification impacts growth and shell mineralization in juvenile abalone (Haliotis tuberculata)

Ocean acidification (OA) is a major global driver that leads to substantial changes in seawater carbonate chemistry, with potentially serious consequences for calcifying organisms. Marine shelled molluscs are ecologically and economically important species, providing essential ecosystem services and food sources for other species. Due to their physiological characteristics and their use of calcium carbonate (CaCO3) to build their shells, molluscs are among the most vulnerable invertebrates with regard to OA, with early developmental stages being particularly sensitive to pH changes. This study investigated the effects of CO2-induced OA on juveniles of the European abalone Haliotis tuberculata, a commercially important gastropod species. Six-month-old juvenile abalones were cultured for 3 months at four pH levels (8.1, 7.8, 7.7, 7.6) representing current and predicted near-future conditions. Survival, growth, shell microstructure, thickness, and strength were compared across the four pH treatments. After 3 months of exposure, significant reductions in juvenile shell length, weight, and strength were revealed in the pH 7.6 treatment. Scanning electron microscopy observations also revealed modified texture and porosity of the shell mineral layers as well as alterations of the periostracum at pH 7.6 which was the only treatment with an aragonite saturation state below 1. It is concluded that low pH induces both general effects on growth mechanisms and corrosion of deposited shell in H. tuberculata. This will impact both the ecological role of this species and the costs of its aquaculture.

Continue reading ‘Ocean acidification impacts growth and shell mineralization in juvenile abalone (Haliotis tuberculata)’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,325,341 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book