Posts Tagged 'growth'

Impacts of plastic-made packaging on marine key species: effects following water acidification and ecological implications

This study evaluates the impacts of 16 different leachates of plastic-made packaging on marine species of different trophic levels (bacteria, algae, echinoderms). Standard ecotoxicological endpoints (inhibition of bioluminescence, inhibition of growth, embryo-toxicity) and alterations of ecologically significant parameters (i.e., echinoderms’ body-size) were measured following exposure under different pH water conditions: marine standard (pH 8.1) and two increasingly acidic conditions (pH 7.8 and 7.5) in order to evaluate possible variations induced by ocean acidification. The results obtained in this study evidence that the tested doses are not able to significantly affect bacteria (Vibrio fischeri) and algae (Phaeodactylum tricornutum). On the contrary, Paracentrotus lividus larvae were significantly affected by several packaging types (13 out of 16) with meaningless differences between pH conditions.

Continue reading ‘Impacts of plastic-made packaging on marine key species: effects following water acidification and ecological implications’

Parental whole life cycle exposure modulates progeny responses to ocean acidification in slipper limpets

Multigenerational exposure is needed to assess the evolutionary potential of organisms in the rapidly changing seascape. Here, we investigate if there is a transgenerational effect of ocean acidification exposure on a calyptraeid gastropod such that long‐term exposure elevates offspring resilience. Larvae from wild type Crepidula onyx adults were reared from hatching until sexual maturity for over 36 months under three pH conditions (pH 7.3, 7.7, and 8.0). While the survivorship, growth, and respiration rate of F1 larvae were unaffected by acute ocean acidification (OA), long‐term and whole life‐cycle exposure significantly compromised adult survivorship, growth, and reproductive output of the slipper limpets. When kept under low pH throughout their life cycle, only 6% of the F1 slipper limpets survived pH 7.3 conditions after ~2.5 years and the number of larvae they released was ~10% of those released by the control. However, the F2 progeny from adults kept under the long‐term low pH condition hatched at a comparable size to those in medium and control pH conditions. More importantly, these F2 progeny from low pH adults outperformed F2 slipper limpets from control conditions; they had higher larval survivorship and growth, and reduced respiration rate across pH conditions, even at the extreme low pH of 7.0. The intragenerational negative consequences of OA during long‐term acclimation highlights potential carryover effects and ontogenetic shifts in stress vulnerability, especially prior to and during reproduction. Yet, the presence of a transgenerational effect implies that this slipper limpet, which has been widely introduced along the West Pacific coasts, has the potential to adapt to rapid acidification.

Continue reading ‘Parental whole life cycle exposure modulates progeny responses to ocean acidification in slipper limpets’

Microalgal photosynthesis induces alkalization of aquatic environment as a result of H+ uptake independently from CO2 concentration – new perspectives for environmental applications


  • Microalgae photosynthesis induces strongly H+ uptake reversing ocean acidification.
  • Water alkalization through algal H+ uptake is independent from CO2 concentration.
  • New management approaches for reversing ocean acidification using algal H+ uptake.
  • Algal H+ uptake depends on essential nutrients, cell density and light intensity.
  • Acidification of aquatic environment induces microalgal photosynthesis and growth.


The photosynthetic process in microalgae and the extracellular proton environment interact with each other. The photosynthetic process in microalgae induces a pH increase in the aquatic environment as a result of cellular protons uptake rather than as an effect of CO2 consumption. The photosynthetic water photolysis and the reduction/oxidation cycle of the plastoquinone pool provide lumen with protons. Weak bases act as “permeant buffers” in lumen during the photosynthetic procedure, converting the ΔpH to Δψ. This is possibly the main reason for continuous light-driven proton uptake from the aquatic environment through cytosol and stroma, into the lumen. The proton uptake rate and, therefore, the microalgal growth is proportional to the light intensity, cell concentration, and extracellular proton concentration. The low pH in microalgae cultures, without limitation factors related to light and nutrients, strongly induces photosynthesis (and proton uptake) and, consequently, growth. In contrast, the mitochondrial respiratory process, in the absence of photosynthetic activity, does not substantially alter the culture pH. Only after intensification of the respiratory process, using exogenous glucose supply leads to significantly reduced pH values in the culture medium, almost exclusively through proton output. Enhanced dissolution of atmospheric CO2 in water causes the phenomenon of ocean acidification, which prevents the process of calcification, a significant process for numerous phytoplankton and zooplankton organisms, as well for corals. The proposed interaction between microalgal photosynthetic activity and proton concentration in the aquatic environment, independently from the CO2 concentration, paves the way for new innovative management strategies for reversing the ocean acidification.

Continue reading ‘Microalgal photosynthesis induces alkalization of aquatic environment as a result of H+ uptake independently from CO2 concentration – new perspectives for environmental applications’

Combined effect of microplastics and global warming factors on early growth and development of the sea urchin (Paracentrotus lividus)


  • This work focusses on the effect of a multi-stressor environment in sea urchin.
  • Embryo-larval bioassays were used to determine growth and morphometric parameters.
  • A lower water pH (7.6) reduced larval growth and caused deformities.
  • Microplastics aggravate the effect of water acidification in sea urchin larvae.
  • High temperatures caused an additional stress and reduced larvae stomach volume.


The aim of this work was to estimate the potential risk of the combined effect of global change factors (acidification, temperature increase) and microplastic (MP) pollution on the growth and development of the sea urchin P. lividus. Embryo-larval bioassays were conducted to determine growth and morphology after 48 h of incubation with MP (1000 and 3000 particles/mL); with filtered sea water at pH = 7.6; and with their combinations. A second experiment was conducted to study the effect of pH and MP in combination with a temperature increase of 4 °C compared to control (20 °C). We found that the inhibition of growth in embryos reared at pH = 7.6 was around 75%. Larvae incubated at 3000 MP particles/mL showed a 20% decrease in growth compared to controls. The exposure to MP also induced an increase in the postoral arm separation or rounded vertices. The combined exposure to a pH 7.6 and MP caused a significant decrease of larval growth compared to control, to MP and to pH 7.6 treatments. Morphological alterations were observed in these treatments, including the development of only two arms. Increasing the temperature resulted in an increased growth in control, in pH 7.6 and pH 7.6 + MP3000 treatments, but the relative stomach volume decreased. However, when growth parameters were expressed per Degree-Days the lower growth provoked by the thermal stress was evidenced in all treatments. In this work we demonstrated that MP could aggravate the effect of a decreased pH and that an increase in water temperature generated an additional stress on P. lividus larvae, manifested in a lower growth and an altered development. Therefore, the combined stress caused by ocean warming, ocean acidification, and microplastic pollution, could threaten sea urchin populations leading to a potential impact on coastal ecosystems.

Continue reading ‘Combined effect of microplastics and global warming factors on early growth and development of the sea urchin (Paracentrotus lividus)’

Transgenerational responses to seawater pH in the edible oyster, with implications for the mariculture of the species under future ocean acidification


• Larval offspring of C. hongkongensis were resilient to OA exposure

• Phenotypic traits in out-planted juveniles improved with parental exposure

• Positive carry-over effect from exposed parents persisted and manifested in the estuary

• Linking multiple life stages is vital to assess OA-induced carry-over capacity

• OA exposure at early life stages revealed potential mariculture application and species fitness


The majority of common edible oysters are projected to grow more slowly and have smaller impaired shells because of anthropogenic CO2-induced reductions in seawater carbonate ion concentration and pH, a process called ocean acidification (OA). Recent evidence has shown that OA has carryover effects, for example, larvae exposed to OA will also exhibit either positive or negative effects after metamorphosis. This study examined the hidden carryover effects of OA exposure during parental and larval stages on post-metamorphic traits of the commercially important oyster species Crassostrea hongkongensis. Adults of C. hongkongensis were exposed to control pH (pHNBS 8.0) and OA-induced low pH (pHNBS 7.4) conditions. Their larval offspring were then exposed to the same aquarium conditions before being out-planted as post-metamorphic juveniles at a mariculture site for 10 months. Initially, larval offspring were resilient to low pH with or without parental exposure. The larvae exposed to low pH had significantly faster development and higher percentage of settlement success compared to control groups. The out-planted juveniles with parental exposure had improved survival and growth compared to juveniles without parental exposure, regardless of the larval exposure history. This implies that transgenerational effects due to parental exposure not only persists but also have a greater influence than the within-generational effects of larval exposure. Our results shed light on the importance of linking the various life history stages when assessing the OA-induced carryover capacity of C. hongkongensis in the natural environment. Understanding these linked relationships helps us better predict the species rapid adaptation responses in the face of changing coastal conditions due to OA.

Continue reading ‘Transgenerational responses to seawater pH in the edible oyster, with implications for the mariculture of the species under future ocean acidification’

Impact of increased nutrients and lowered pH on photosynthesis and growth of three marine phytoplankton communities from the coastal South West Atlantic (Patagonia, Argentina)

Effect of global change variables on the structure and photosynthesis of phytoplankton communities was evaluated in three different sites of the Patagonian coast of Argentina: enclosed bay (Puerto Madryn, PM), estuarine (Playa Unión, PU), and open waters (Isla Escondida, IE). We exposed samples to two contrasting scenarios: Present (nutrients at in situ levels) vs. Future (with lowered pH and higher nutrients inputs), and determined growth and photosynthetic responses after 2 days of acclimation. Under the Future condition phytoplankton growth was higher in the estuarine site compared to those in PM and IE. This effect was the most pronounced on large diatoms. While the increase of photosynthetic activity was not always observed in the Future scenario, the lower photosynthetic electron requirement for carbon fixation (Φe,C = ETR/PmB) in this scenario compared to the Present, suggests a more effective energy utilization. Long-term experiments were also conducted to assess the responses along a 4 days acclimation period in PU. Diatoms benefited from the Future conditions and had significantly higher growth rates than in the Present. In addition, Φe,C was lower after the acclimation period in the Future scenario, compared to the Present. Our results suggest that the availability, frequency and amount of nutrients play a key role when evaluating the effects of global change on natural phytoplankton communities. The observed changes in diatom growth under the Future scenario in PU and IE and photosynthesis may have implications in the local trophodynamics by bottom up control.

Continue reading ‘Impact of increased nutrients and lowered pH on photosynthesis and growth of three marine phytoplankton communities from the coastal South West Atlantic (Patagonia, Argentina)’

Diurnally fluctuating pCO2 enhances growth of a coastal strain of Emiliania huxleyi under future-projected ocean acidification conditions

The carbonate chemistry in coastal waters is more variable compared with that of open oceans, both in magnitude and time scale of its fluctuations. However, knowledge of the responses of coastal phytoplankton to dynamic changes in pH/pCO2 has been scarcely documented. Hence, we investigated the physiological performance of a coastal isolate of the coccolithophore Emiliania huxleyi (PML B92/11) under fluctuating and stable pCO2 regimes (steady ambient pCO2, 400 μatm; steady elevated pCO2, 1200 μatm; diurnally fluctuating elevated pCO2, 600–1800 μatm). Elevated pCO2 inhibited the calcification rate in both the steady and fluctuating regimes. However, higher specific growth rates and lower ratios of calcification to photosynthesis were detected in the cells grown under diurnally fluctuating elevated pCO2 conditions. The fluctuating pCO2 regime alleviated the negative effects of elevated pCO2 on effective photochemical quantum yield and relative photosynthetic electron transport rate compared with the steady elevated pCO2 treatment. Our results suggest that growth of E. huxleyi could benefit from diel fluctuations of pH/pCO2 under future-projected ocean acidification, but its calcification was reduced by the fluctuation and the increased concentration of CO2, reflecting a necessity to consider the influences of dynamic pH fluctuations on coastal carbon cycles associated with ocean global changes.

Continue reading ‘Diurnally fluctuating pCO2 enhances growth of a coastal strain of Emiliania huxleyi under future-projected ocean acidification conditions’

Microzooplankton communities in a changing ocean: A risk assessment

Microzooplankton communities are fundamental components of marine food webs and have the potential to impact the functioning of carbon pumps. The identification of common responses of microzooplankton to global change has been challenging due to their plasticity and complex community-level interactions. However, accumulating research is providing new insights on the vulnerability of this group to different climate and other human-related hazards. Here, the current and future risk levels of microzooplankton associated with global change are assessed by identifying prevailing hazards, exposure, sensitivity, natural adaptability, and observed impacts based on available evidence. Most documented hazards for the survival and yield of microzooplankton are ocean warming, acidification, deoxygenation, and coastal eutrophication. Overall, heterotrophic protists are expected to respond and adapt rapidly to global trends. Fast growing, mixotrophy, wide internal stoichiometry, and their capacity to track optimal environmental conditions by changing species’ range distribution are among the most important traits that shape their high adaptability to global change. Community-level responses to warming, however, are predicted to be amplified in polar and subpolar regions. At the individual level, the highest risk is associated with the sensitivity to deoxygenation since microzooplankton, especially ciliates, are known to reduce metabolic rates under hypoxic episodes; however, vulnerable species can be readily replaced by specialized taxa from a similar functional type. Microzooplankton seem to act as functional buffers of environmental threats, thus conferring stability, in terms of community connectedness to marine food webs and ecosystems against external disturbances.

Continue reading ‘Microzooplankton communities in a changing ocean: A risk assessment’

Intraspecific variation in multiple trait responses of Alexandrium ostenfeldii towards elevated pCO2


• Trait responses of three Alexandrium ostenfeldii strains to high CO2 conditions.

• All three strains increased their growth rates.

• Substantial variation in the production of volatile organic compounds.

• Variation in phenotypic plasticity of trait responses between strains.


Dissolved oceanic CO2 concentrations are rising as result of increasing atmospheric partial pressure of CO2 (pCO2), which has large consequences for phytoplankton. To test how higher CO2 availability affects different traits of the toxic dinoflagellate Alexandrium ostenfeldii, we exposed three strains of the same population to 400 and 1,000 µatm CO2, and measured traits including growth rate, cell volume, elemental composition, 13C fractionation, toxin content, and volatile organic compounds (VOCs). Strains largely increased their growth rates and particulate organic carbon and nitrogen production with higher pCO2 and showed significant changes in their VOC profile. One strain showed a significant decrease in both PSP and cyclic imine content and thereby in cellular toxicity. Fractionation against 13C increased in response to elevated pCO2, which may point towards enhanced CO2 acquisition and/or a downscaling of the carbon concentrating mechanisms. Besides consistent responses in some traits, other traits showed large variation in both direction and strength of responses towards elevated pCO2. The observed intraspecific variation in phenotypic plasticity of important functional traits within the same population may help A. ostenfeldii to negate the effects of immediate environmental fluctuations and allow populations to adapt more quickly to changing environments.

Continue reading ‘Intraspecific variation in multiple trait responses of Alexandrium ostenfeldii towards elevated pCO2’

Interactive effects of elevated CO2 concentration and light on the picophytoplankton Synechococcus

Synechococcus is a major contributor to the primary production in tropic and subtropical oceans worldwide. Responses of this picophytoplankton to changing light and CO2 levels is of general concern to understand its ecophysiology in the context of ocean global changes. We grew Synechococcus sp. (WH7803), originally isolated from subtropic North Atlantic Ocean, under different PAR levels for about 15 generations and examined its growth, photochemical performance and the response of these parameters to elevated CO2 (1,000 μatm). The specific growth rate increased from 6 μmol m–2 s–1 to reach a maximum (0.547 ± 0.026) at 25 μmol m–2 s–1, and then became inhibited at PAR levels over 50 μmol m–2 s–1, with light use efficiency (α) and photoinhibition coefficient (β) being 0.093 and 0.002, respectively. When the cells were grown at ambient and elevated CO2 concentration (400 vs. 1,000 μatm), the high-CO2 grown cells showed significantly enhanced rates of electron transport and quantum yield as well as significant increase in specific growth rate at the limiting and inhibiting PAR levels. While the electron transport rate significantly increased at the elevated CO2 concentration under all tested light levels, the specific growth did not exhibit significant changes under the optimal growth light condition. Our results indicate that Synechococcus WH7803 grew faster under the ocean acidification (OA) treatment induced by CO2 enrichment only under limiting and inhibiting light levels, indicating the interactive effects and implying that the picophytoplankton respond differentially at different depths while exposing changing light conditions.

Continue reading ‘Interactive effects of elevated CO2 concentration and light on the picophytoplankton Synechococcus’

  • Search

  • Categories

  • Tags

  • Post Date

Subscribe to the RSS feed

Follow AnneMarin on Twitter

Blog Stats

  • 1,407,898 hits


Ocean acidification in the IPCC AR5 WG II

OUP book

%d bloggers like this: