Posts Tagged 'biological response'

Exposure history determines pteropod vulnerability to ocean acidification along the US West Coast

The pteropod Limacina helicina frequently experiences seasonal exposure to corrosive conditions (Ωar  < 1) along the US West Coast and is recognized as one of the species most susceptible to ocean acidification (OA). Yet, little is known about their capacity to acclimatize to such conditions. We collected pteropods in the California Current Ecosystem (CCE) that differed in the severity of exposure to Ωar conditions in the natural environment. Combining field observations, high-CO2 perturbation experiment results, and retrospective ocean transport simulations, we investigated biological responses based on histories of magnitude and duration of exposure to Ωar < 1. Our results suggest that both exposure magnitude and duration affect pteropod responses in the natural environment. However, observed declines in calcification performance and survival probability under high CO2 experimental conditions do not show acclimatization capacity or physiological tolerance related to history of exposure to corrosive conditions. Pteropods from the coastal CCE appear to be at or near the limit of their physiological capacity, and consequently, are already at extinction risk under projected acceleration of OA over the next 30 years. Our results demonstrate that Ωar exposure history largely determines pteropod response to experimental conditions and is essential to the interpretation of biological observations and experimental results.

Continue reading ‘Exposure history determines pteropod vulnerability to ocean acidification along the US West Coast’

Defying dissolution: discovery of deep-sea scleractinian coral reefs in the North Pacific

Deep-sea scleractinian coral reefs are protected ecologically and biologically significant areas that support global fisheries. The absence of observations of deep-sea scleractinian reefs in the Central and Northeast Pacific, combined with the shallow aragonite saturation horizon (ASH) and high carbonate dissolution rates there, fueled the hypothesis that reef formation in the North Pacific was improbable. Despite this, we report the discovery of live scleractinian reefs on six seamounts of the Northwestern Hawaiian Islands and Emperor Seamount Chain at depths of 535–732 m and aragonite saturation state (Ωarag) values of 0.71–1.33. Although the ASH becomes deeper moving northwest along the chains, the depth distribution of the reefs becomes shallower, suggesting the ASH is having little influence on their distribution. Higher chlorophyll moving to the northwest may partially explain the geographic distribution of the reefs. Principle Components Analysis suggests that currents are also an important factor in their distribution, but neither chlorophyll nor the available current data can explain the unexpected depth distribution. Further environmental data is needed to elucidate the reason for the distribution of these reefs. The discovery of reef-forming scleractinians in this region is of concern because a number of the sites occur on seamounts with active trawl fisheries.

Continue reading ‘Defying dissolution: discovery of deep-sea scleractinian coral reefs in the North Pacific’

Long-term exposure to elevated carbon dioxide does not alter activity levels of a coral reef fish in response to predator chemical cues

Levels of dissolved carbon dioxide (CO2) projected to occur in the world’s oceans in the near future have been reported to increase swimming activity and impair predator recognition in coral reef fishes. These behavioral alterations would be expected to have dramatic effects on survival and community dynamics in marine ecosystems in the future. To investigate the universality and replicability of these observations, we used juvenile spiny chromis damselfish (Acanthochromis polyacanthus) to examine the effects of long-term CO2 exposure on routine activity and the behavioral response to the chemical cues of a predator (Cephalopholis urodeta). Commencing at ~3–20 days post-hatch, juvenile damselfish were exposed to present-day CO2 levels (~420 μatm) or to levels forecasted for the year 2100 (~1000 μatm) for 3 months of their development. Thereafter, we assessed routine activity before and after injections of seawater (sham injection, control) or seawater-containing predator chemical cues. There was no effect of CO2 treatment on routine activity levels before or after the injections. All fish decreased their swimming activity following the predator cue injection but not following the sham injection, regardless of CO2 treatment. Our results corroborate findings from a growing number of studies reporting limited or no behavioral responses of fishes to elevated CO2.

Continue reading ‘Long-term exposure to elevated carbon dioxide does not alter activity levels of a coral reef fish in response to predator chemical cues’

Effects of hypoxia and ocean acidification on the upper thermal niche boundaries of coral reef fishes

Rising ocean temperatures are predicted to cause a poleward shift in the distribution of marine fishes occupying the extent of latitudes tolerable within their thermal range boundaries. A prevailing theory suggests that the upper thermal limits of fishes are constrained by hypoxia and ocean acidification. However, some eurythermal fish species do not conform to this theory, and maintain their upper thermal limits in hypoxia. Here we determine if the same is true for stenothermal species. In three coral reef fish species we tested the effect of hypoxia on upper thermal limits, measured as critical thermal maximum (CTmax). In one of these species we also quantified the effect of hypoxia on oxygen supply capacity, measured as aerobic scope (AS). In this species we also tested the effect of elevated CO2 (simulated ocean acidification) on the hypoxia sensitivity of CTmax. We found that CTmax was unaffected by progressive hypoxia down to approximately 35 mmHg, despite a substantial hypoxia-induced reduction in AS. Below approximately 35 mmHg, CTmax declined sharply with water oxygen tension (PwO2). Furthermore, the hypoxia sensitivity of CTmax was unaffected by elevated CO2. Our findings show that moderate hypoxia and ocean acidification do not constrain the upper thermal limits of these tropical, stenothermal fishes.

Continue reading ‘Effects of hypoxia and ocean acidification on the upper thermal niche boundaries of coral reef fishes’

Combined impacts of ocean acidification and dysoxia on survival and growth of four agglutinating foraminifera

Agglutinated foraminifera create a shell by assembling particles from the sediment and comprise a significant part of the foraminiferal fauna. Despite their high abundance and diversity, their response to environmental perturbations and climate change is relatively poorly studied. Here we present results from a culture experiment with four different species of agglutinating foraminifera incubated in artificial substrate and exposed to different pCO2 conditions, in either dysoxic or oxic settings. We observed species-specific reactions (i.e., reduced or increased chamber formation rates) to dysoxia and/or acidification. While chamber addition and/or survival rates of Miliammina fusca and Trochammina inflata were negatively impacted by either dysoxia or acidification, respectively, Textularia tenuissima and Spiroplectammina biformis had the highest survivorship and chamber addition rates with combined high pCO2 (2000 ppm) and low O2 (0.7 ml/l) conditions. The differential response of these species indicates that not all agglutinating foraminifera are well-adapted to conditions induced by predicted climate change, which may result in a shift in foraminiferal community composition.

Continue reading ‘Combined impacts of ocean acidification and dysoxia on survival and growth of four agglutinating foraminifera’

Trade-offs in a high CO2 habitat on a subsea volcano: condition and reproductive features of a bathymodioline mussel

Northwest Eifuku submarine volcano (Mariana Volcanic Arc) emits very high concentrations of CO2 at a vent where the mussel Bathymodiolus septemdierum experiences pH as low as 5.2. We examined how this natural setting of high pCO2 influences shell, body, and reproductive condition. Calcification is highly compromised: at a given shell volume, shells from NW Eifuku weigh about half those from reference sites in the south Pacific, and dissolution of the inner shell is evident. However, the condition indices of some NW Eifuku mussels were equal to or higher than those from Lau back-arc basin and the New Hebrides Island Arc. NW Eifuku mussels in pH 5.2 fluids had the highest symbiont abundances in gill bacteriocytes, probably due to greater dissolved sulphide access. Excess energy demands imposed by high pCO2 conditions appears moderated by adequate food availability through symbiont chemosynthesis. In the sample with the lowest body condition, gametogenesis was lagging, although all mussels in high pCO2 had developing gonads and the complete gametogenic cycle was present in our samples. Gamete development is synchronous between sexes and is possibly periodic. While mussels are functionally dioecious, protogynous hermaphroditism can occur—a first record for the genus—which may be an adaptation to resource availability. B. septemdierum likely makes energy allocation trade-offs among calcification, body mass maintenance, reproduction and other processes to maximize fitness. We suggest that flexibility to divert energy from shell formation, combined with good food supply, can mitigate the manifestation of high CO2 stress on B. septemdierum.

Continue reading ‘Trade-offs in a high CO2 habitat on a subsea volcano: condition and reproductive features of a bathymodioline mussel’

Potential impact of carbonate chemistry change (pCO2) on krill and krill-based food chain in the Southern Ocean with emphasis on embryogenesis of Antarctic krill

In the Southern Ocean, it is still not certain that overall krill biomass may decline because of drastic increase in pCO2, and consequent decline in pH. However, there is evidence that ecological vacuums created by krill population collapses caused by ecosystem shifts in Western Antarctic Peninsula (WAP) region led to replacement of Antarctic krill Euphausia superba by soft-bodied salps Salpa thomsoni. There is yet another questionable hypothesis that by the end of 21st century, ocean acidification stress, coupled with thermal increase, may synergistically induce physiologically critical stress to Antarctic krill in some areas of the Southern Ocean, egg development of krill may drastically decrease and in the 23rd century krill may even become extinct. I have earlier reported on normal krill egg development in relation to thermal change and high pressure (George and Stromberg, 1985). Recent experiments on krill development under different pCO2 conditions by Kawaguchi et al. (2011, 2013) suggest that we may witness 20 to 70 % reduction in Antarctic Krill by 2100 as direct consequence of pH decline. Such a scenario may lead to demise of krill-eating top-predators like baleen whales, seals and different species of Antarctic penguin populations. We now know that Adelaide penguins are decreasing in Bransfield Strait region off of the Western Antarctic Peninsula but increasing in Ross Sea region. Such a shift in breeding colonies moving from northern to southern WAP region and Ross Sea areas is not attributed to any decline in krill biomass but recent decadal melting of sea-ice as documented by remote sensing (George and Hayden, 2017). In this paper the main focus revolves around implications of changing chemistry of the Southern Ocean caused by absorption of anthropogenic carbon dioxide.
Continue reading ‘Potential impact of carbonate chemistry change (pCO2) on krill and krill-based food chain in the Southern Ocean with emphasis on embryogenesis of Antarctic krill’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,013,309 hits


Ocean acidification in the IPCC AR5 WG II

OUP book