Posts Tagged 'biological response'



Increased pCO2 changes the lipid production in important aquacultural feedstock algae Isochrysis galbana, but not in Tetraselmis suecica

Increased anthropogenic CO2 emissions are leading to an increase in CO2 uptake by the world’s oceans and seas, resulting in ocean acidification with a decrease in global ocean water pH by as much as 0.3–0.4 units by the year 2100. The direct effects of changing pCO2 on important microalgal feedstocks are not as well understood. Few studies have focused on lipid composition changes in specific algal species in response to ocean acidification and yet microalgae are an indispensable food source for various marine species, including juvenile shellfish. Isochrysis galbana and Tetraselmis suecica are widely used in aquaculture as feeds for mussels and other shellfish. The total lipid contents and concentrations of I. galbana and T. suecica were investigated when grown under present day (400 ppm) and ocean acidification conditions (1000 ppm) to elucidate the impact of increasing pCO2 on an important algae feedstock. Total lipids, long-chain alkenones (LCAs) and alkenoates decreased at 1000 ppm in I. galbana. I. galbana produces higher lipids than T. suecica, and is perhaps as a result more impacted by the change in carbon available for lipid production under higher pCO2. I. galbana is an important feedstock, more easily assimilated for growth in juvenile shellfish and reductions in lipid composition may prove problematic for the growth of future shellfish aquaculture. Our findings suggest that higher pCO2 impacts on algal lipid growth are species specific and warrant further study. It is therefore vital to examine the impact of high CO2 on algal lipid production, especially those commercial shellfish feed varieties to predict future impacts on commercial aquaculture.

Continue reading ‘Increased pCO2 changes the lipid production in important aquacultural feedstock algae Isochrysis galbana, but not in Tetraselmis suecica’

Plant and sediment properties in seagrass meadows from two Mediterranean CO2 vents: Implications for carbon storage capacity of acidified oceans

Highlights
• Seagrass features differed between control and low pH stations inconsistently in the two vents.

• Carbon content and its surficial accumulation decreased at high pCO2–low pH conditions.

• Carbon storage capacity of the seagrass may not increase at high pCO2-low pH conditions.

Abstract
Assessing the status of important carbon sinks such as seagrass meadows is of primary importance when dealing with potential climate change mitigation strategies. This study examined plant and sediment properties in seagrass meadows (Cymodocea nodosa (Ucria) Asch.) from two high pCO2–low pH Mediterranean vent systems, located at Milos (Greece) and Vulcano (Italy) Islands, providing insights on carbon storage potential in future acidified oceans. Contrary to what has been suggested, carbon content (both inorganic and organic) and its surficial accumulation decreased at high pCO2–low pH in comparison with controls. The decrease in inorganic carbon may result from the higher solubility of carbonates due to the more acidic conditions. At Vulcano, the seagrass properties (e.g., leaf area, biomass) appeared negatively affected by environmental conditions at high pCO2–low pH conditions and this may have had a detrimental effect on the organic carbon content and accumulation. At Milos, organic carbon decreased at high pCO2–low pH conditions, despite the increase in seagrass aboveground biomass, leaf length and area, probably as a consequence of site-specific features, which need further investigation and may include both biotic and abiotic factors (e.g., oligotrophic conditions, decreased sedimentation rate and input of allochthonous material). Results suggest that, in contrast to previous predictions based exclusively on the expected positive response of seagrasses to ocean acidification, carbon storage capacity of the seagrass C. nodosa may not increase at high pCO2-low pH conditions. This study emphasizes the need to investigate further the potential alteration in the climate mitigation service delivered by seagrass meadows in acidified oceans.

Continue reading ‘Plant and sediment properties in seagrass meadows from two Mediterranean CO2 vents: Implications for carbon storage capacity of acidified oceans’

Changes in temperature, pH, and salinity affect the sheltering responses of Caribbean spiny lobsters to chemosensory cues

Florida Bay is home to a network of shallow mud-banks which act as barriers to circulation creating small basins that are often subject to extremes in temperature and salinity. Florida bay is also important juvenile habitat for the Caribbean spiny lobster Panulirus argus. While our understanding of the effect of environmental changes on the survival, growth, and movement of spiny lobsters is growing, the effect on their chemosensory abilities has not yet been investigated. Lobsters rely heavily on chemical cues for many biological and ecological activities, and here we report on the effect of extreme environmental events in temperature (32 °C), salinity (45ppt), and pH (7.65 pH) on social behavior and sheltering preference in P. argus. Under normal conditions, chemical cues from conspecifics are used by spiny lobsters to identify suitable shelter and cues from stone crabs and diseased individuals are used to determine shelters to be avoided. In all altered conditions, lobsters lost the ability to aggregate with conspecifics and avoid stone crabs and diseased conspecifics. Thus, seasonal extreme events, and potentially future climate change conditions, alter the chemosensory-driven behavior of P. argus and may result in decreased survivorship due to impaired shelter selection or other behaviors.

Continue reading ‘Changes in temperature, pH, and salinity affect the sheltering responses of Caribbean spiny lobsters to chemosensory cues’

Particulate inorganic to organic carbon production as a predictor for coccolithophorid sensitivity to ongoing ocean acidification

Ocean acidification (OA) can induce shifts in plankton community composition, with coccolithophores being mostly negatively impacted. This is likely to change particulate inorganic and organic carbon (PIC and POC, respectively) production, with impacts on the biological carbon pump. Hence, assessing and, most importantly, understanding species‐specific sensitivities of coccolithophores is paramount. In a multispecies comparison, spanning more than two orders of magnitude in terms of POC and PIC production rates, among Calcidiscus leptoporus, Coccolithus pelagicus subsp. braarudii, Emiliania huxleyi, Gephyrocapsa oceanica, and Scyphosphaera apsteinii, we found that cellular PIC : POC was a good predictor for a species’ OA sensitivity. This is likely related to the need for cellular pH homeostasis, which is challenged by the process of calcification producing protons internally, especially when seawater pH decreases in an OA scenario. With higher PIC : POC, species and strains being more sensitive to OA coccolithophores may shift toward less calcified varieties in the future.

Continue reading ‘Particulate inorganic to organic carbon production as a predictor for coccolithophorid sensitivity to ongoing ocean acidification’

A negative correlation between behavioural and physiological performance under ocean acidification and warming

Many studies have examined the average effects of ocean acidification and warming on phenotypic traits of reef fishes, finding variable, but often negative effects on behavioural and physiological performance. Yet the presence and nature of a relationship between these traits is unknown. A negative relationship between phenotypic traits could limit individual performance and even the capacity of populations to adapt to climate change. Here, we examined the relationship between behavioural and physiological performance of a juvenile reef fish under elevated CO2 and temperature in a full factorial design. Behaviourally, the response to an alarm odour was negatively affected by elevated CO2, but not elevated temperature. Physiologically, aerobic scope was significantly diminished under elevated temperature, but not under elevated CO2. At the individual level, there was no relationship between behavioural and physiological traits in the control and single-stressor treatments. However, a statistically significant negative relationship was detected between the traits in the combined elevated CO2 and temperature treatment. Our results demonstrate that trade-offs in performance between behavioural and physiological traits may only be evident when multiple climate change stressors are considered, and suggest that this negative relationship could limit adaptive potential to climate change.

Continue reading ‘A negative correlation between behavioural and physiological performance under ocean acidification and warming’

The physiological response of marine diatoms to ocean acidification: differential roles of seawater pCO2 and pH

Although increasing the pCO2 for diatoms will presumably down‐regulate the CO2‐concentrating mechanism (CCM) to save energy for growth, different species have been reported to respond differently to ocean acidification (OA). To better understand their growth responses to OA, we acclimated the diatoms Thalassiosira pseudonana, Phaeodactylum tricornutum, and Chaetoceros muelleri to ambient (pCO2 400 μatm, pH 8.1), carbonated (pCO2 800 μatm, pH 8.1), acidified (pCO2 400 μatm, pH 7.8), and OA (pCO2 800 μatm, pH 7.8) conditions and investigated how seawater pCO2 and pH affect their CCMs, photosynthesis, and respiration both individually and jointly. In all three diatoms, carbonation down‐regulated the CCMs, while acidification increased both the photosynthetic carbon fixation rate and the fraction of CO2 as the inorganic carbon source. The positive OA effect on photosynthetic carbon fixation was more pronounced in C. muelleri, which had a relatively lower photosynthetic affinity for CO2, than in either T. pseudonana or P. tricornutum. In response to OA, T. pseudonana increased respiration for active disposal of H+ to maintain its intracellular pH, whereas P. tricornutum and C. muelleri retained their respiration rate but lowered the intracellular pH to maintain the cross‐membrane electrochemical gradient for H+ efflux. As the net result of changes in photosynthesis and respiration, growth enhancement to OA of the three diatoms followed the order of C. muelleri > P. tricornutum > T. pseudonana. This study demonstrates that elucidating the separate and joint impacts of increased pCO2 and decreased pH aids the mechanistic understanding of OA effects on diatoms in the future, acidified oceans.

Continue reading ‘The physiological response of marine diatoms to ocean acidification: differential roles of seawater pCO2 and pH’

Ocean warming drives decline in coral metabolism while acidification highlights species-specific responses

Ocean warming and acidification can have negative implications on coral reefs. This mechanistic study aims to evaluate the proximal causes of the observed negative response of Hawaiian corals to climate change scenarios. Net calcification (Gnet), gross photosynthesis, and dark respiration were measured in three species of Hawaiian corals across a range of temperature and acidification regimes using endpoint incubations. Calcification rates showed a curvilinear response with temperature, with the highest calcification rates observed at 26°C. Coral response to ocean acidification (OA) was species dependent and highly variable. OA enhanced calcification rates by 45% in the perforate coral, Montipora capitata, but had no short-term effect on the calcification or photosynthetic rates of imperforate corals, Pocillopora damicornis or Leptastrea purpurea. Further investigations revealed M. capitata to effectively dissipate protons (H+) while increasing uptake of bicarbonate (HCO−3), therefore maintaining high rates of Gnet under acute OA stress. This study demonstrates the first experimental evidence of the ability of a coral species to take advantage of increased dissolved inorganic carbon and overcome an increasing proton gradient in the boundary layer under OA conditions. These observed differences in coral metabolism may underlie the species-specific responses to climate change.

Continue reading ‘Ocean warming drives decline in coral metabolism while acidification highlights species-specific responses’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,178,834 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book