Posts Tagged 'mesocosms'



Future climate change is predicted to affect the microbiome and condition of habitat-forming kelp

Climate change is driving global declines of marine habitat-forming species through physiological effects and through changes to ecological interactions, with projected trajectories for ocean warming and acidification likely to exacerbate such impacts in coming decades. Interactions between habitat-formers and their microbiomes are fundamental for host functioning and resilience, but how such relationships will change in future conditions is largely unknown. We investigated independent and interactive effects of warming and acidification on a large brown seaweed, the kelp Ecklonia radiata, and its associated microbiome in experimental mesocosms. Microbial communities were affected by warming and, during the first week, by acidification. During the second week, kelp developed disease-like symptoms previously observed in the field. The tissue of some kelp blistered, bleached and eventually degraded, particularly under the acidification treatments, affecting photosynthetic efficiency. Microbial communities differed between blistered and healthy kelp for all treatments, except for those under future conditions of warming and acidification, which after two weeks resembled assemblages associated with healthy hosts. This indicates that changes in the microbiome were not easily predictable as the severity of future climate scenarios increased. Future ocean conditions can change kelp microbiomes and may lead to host disease, with potentially cascading impacts on associated ecosystems.

Continue reading ‘Future climate change is predicted to affect the microbiome and condition of habitat-forming kelp’

Molecular mechanisms underpinning transgenerational plasticity in the green sea urchin Psammechinus miliaris

The pre-conditioning of adult marine invertebrates to altered conditions, such as low pH, can significantly impact offspring outcomes, a process which is often referred to as transgenerational plasticity (TGP). This study describes for the first time, the gene expression profiles associated with TGP in the green sea urchin Psammechinus miliaris and evaluates the transcriptional contribution to larval resilience. RNA-Seq was used to determine how the expression profiles of larvae spawned into low pH from pre-acclimated adults differed to those of larvae produced from adults cultured under ambient pH. The main findings demonstrated that adult conditioning to low pH critically pre-loads the embryonic transcriptional pool with antioxidants to prepare the larvae for the “new” conditions. In addition, the classic cellular stress response, measured via the production of heat shock proteins (the heat shock response (HSR)), was separately evaluated. None of the early stage larvae either spawned in low pH (produced from both ambient and pre-acclimated adults) or subjected to a separate heat shock experiment were able to activate the full HSR as measured in adults, but the capacity to mount an HSR increased as development proceeded. This compromised ability clearly contributes to the vulnerability of early stage larvae to acute environmental challenge.

Continue reading ‘Molecular mechanisms underpinning transgenerational plasticity in the green sea urchin Psammechinus miliaris’

Effects of higher CO2 and temperature on exopolymer particle content and physical properties of marine aggregates

We investigated how future ocean conditions, and specifically the interaction between temperature and CO2, might affect marine aggregate formation and physical properties. Initially, mesocosms filled with coastal seawater were subjected to three different treatments of CO2 concentration and temperature: (1) 750 ppm CO2, 16°C, (2) 750 ppm CO2, 20°C, and (3) 390 ppm CO2, 16°C. Diatom-dominated phytoplankton blooms were induced in the mesocosms by addition of nutrients. In aggregates produced in roller tanks using seawater taken from the mesocosms during different stages of the bloom, we measured sinking velocity, size, chlorophyll a, particulate organic carbon and nitrogen, and exopolymer particle content; excess density and mass were calculated from the sinking velocity and size of the aggregates. As has been seen in previous experiments, no discernable differences in overall nutrient uptake, chlorophyll-a concentration, or exopolymer particle concentrations could be related to the acidification treatment in the mesocosms. In addition, in the aggregates formed during the roller tank experiments (RTEs), we observed no statistically significant differences in chemical composition among the treatments during Pre-Bloom, Bloom, and Post-Bloom periods. However, physical characteristics were different and showed a synergistic effect of warmer temperature and higher CO2 during the Pre-Bloom period; at this time, temperature had a larger effect than CO2 on aggregate sinking velocity. In RTEs with warmer and acidified treatment (future conditions), aggregates were larger, heavier, and settled faster than aggregates formed at present-day or only acidified conditions. During the Post-Bloom, however, aggregates formed under present and future conditions had similar physical properties. In acidified tanks at ambient temperature, aggregates were slower, smaller and less dense than those formed at the same temperature but under present CO2 or under warmer and acidified conditions. Thus, the sinking velocity of aggregates formed in acidified tanks at ambient temperature was slower than the other two cases. Our findings point out the potential of ocean acidification and warming to modify physical properties of sinking aggregates but also emphasize the need of future experiments investigating multiple environmental stressors to clarify the importance of each factor.

Continue reading ‘Effects of higher CO2 and temperature on exopolymer particle content and physical properties of marine aggregates’

A continuous-flow and on-site mesocosm for ocean acidification experiments on benthic organisms

Mesocosm experiments conducted for ecological purposes have become increasingly popular because they can provide a holistic understanding of the biological complexities associated with natural systems. This paper describes a new outdoor mesocosm designed for CO2 perturbation experiments of benthos. Manipulated the carbonate chemistry in a continuous flow-through system can be parallelized with diurnal changes, while irradiance, temperature, and nutrients can vary according to the local environment. A target hydrogen ion activity (pH) of seawater was sufficiently stabilized and maintained within 4 h after dilution, which was initiated by the ratio of CO2-saturated seawater to ambient seawater. Specifically, pH and CO2partial pressure (pCO2) levels gradually varied from 8.05–7.28 and 375–2,691 μatm, respectively, over a range of dilution ratios. This mesocosm can successfully manipulate the pH and pCO2 of seawater, and it demonstrates suitability for ocean acidification experiments on benthic communities.

Continue reading ‘A continuous-flow and on-site mesocosm for ocean acidification experiments on benthic organisms’

Toxic algal bloom induced by ocean acidification disrupts the pelagic food web

Ocean acidification, the change in seawater carbonate chemistry due to the uptake of anthropogenic CO2, affects the physiology of marine organisms in multiple ways1. Diverse competitive and trophic interactions transform the metabolic responses to changes in community composition, seasonal succession and potentially geographical distribution of species. The health of ocean ecosystems depends on whether basic biotic functions are maintained, ecosystem engineers and keystone species are retained, and the spread of nuisance species is avoided2. Here, we show in a field experiment that the toxic microalga Vicicitus globosus has a selective advantage under ocean acidification, increasing its abundance in natural plankton communities at CO2 levels higher than 600 µatm and developing blooms above 800 µatm CO2. The mass development of V. globosus has had a dramatic impact on the plankton community, preventing the development of the micro- and mesozooplankton communities, thereby disrupting trophic transfer of primary produced organic matter. This has prolonged the residence of particulate matter in the water column and caused a strong decline in export flux. Considering its wide geographical distribution and confirmed role in fish kills3, the proliferation of V. globosus under the IPCC4 CO2 emission representative concentration pathway (RCP4.5 to RCP8.5) scenarios may pose an emergent threat to coastal communities, aquaculture and fisheries.

Continue reading ‘Toxic algal bloom induced by ocean acidification disrupts the pelagic food web’

Particulate trace metal dynamics in response to increased CO2 and iron availability in a coastal mesocosm experiment

Rising concentrations of atmospheric carbon dioxide are causing ocean acidification and will influence marine processes and trace metal biogeochemistry. The importance of the combined impacts of elevated CO2 and changes in trace metal availability on marine plankton remain largely unknown. A mesocosm experiment was performed to study changes in particulate trace metal concentrations during a bloom dominated by the coccolithophore Emiliania huxleyi. We employed a full-factorial experimental design, comprising all combinations of ambient and elevated pCO2 and dissolved iron (dFe). Particulate metal concentrations (Fe, Cu, Zn, Co, Mn, Cd, Mo, Ti and Pb) were determined by high-resolution inductively coupled plasma mass spectrometry (HR-ICPMS). We examined biogenic and lithogenic sources of particulate metals, and their evolution during the experiment. Biogenic metal concentrations were estimated from bulk particle measurements by comparing phosphorus (P)-normalised quotas with published ratios, as well as concentrations of particulate trace metals in the presence and absence of an oxalate-EDTA wash. Our results demonstrate that particulate Ti and Fe concentrations were dominated by lithogenic material in the fjord. In contrast, particulate Cu, Co, Mn, Zn, Mo and Cd concentrations correlated with P concentrations and phytoplankton biomass, indicative of their strong biogenic character. Furthermore, ocean acidification changed the relative concentrations of particulate metals; a result mainly driven by the effects of ocean acidification on the growth of different phytoplankton phyla. This study demonstrates the utility and robustness of combining trace metal analyses of particles in a controlled mesocosm experiment with manipulations of CO2 and Fe concentrations using natural assemblages of marine phytoplankton.

Continue reading ‘Particulate trace metal dynamics in response to increased CO2 and iron availability in a coastal mesocosm experiment’

Climate change does not affect seafood quality of a common targeted fish

Climate change can affect marine and estuarine fish via alterations to their distributions, abundances, sizes, physiology and ecological interactions, threatening the provision of ecosystem goods and services. While we have an emerging understanding of such ecological impacts to fish, we know little about the potential influence of climate change on the provision of nutritional seafood to sustain human populations. In particular, the quantity, quality and/or taste of seafood may be altered by future environmental changes with implications for the economic viability of fisheries. In an orthogonal mesocosm experiment, we tested the influence of near‐future ocean warming and acidification on the growth, health and seafood quality of a recreationally and economically important fish, yellowfin bream (Acanthopagrus australis). The growth of yellowfin bream significantly increased under near‐future temperature conditions (but not acidification), with little change in health (blood glucose and haematocrit) or tissue biochemistry and nutritional properties (fatty acids, lipids, macro‐and micronutrients, moisture, ash, and total N). Yellowfin bream appear to be highly resilient to predicted near‐future ocean climate change, which might be facilitated by their broad spatio‐temporal distribution across habitats and broad diet. Moreover, an increase in growth, but little change in tissue quality, suggests that near‐future ocean conditions will benefit fisheries and fishers that target yellowfin bream. The data reiterate the inherent resilience of yellowfin bream as an evolutionary consequence of their euryhaline status in often environmentally challenging habitats, and imply their sustainable and viable fisheries into the future.We contend that widely‐distributed species that span large geographic areas and habitats can be “climate‐winners” by being resilient to negative direct impacts of near‐future oceanic and estuarine climate change.
Continue reading ‘Climate change does not affect seafood quality of a common targeted fish’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,212,647 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book