Posts Tagged 'mesocosms'



The role of herbivores in a near future ocean: positive and negative effects of climate change on herbivore ecological function

Earth’s climate is characterised by abrupt change through its history, yet human induced climate change is warming and acidifying our oceans at unprecedented rates. Such alterations in the seawater’s chemical and physical properties are anticipated to disrupt a multitude of ecological processes leading to potential reductions in productivity and biodiversity of marine systems. Functional groups such as marine herbivores are renowned for meditating competition between benthic organisms, affecting the physical structure and primary production in marine systems, countervailing the deleterious effects of global and local disturbances. Within this context, it is important to not only understand how herbivorous species respond to climate change, but also how their overall functional role are affected and how this might have cascading effects on other species. In this thesis, I reveal that whilst populations of many species are forecast to collapse due to the effects of future climate, some herbivorous species may capitalize on environmental change and boost their densities by increasing the carrying capacity of the environment by actively modifying the habitat under an otherwise stressful condition. I also show that the modifications performed by herbivorous species trough the strengthening of positive interaction under ocean acidification can assist other species to densify, stimulating species coexistence and ecosystem function, and perhaps mitigate the deleterious effect of CO2 enrichment expected at population and community level. Therefore, under ocean warming the functional role of herbivores is eroded releasing opportunistic algae from trophic control which can potentially lead marine systems to undergo structural modification. I show that loss of this functional role, reduces the capacity of the system to control the expansion of opportunistic algae. The identification of the circumstances as to whether herbivores functional role in marine systems will strengthen or decrease provides insights into the impacts of ocean warming and acidification at local scale and their potential management.

Continue reading ‘The role of herbivores in a near future ocean: positive and negative effects of climate change on herbivore ecological function’

Functional loss in herbivores drives runaway expansion of weedy algae in a near-future ocean

Highlights

• Elevated CO2 and warming increased productivity of turf algae.

• Elevated CO2 increased per capita feeding rates of gastropods.

• Ocean warming reduced grazer diversity, density, and biomass.

• As a result, ocean warming drove a fourfold expansion of weedy algal species.

Abstract

The ability of a community to absorb environmental change without undergoing structural modification is a hallmark of ecological resistance. The recognition that species interactions can stabilize community processes has led to the idea that the effects of climate change may be less than what most considerations currently allow. We tested whether herbivory can compensate for the expansion of weedy algae triggered by CO2 enrichment and warming. Using a six-month mesocosm experiment, we show that increasing per capita herbivory by gastropods absorbs the boosted effects of CO2 enrichment on algal production in temperate systems of weak to moderate herbivory. However, under the combined effects of acidification and warming this compensatory effect was eroded by reducing the diversity, density and biomass of herbivores. This loss of functionality combined with boosted primary productivity drove a fourfold expansion of weedy algal species. Our results demonstrate capacity to buffer ecosystems against CO2 enrichment, but loss of this capacity through ocean warming either in isolation or combined with CO2, driving significant algal turf expansion. Identifying compensatory processes and the circumstances under which they prevail could potentially help manage the impacts of ocean warming and acidification, which are further amplified by local disturbances such as habitat loss and herbivore over-exploitation.

Continue reading ‘Functional loss in herbivores drives runaway expansion of weedy algae in a near-future ocean’

Comparison of two carbon-nitrogen regulatory models calibrated with mesocosm data

Highlights

• OBM is more skilful than CN-REcoM when calibrated and validated with mesocosm data.

• OBM suggests that ocean acidification (OA) may stimulate carbon fixation rates in algae.

• Also, OA may elevate metabolic stress in phytoplankton, according to OBM.

• CN-REcoM imposes weak constraints on parameter values, hence solutions are flexible.

• As OBM is constrained by the physiological trade-offs, solutions are rigid and robust.

Abstract

Marine phytoplankton can regulate their stoichiometric composition in response to variations in the availability of nutrients, light and the pH of seawater. Varying elemental composition of photoautotrophs affects several important ecological and biogeochemical processes, e.g., primary and export production, nutrient cycling, calcification, and grazing. Here we compare two plankton ecosystem models that consider regulatory mechanisms of cellular carbon and nitrogen, driving the physiological acclimation of photoautotrophs. The Carbon:Nitrogen Regulated Ecosystem Model (CN-REcoM) and the optimality-based model (OBM) differ in their representation of phytoplankton dynamics, i.e. nutrient acquisition, synthesis of chlorophyll a, and growth. All other model compartments (zooplankton, detritus, dissolved inorganic and organic matter) and processes (grazing, aggregation, remineralisation) remain identical in both models.

We assess the skills of the two models against data from an ocean acidification mesocosm experiment with three CO2 treatments. Neither model accounts for any carbon dioxide (CO2) effects explicitly. Instead, we assimilate data of the different CO2 treatments separately into the models. Thereby we aim at identifying optimal model parameter values that might correlate with differences in CO2 conditions. For the OBM, optimal parameter estimates of Qmin (subsistence N:C ratio) and V (maximum potential photosynthesis rate of photoautotrophs) turned out to be higher for mesocosms exposed to high CO2 compared to those with low CO2 concentrations. By contrast, a similar correlation is not observed for the CN-REcoM. A possible physiological interpretation of higher estimates of Qmin and V according to the OBM is that phytoplankton may experience environmental stress under more acidic conditions, and hence must invest more energy/resources for maintaining basic cellular functions. Our data assimilation reveals that the parameters of the OBM are better constrained by the data than those of the CN-REcoM. Furthermore, the OBM is better able than CN-REcoM to reproduce data that were not used for parameter optimization.

Continue reading ‘Comparison of two carbon-nitrogen regulatory models calibrated with mesocosm data’

Shifts in seawater chemistry disrupt trophic links within a simple shoreline food web

Marine intertidal systems have long served as focal environments for ecological research, yet these environments are changing due to the entry of human-produced carbon dioxide into seawater, which causes ‘ocean acidification’ (OA). One component of OA is a decline in seawater pH, an alteration known to disrupt organism behaviors underlying predator–prey interactions. To date, however, studies examining OA’s effects on feeding relationships consider predominantly simple direct interactions between consumers and their food sources. Here, we extended these established approaches to test how decreased seawater pH might alter cascading effects that span tiered linkages in trophic networks. We employed a model shoreline food web incorporating a sea star predator (Leptasterias hexactis), an herbivorous snail prey (Tegula funebralis), and a common macroalgal resource for the prey (Mazzaella flaccida). Results demonstrate direct negative effects of low pH on anti-predator behavior of snails, but also weakened indirect interactions, driven by increased snail consumption of macroalgae even as sea stars ate more snails. This latter outcome arose because low pH induced ‘foolhardy’ behaviors in snails, whereby their flight responses were supplanted by other activities that allowed for foraging. These findings highlight the potential for human-induced changes in seawater chemistry to perturb prey behaviors and trophic dynamics with accompanying community-level consequences.

Continue reading ‘Shifts in seawater chemistry disrupt trophic links within a simple shoreline food web’

Adaptive responses of fishes to climate change: feedback between physiology and behaviour

Highlights

• We studied long-term effects of climate change on fish physiology and behaviour.

• Fish responses were tested from cellular to organismal levels in mesocosms/aquaria.

• Fish altered their growth and behaviour as an adaptive response to climate change.

• Fish showed trade-offs between cellular defences and behaviour.

• Adaptive responses show species strategies to prevail under future climate change.

Abstract

The adaptive capacity of individuals, from their cells to their overall performance, allows species to adjust to environmental change. We assess a hierarchy of responses (from cells to organismal growth and behaviour) to understand the flexibility of adaptive responses to future ocean conditions (warming and acidification) in two species of fish with short lifespans by conducting a long-term mesocosm/aquarium experiment. Fishes were exposed to elevated CO2 and temperature in a factorial design for a five-month period. We found a feedback mechanism between cellular defence and behavioural responses. In circumstances where their antioxidant defence mechanism was activated (i.e. warming or acidification), increased feeding rates prevented oxidative damage (i.e. during warming). However, when feeding rates failed to increase to provide additional energy needed for antioxidant defence, oxidative damage could not be prevented (warming + acidification). In contrast, when the activation of antioxidant defence was not required, energy intake from increased feeding was redirected to increased fish growth (acidification, warming + acidification), whilst no gain in growth rate was observed where feeding remained unchanged (acidification or warming). This adaptive strategy seems to rely on the inherent behavioural response of fishes to their environment and such adjustability shows the kind of responses that organisms may express to prevail in future ocean climate. Indeed, assessing the link between responses from cellular to organismal levels, using a diversity of fitness indicators and behaviour, provides a fundamental understanding of how organisms as a whole may adjust to prevail in a future world.

Continue reading ‘Adaptive responses of fishes to climate change: feedback between physiology and behaviour’

So long and thanks for all the sponge: cryptic intertidal communities, consequences of ocean acidification, and new directions for science education

Ocean acidification (OA), defined as the reduction in the pH of global oceans, is predicted to have negative impacts on marine invertebrates. Within the past two decades there have been hundreds of studies on the effects of OA on the fitness, survival, and growth of many marine organisms, and yet there are several large gaps in our understanding. Many OA studies focus on one population (e.g. only sample from one site/location) of a widespread species and then make generalizations about that species as a whole. This is problematic for species that are spread between habitats with different levels of acidification. My work in Chapters 3 and 4 addresses the response of multiple populations of an important intertidal invertebrate to ocean acidification conditions on the Oregon coast; I describe the impacts of OA on the early life history (Chapter 3) and adult physiology (Chapter 4) of the common breadcrumb sponge Halichondria panicea. To investigate if H. panicea are adapted to local conditions, I utilized the persistent pattern of acidification that exists on the cape scale along the Oregon coast. I compared the responses of sponge populations that persist in areas of high, intermediate, and low acidification. I used both field and laboratory experiments to investigate the potential for local adaptation or acclimatization to OA conditions in H. panicea. In Chapter 3 I found that sponge larvae from areas that experience persistently high levels of ocean acidification may be less resilient to future levels of OA vs. larvae from other less acidified regions. Negative carryover effects for early exposure during brooding may result in increased larval mortality and faster rates of settlement; there were no effects of treatment on post-settlement processes for either population. Chapter 3 highlights a novel response of sponges to OA and reveals a potential population bottleneck during the critical larval stage for pre-exposed sponges under future OA conditions. Chapter 4 builds on the work of Chapter 3 by examining the response of adult sponges from high, middle, and low areas of OA along the Oregon coast. I used a common garden approach to untangle the effects of environmental acclimation and adaptation in a reciprocal transplant and mesocosm experiment. I observed changes in survival, mass, and Chlorophyll a (Chl- a) concentration. Consistent with Chapter 3, I found that prior exposure to OA resulted in increased mortality during the transplant and mesocosm experiment, although we found no evidence of treatment- or population-dependent effects on mass and chlorophyll a concentration in H. panicea populations. Combined, results of Chapters 3 and 4 suggests that sponges from highly acidified regions may be living near a threshold, past which the fitness of both larvae and adults would be compromised, with implications for the population as a whole.

Continue reading ‘So long and thanks for all the sponge: cryptic intertidal communities, consequences of ocean acidification, and new directions for science education’

The potential impact of underwater exhausted CO2 from innovative ships on invertebrate communities

Liquefied natural gas (LNG) powered ships equipped with an underwater exhaust system to reduce the ship’s water resistance could form a future generation of energy-efficient ships. The potential consequences of the underwater exhaust gas to the local ecosystems are still unknown. Especially, the CO2 levels may locally exceed estimated future global levels. The present study exposes marine communities to a wide range of CO2 dosages, resulting in pH 8.6–5.8 that was remained for 49 days. We found that the zooplankton and benthic community were adversely affected by high CO2 exposure levels. In detail, (1) between pH 6.6 and 7.1 polychaete worms became the dominating group of the benthic community and their larvae dominated the zooplankton group. (2) Due to the reduced grazing pressure and the flux of nutrients from decaying organic material planktonic microalgae (phytoplankton) stared blooming at the highest exposure level. The periphyton (fouling microalgae) community was not able to take advantage under these conditions. (3) Marine snails’ (periwinkle) shell damage and high mortality were observed at pH < 6.6. However, the growth of the surviving periwinkles was not directly related to pH, but was positively correlated with the availability of periphyton and negatively correlated with the polychaete worm density that most likely also used the periphyton as food source. Our result indicates that the impact of underwater exhaust gasses depends on various factors including local biological and abiotic conditions, which will be included in future research.

Continue reading ‘The potential impact of underwater exhausted CO2 from innovative ships on invertebrate communities’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,284,720 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book