Posts Tagged 'laboratory'



Juvenile Atlantic sea scallop, Placopecten magellanicus, energetic response to increased carbon dioxide and temperature changes

This study assessed the energy budget for juvenile Atlantic Sea Scallop, Placopecten magellanicus, during a natural drop in temperature (15.6°C to 5.8°C) over an 8-week time period during the fall at three different enrichment levels of carbon dioxide (CO2). Every 2 weeks, individuals were sampled for ecophysiological measurements of feeding activity, respiration rate (RR) and excretion rate (ER) to enable the calculation of scope for growth (SFG) and atomic oxygen:nitrogen ratios (O:N). In addition, 36 individuals per treatment were removed for shell height, dry tissue weight (DTW) and dry shell weight (DSW). We found a significant decrease in feeding rates as CO2 increased. Those rates also were significantly affected by temperature, with highest feeding at 9.4°C. No significant CO2 effect was observed for catabolic energy processes (RR and ER); however, these rates did increase significantly with temperature. The O:N ratio was not significantly affected by CO2, but was significantly affected by temperature. There was a significant interaction between CO2 and temperature for ER and the O:N ratio, with low CO2 levels resulting in a U-shaped response that was not sustained as CO2 levels increased. This suggests that the independent effects of CO2 and temperature observed at low levels are different once a CO2 threshold is reached. Additionally, there were significant differences in growth estimators (shell height and DSW), with the best growth occurring at the lowest CO2 level. In contrast to temperature variations that induced a trade-off response in energy acquisition and expenditure, results from this research support the hypothesis that sea scallops have a limited ability to alter physiological processes to compensate for increasing CO2.

Continue reading ‘Juvenile Atlantic sea scallop, Placopecten magellanicus, energetic response to increased carbon dioxide and temperature changes’

Effects of elevated pCO2 on the response of coccolithophore Emiliania huxleyi to prolonged darkness

Although numerous studies have examined the responses of coccolithophores to ocean acidification, less is known on the fate of those calcifying organisms when they sink to the ocean’s aphotic regions. In this study, the coccolithophore Emiliania huxleyi was first grown under a regular 12/12 light/dark cycle at 20°C, exposed to both high (1000 μatm) and ambient CO2 (410 μatm) levels. The cultures were then transferred to continuous darkness for 96 h at 20°C or 16°C. We found that elevated CO2 decreased the specific growth rate while increasing the cellular particulate organic carbon (POC) and nitrogen (PON) contents and the POC/PON ratio of E. huxleyi in the light/dark period. After 96 h of dark acclimation, the cell abundance decreased more obviously at 20°C than at 16°C but showed no significant difference between the two CO2 treatments. The decrease in volumetric POC concentration was most prominent in the high CO2/20°C treatment and least in the ambient CO2/16°C treatment. At 16°C, the PON concentration increased in the high CO2 cultures and exhibited no change in the ambient CO2 cultures. While at 20°C, the PON concentration decreased significantly both under high and ambient CO2 conditions. The final POC/PON ratio showed no significant differences among the different temperature and CO2 treatments. Overall, a higher percentage of POC relative to that of PON was lost in darkness with increasing CO2 concentration, with potential implications for the ocean’s nutrient cycle.

Continue reading ‘Effects of elevated pCO2 on the response of coccolithophore Emiliania huxleyi to prolonged darkness’

The involvement of a novel calmodulin-like protein isoform from oyster Crassostrea gigas in transcription factor regulation provides new insight into acclimation to ocean acidification

Marine organisms need to adapt to improve organismal fitness under ocean acidification (OA). Recent studies have shown that marine calcifiers can achieve acclimation by stimulating calcium binding/signaling pathways. Here, a CaM-like gene (CgCaLP-2) from oyster Crassostrea gigas which typically responded to long-term CO2 exposure (two months) rather than short-term exposure (one week) was characterized. The cloned cDNA was 678 bp and was shorter than the retrieved sequence from NCBI (1125 bp). The two sequences, designated as CgCaLP-2-v1 and CgCaLP-2-v2, were demonstrated to be different splice variants by the genome sequence analysis. Western blotting analysis revealed two bands of 23 kD and 43 kD in mantle and hemocytes, corresponding to predicted molecular weight of CgCaLP-2-v1 and CgCaLP-2-v2, respectively. The isoform CgCaLP-2-v1 (the 23 kD band) was highly stimulated in response to long-term CO2 exposure (42-day and 56-day treatment) in hemocytes and mantle tissue. The fluorescence signal of CgCaLP-2 in mantle and hemocytes became more intensive after long-term CO2 exposure. Besides, in hemocytes, CgCaLP-2 presented a higher localization on the nuclear membrane after long-term CO2 exposure (56 d). The target gene network of CgCaLP-2 was predicted, and a transcription factor (TF) gene annotated as Homeobox protein SIX4 (CgSIX4) showed a similar expressive trend to CgCaLP-2 during CO2 exposure. Suppression of CgCaLP-2 via RNA interference significantly reduced the mRNA expression of CgSIX4. The results suggested that CgCaLP-2 might mediate the Ca2+-CaLP-TF signal transduction pathway under long-term CO2 exposure. This study serves as an example to reveal that alternative splicing is an important mechanism for generation multiple protein isoforms and thus shape the plastic responses under CO2 exposure, providing new insight into the potential acclimation ability of marine calcifiers to future OA.

Continue reading ‘The involvement of a novel calmodulin-like protein isoform from oyster Crassostrea gigas in transcription factor regulation provides new insight into acclimation to ocean acidification’

Common sea star (Asterias rubens) coelomic fluid changes in response to short-term exposure to environmental stressors

Common sea stars (Asterias rubens) are at risk of physiological stress and decline with projected shifts in oceanic conditions. This study assessed changes in coelomic fluid (CF) blood gases, electrolytes, osmolality, and coelomocyte counts in adult common sea stars after exposure to stressors mimicking effects from climate change for 14 days, including decreased pH (−0.4 units, mean: 7.37), hypoxia (target dissolved oxygen ~1.75 mg O2/L, mean: 1.80 mg O2/L), or increased temperature (+10 °C, mean: 17.2 °C) and compared sea star CF electrolytes and osmolality to tank water. Changes in CF blood gases, electrolytes, and/or coelomocyte counts occurred in all treatment groups after stressor exposures, indicating adverse systemic effects with evidence of increased energy expenditure, respiratory or metabolic derangements, and immunosuppression or inflammation. At baseline, CF potassium and osmolality of all groups combined were significantly higher than tank water, and, after exposures, CF potassium was significantly higher in the hypoxia group as compared to tank water. These findings indicate physiological challenges for A. rubens after stressor exposures and, given increased observations of sea star wasting events globally, this provides evidence that sea stars as a broad group are particularly vulnerable to changing oceans.

Continue reading ‘Common sea star (Asterias rubens) coelomic fluid changes in response to short-term exposure to environmental stressors’

A novel approach effect of ocean acidification on oysters

We are pacing to a GHG free world to live in. Due to the escalated levels of carbon dioxide in the atmosphere, several living organisms are being affected. This is more intense for life under water. Carbon dioxide in the atmosphere gets dissolved in the ocean, leading to OCEAN ACIDIFICATION, reducing the pH of the ocean. This in return affects the ocean habitat. It makes calcium carbonate ions less available, which is a major building block for different species to build shells and skeletons. Due to the reduction of calcium carbonate ions in the ocean, the shells tend to dissolve. Oysters act as natural filters for the ocean, buffers for tides and their reefs serve as barriers to storms and tides, preventing erosion. Climate change and Ocean acidification has contributed to reduction of the species. This study aims to find out the optimum carbon dioxide, oysters’ metabolism to varying levels of carbon dioxide and alleviating the excess dissolved carbon dioxide.

Continue reading ‘A novel approach effect of ocean acidification on oysters’

Interaction of CO2 and light availability on photophysiology of tropical coccolithophorids (Emiliania huxleyi, Gephyrocapsa oceanica, and Ochosphaera sp.)

The study to examine the calcification rate, adaptation, and the biotic response of three tropical coccolithophorids (Emiliania huxleyi, Gephyrocapsa oceanica, and Ochosphaera sp) to changes in CO2 concentration. Three selected calcifying coccolitophorids were grown at batch culture with CO2 system at two levels of CO2 (385 and 1000 ppm) and two light dark periods. The parameters measured and calculation including growth rate, particulate organic carbon content, particulate inorganic carbon content, chlorophyll a, cell size, photosynthetic, organic, inorganic carbon production, photosynthesis, and calcification rate.  The results showed that there was a different response to carbonate chemistry changes and dark and light periods in any of the analyzed parameters.  The growth rate of three selected calcifying microalgae tested was decreasing significantly at high concentrations of CO2 (1000 ppm) treatment on 14:10 hour light: dark periods. However, there was no significant difference between the two CO2 concentrations where they were illuminated by 24 hours light in growth rate.  The increasing CO2 concentration and light-dark periods were species-specific responses to photosynthesis and calcification rate for three selected calcifying microalgae.

Continue reading ‘Interaction of CO2 and light availability on photophysiology of tropical coccolithophorids (Emiliania huxleyi, Gephyrocapsa oceanica, and Ochosphaera sp.)’

The effect of pH on the larvae of two sea urchin species using different pH manipulation methods

Climate change alters ocean pH, temperature, and salinity, which presents challenges for oceanic organisms, especially those with calcium carbonate skeletons. Our research examines how decreasing pH impacts larval survivorship and calcium carbonate skeletal development of two sea urchin species, Lytechinus variegatus and Arbacia punctulata. Based on previous work in various sea urchin species, it is expected that as pH decreases, survivorship decreases and skeletal malformations increase. Both L. variegatus and A. punctulata have been used in prior studies to explore pH change on survivorship and development, but these studies incorporated various outcomes and pH manipulation methods, limiting how comparable they are. Therefore, we wanted to measure the same outcomes between species and compare the effect of different pH manipulation within species. We altered pH by either HCL addition or CO2 bubbling through seawater. Larvae, at a concentration of 3 larvae/ml, were exposed to seawater of pH 8.4, 8.0, or 7.6. For each treatment, survivorship of 30-40 larvae was measured daily for 10-14 days depending on the trial. Larval malformations were quantified for about 10 larvae from daily fixed samples. Larval arm length, body length, and body width were measured using Image J. For both methods of pH manipulation and both species, there was a statistically significant (p<0.001) decrease in survivorship as pH decreases consistent with the prediction. Preliminary analysis of skeletal deformities suggests malformations increase as pH decreases, but data are still being collected. Similar abnormalities observed between species regardless of pH manipulations include uneven or missing arms and misshapen aboral sides. The effect of pH on larval survivorship and development in L. variegatus and A. punctulata are comparable to observations in other species suggesting effects are consistent across manipulation methods and species. With this research, we can continue to fine-tune methodology and build on our understanding of how climate change-driven ocean acidification can impact species.

Continue reading ‘The effect of pH on the larvae of two sea urchin species using different pH manipulation methods’

Deciphering pH-dependent microbial taxa and functional gene co-occurrence in the coral Galaxea fascicularis

How the coral microbiome responds to oceanic pH changes due to anthropogenic climate change, including ocean acidification and deliberate artificial alkalization, remains an open question. Here, we applied a 16S profile and GeoChip approach to microbial taxonomic and gene functional landscapes in the coral Galaxea fascicularis under three pH levels (7.85, 8.15, and 8.45) and tested the influence of pH changes on the cell growth of several coral-associated strains and bacterial populations. Statistical analysis of GeoChip-based data suggested that both ocean acidification and alkalization destabilized functional cores related to aromatic degradation, carbon degradation, carbon fixation, stress response, and antibiotic biosynthesis in the microbiome, which are related to holobiont carbon cycling and health. The taxonomic analysis revealed that bacterial species richness was not significantly different among the three pH treatments, but the community compositions were significantly distinct. Acute seawater alkalization leads to an increase in pathogens as well as a stronger taxonomic shift than acidification, which is worth considering when using artificial ocean alkalization to protect coral ecosystems from ocean acidification. In addition, our co-occurrence network analysis reflected microbial community and functional shifts in response to pH change cues, which will further help to understand the functional ecological role of the microbiome in coral resilience.

Continue reading ‘Deciphering pH-dependent microbial taxa and functional gene co-occurrence in the coral Galaxea fascicularis’

Transitional traits determine the acclimation characteristics of the coccolithophore Chrysotila dentata to ocean warming and acidification

Ocean warming and acidification interactively affect the coccolithophore physiology and drives major biogeochemical changes. While numerous studies investigated coccolithophore under short-term conditions, knowledge on how different transitional periods over long-exposure could influence the element, macromolecular and metabolic changes for its acclimation are largely unknown. We cultured the coccolithophore Chrysotila dentata, (culture generations of 1st, 10th, and 20th) under present (low-temperature low-carbon-dioxide [LTLC]) and projected (high-temperature high-carbon-dioxide [HTHC]) ocean conditions. We examined elemental and macromolecular component changes and sequenced a transcriptome. We found that with long-exposure, most physiological responses in HTHC cells decreased when compared with those in LTLC, however, HTHC cell physiology showed constant elevation between each generation. Specifically, compared to 1st generation, the 20th generation HTHC cells showed increases in quota carbon (Qc:29%), nitrogen (QN:101%), and subsequent changes in C:N-ratio (68%). We observed higher lipid accumulation than carbohydrates within HTHC cells under long-exposure, suggesting that lipids were used as an alternative energy source for cellular acclimation. Protein biosynthesis pathways increased their efficiency during long-term HTHC condition, indicating that cells produced more proteins than required to initiate acclimation. Our findings suggest that the coccolithophore resilience increased between the 1st–10th generation to initiate the acclimation process under ocean warming and acidifying conditions.

Continue reading ‘Transitional traits determine the acclimation characteristics of the coccolithophore Chrysotila dentata to ocean warming and acidification’

Ocean acidification affects pigment concentration and photoprotection of marine phytoplankton

Ocean acidification produces significant changes on phytoplankton physiology that can affect their growth and primary production. Among them, a downregulation of the enzymatic activity and the production of different cellular metabolites, including chlorophyll a (Chl a), has been observed in high CO2 cultures under stable conditions. However, the extent of how phytoplankton metabolism regulation under high CO2 conditions affects pigment pools and patterns is unknown. This study shows the effect of the atmospheric CO2 increase on pigment concentration of three important marine primary producers: Thalassiosira pseudonanaSkeletonema costatum, and Emiliania huxleyi. Cultures grown under saturating photosynthetically active radiation were aerated for at least 3 weeks with current concentrations of atmospheric CO2 (0.04% CO2 in air) and with CO2 concentrations expected for future scenarios of climate change (0.1% CO2 in air) to assess the effect of CO2 under acclimated metabolism and stable conditions. Moreover, cultures were also subjected to a perturbation (4 h without aeration) to assess responses under non-stable conditions. The results showed that light harvesting and photoprotective pigment concentrations (i.e., Chl a, Chl c2, ββ-carotene, diadinoxanthin, diatoxanthin, fucoxanthin, among others) decreased significantly under high CO2 and stable conditions, but the response reversed after the perturbation. The de-epoxidation state of xanthophylls, also showed similar patterns, indicating an increase in phytoplankton sensitivity under high CO2 and stable conditions. The results demonstrate the relevance of CO2 concentration and acclimation status for phytoplankton light absorption and photoprotective response. They also identify fucoxanthin and Chl c2 as suitable biomarkers of phytoplankton carbon metabolism under ocean acidification conditions.

Continue reading ‘Ocean acidification affects pigment concentration and photoprotection of marine phytoplankton’

Differential effects of ocean acidification and warming on biological functioning of a predator and prey species may alter future trophic interactions

Highlights

  • Multiple environmental stressors act upon multiple trophic levels.
  • Mollusc predator and prey respond differently to future climate scenarios.
  • Prey are negatively impacted physiologically and behaviourally.
  • Predators unaffected resulting in elevated predation risk for prey.
  • Potential for fundamental change in trophic interactions affecting biodiversity.

Abstract

Independently, ocean warming (OW) and acidification (OA) from increased anthropogenic atmospheric carbon dioxide are argued to be two of the greatest threats to marine organisms. Increasingly, their interaction (ocean acidification and warming, OAW) is shown to have wide-ranging consequences to biological functioning, population and community structure, species interactions and ecosystem service provision. Here, using a multi-trophic experiment, we tested the effects of future OAW scenarios on two widespread intertidal species, the blue mussel Mytilus edulis and its predator Nucella lapillus. Results indicate negative consequences of OAW on the growth, feeding and metabolic rate of M. edulis and heightened predation risk. In contrast, Nucella growth and metabolism was unaffected and feeding increased under OAW but declined under OW suggesting OA may offset warming consequences. Should this differential response between the two species to OAW, and specifically greater physiological costs to the prey than its predator come to fruition in the nature, fundamental change in ecosystem structure and functioning could be expected as trophic interactions become disrupted.

Continue reading ‘Differential effects of ocean acidification and warming on biological functioning of a predator and prey species may alter future trophic interactions’

Antagonism toxicity of CuO nanoparticles and mild ocean acidification to marine algae

Graphical abstract

The toxicity of CuO nanoparticles (NPs) to marine microalgae (Emiliania huxleyi) under ocean acidification (OA) conditions (pHs 8.10, 7.90, 7.50) was investigated. CuO NPs (5.0 mg/L) caused significant toxicity (e.g., 48-h growth inhibition, 20%) under normal pH (8.10), and severe OA (pH 7.50) increased the toxicity of CuO NPs (e.g., 48-h growth inhibition, 68%). However, toxicity antagonism was observed with a growth inhibition (48 h) decreased to 37% after co-exposure to CuO NPs and mild OA (pH 7.90), which was attributed to the released Cu2+ ions from CuO NPs. Based on biological responses as obtained from RNA-sequencing, the dissolved Cu2+ ions (0.078 mg/L) under mild OA were found to increase algae division (by 17%) and photosynthesis (by 28%) through accelerating photosynthetic electron transport and promoting ATP synthesis. In addition, mild OA enhanced EPS secretion by 41% and further increased bioavailable Cu2+ ions, thus mitigating OA-induced toxicity. In addition, excess Cu2+ ions could be transformed into less toxic Cu2S and Cu2O based on X-ray absorption near-edge spectroscopy (XANES) and high-resolution transmission electron microscopy (HR-TEM), which could additionally regulate the antagonism effect of CuO NPs and mild OA. The information advances our knowledge in nanotoxicity to marine organisms under global climate change.

Continue reading ‘Antagonism toxicity of CuO nanoparticles and mild ocean acidification to marine algae’

Sensitivity of the grooved carpet shell clam, Ruditapes decussatus (Linnaeus, 1758), to ocean acidification

This research investigated the possible impacts of ocean acidification on the grooved carpet shell clam Ruditapes decussatus as a model for commercially crucial marine bivalve species. Clams were collected from Lake Timsah on the Suez Canal coast, Ismailia, Egypt. They were then incubated in CO2-enriched seawater manipulated at four different CO2 concentrations: 420 ppm (ambient control) and 550, 750, and 1050 ppm. Calcification analysis was carried out using XRD and scanning electron microscope (SEM), highlighting a trend towards noticeable physical sensitivity to acidification. The antioxidant enzymatic activities [catalase (CAT)] were significantly different among different pCO2 (~ 20–23 µmol min−1 mg prot−1). Lipid peroxidation [malondialdehyde (MDA)] also showed a significant difference among treatments (0.21–0.23 nmol TBARS mg prot−1). Shell microstructure analysis showed periostracum distortion in the clam shell as pCO2 concentration increased at 1050 ppm. These results indicate that ocean acidification may exert an additional stress on bivalves through weakening their calcified shell making them more vulnerable to predators and affect their health and survival reducing production and economic value.

Continue reading ‘Sensitivity of the grooved carpet shell clam, Ruditapes decussatus (Linnaeus, 1758), to ocean acidification’

Effects of semidiurnal water column acidification and sediment presence on growth and survival of the bivalve Mya arenaria

In coastal environments, water column pH is affected by a variety of factors that result in lower and more variable pH in comparison to the open ocean. Consequently, it is critical to integrate variability in pH into laboratory experiments to better predict the response of coastal organisms to ocean acidification. For infaunal organisms, sediment can provide refuge from the water column conditions especially in coastal environments. As such, understanding how both water column conditions and the potential buffering abilities of sediment interact can provide insight into how infaunal organisms may respond to future oceanic conditions. Effects of pH variability on juvenile soft-shell clams (Mya arenaria; 2–11 mm in shell length), an ecologically and economically important species in the Bay of Fundy, Canada, were examined in a laboratory experiment. We manipulated pH through the addition of CO2 to seawater and exposed M. arenaria to three water treatments, no CO2 addition (mean ± sd; pH = 7.95 ± 0.06), semidiurnal intermittent CO2 addition (“on” pH =7.70 ± 0.13, “off” pH = 7.90 ± 0.11), and constant CO2 addition (pH = 7.73 ± 0.13). We found that M. arenaria final shell length, three mass metrics, and survival were negatively impacted by the constant CO2 addition treatment. Growth of juvenile M. arenaria only occurred in the presence of sediment, indicating the importance of sediment to M. arenaria, although sediment did not buffer the effects of constant CO2 addition. In the presence of sediment, the semidiurnal intermittent CO2 addition treatment did not negatively impact the growth of M. arenaria, indicating that it provided the clams with a recovery period. The similar growth rates of juvenile M. arenaria burrowed in sediment in the intermittent CO2 addition and control treatments suggests that M. arenaria may not be as negatively affected by future oceanic conditions as anticipated. This study demonstrated that pH variability can alter the response of benthic invertebrates to CO2 addition and thus this type of approach should be used to study other species of invertebrates.

Continue reading ‘Effects of semidiurnal water column acidification and sediment presence on growth and survival of the bivalve Mya arenaria’

RNAi silencing of the biomineralization gene perlucin impairs oyster ability to cope with ocean acidification

Calcifying marine organisms, including the eastern oyster (Crassostrea virginica), are vulnerable to ocean acidification (OA) because it is more difficult to precipitate calcium carbonate (CaCO3). Previous investigations of the molecular mechanisms associated with resilience to OA in C. virginica demonstrated significant differences in single nucleotide polymorphism and gene expression profiles among oysters reared under ambient and OA conditions. Converged evidence generated by both of these approaches highlighted the role of genes related to biomineralization, including perlucins. Here, gene silencing via RNA interference (RNAi) was used to evaluate the protective role of a perlucin gene under OA stress. Larvae were exposed to short dicer-substrate small interfering RNA (DsiRNA-perlucin) to silence the target gene or to one of two control treatments (control DsiRNA or seawater) before cultivation under OA (pH ~7.3) or ambient (pH ~8.2) conditions. Two transfection experiments were performed in parallel, one during fertilization and one during early larval development (6 h post-fertilization), before larval viability, size, development, and shell mineralization were monitored. Silenced oysters under acidification stress were the smallest, had shell abnormalities, and had significantly reduced shell mineralization, thereby suggesting that perlucin significantly helps larvae mitigate the effects of OA.

Continue reading ‘RNAi silencing of the biomineralization gene perlucin impairs oyster ability to cope with ocean acidification’

Secretory and transcriptomic responses of mantle cells to low pH in the Pacific oyster (Crassostrea gigas)

Since the Industrial Revolution, the concentration of atmospheric carbon dioxide (CO2) due to anthropogenic activities has increased at unprecedented rates. One-third of the atmospheric anthropogenic CO2 emissions are dissolved in the oceans affecting the chemical equilibrium of seawater, which in turn leads to a decrease in pH and carbonate ion (CO32−) concentration, a phenomenon known as ocean acidification (OA). This chemical disequilibrium can be detrimental to marine organisms (e.g., mollusks) that fabricate mineralized structures based on calcium carbonate (CaCO3). Most studies on the effect of reduced pH in seawater have been conducted on the early developmental stages of shell-building invertebrates, neglecting how adult individuals face OA stress. Here, we evaluate histological, secretory, and transcriptional changes in the mantle of adult oysters (Crassostrea gigas) exposure to ambient (8.0 ± 0.2) and reduced (7.6 ± 0.2) pH during 20 days. Most histological observations did not show differences in terms of mantle cell morphology. However, Alcian Blue/PAS staining revealed significant differences in the number of Alcian Blue positive cells in the mantle edge, suggesting a decrease in the secretory activity in this morphogenetic zone. Transcriptomic analysis revealed 172 differentially expressed genes (DEGs) between mantle tissues from adult oysters kept in normal and reduced pH conditions. Almost 18% of the DEGs encode secreted proteins that are likely to be contributing to shell fabrication and patterning. 17 of 31 DEGs encoding secreted proteins correspond to oyster-specific genes, highlighting the fact that molluscan shell formation is underpinned by a rapidly evolving secretome. The GO analysis of DEGs encoding secreted proteins showed that they are involved in the cellular response to stimulus, response to stress, protein binding, and ion binding, suggesting these biological processes and molecular functions are altered by OA. This study demonstrates that histology and gene expression profiling can advance our understanding of the cellular and molecular mechanisms underlying adult oyster tolerance to low pH conditions.

Continue reading ‘Secretory and transcriptomic responses of mantle cells to low pH in the Pacific oyster (Crassostrea gigas)’

Season-specific impacts of two projected climate scenarios on intertidal seaweed communities

Predictions regarding the ecological impacts of future climate change often lack nuance when they rely on studies that focus on a single species under one future scenario. The inclusion of factors such as seasonality, multiple projected climate scenarios, and community-level interactions, which can alter how climate related stressors affect a species, will lead to more holistic and well-informed predictions. Rockweeds, such as Silvetia compressa, whose canopies support diverse understory communities, can have strong responses to climate change when in conjunction with these other factors due to narrow tolerance thresholds and tightly coupled species interactions. Therefore, we chose to assess the impacts of climate change on Silvetia by subjecting simplified Silvetia assemblages to elevated temperature and pCO2 in a mesocosm environment. Due to the uncertainty of future climate trajectories and the potential interactions with seasonality, we tested these stressors under two IPCC projected climate scenarios (RCP 2.6 & 4.5) in both the summer and winter. This was coupled with a field experiment involving Silvetia removal to simulate the effect of climate mediated Silvetia loss on natural assemblages. We found that Silvetia abundance declined under RCP 4.5 in both seasons, and this loss of canopy led to shifts in the understory algal assemblage. In contrast, Silvetia increased under RCP 2.6 in the winter, which resulted in an understory assemblage comparable to those observed under ambient conditions. These results indicate that while most future scenarios will reduce present-day Silvetia communities, some scenarios may lead to their recovery. Given these varied results, future experimental climate change research on similarly structured communities should consider seasonality, multiple climate change scenarios, and species interactions in their designs.

Continue reading ‘Season-specific impacts of two projected climate scenarios on intertidal seaweed communities’

Life-stage-dependent effects of multiple flood-associated stressors on a coastal foundational species

Global changes in precipitation patterns have increased the frequency and duration of flooding events. Freshwater inflows into estuaries reduce salinity levels and increase nutrient inputs, which can lead to eutrophication and impaired water quality. Oysters are important ecosystem engineers in coastal environments that are vulnerable to co-occurring environmental stressors associated with freshwater flooding events. Successful recruitment is necessary to maintain adult oyster populations, but early life stage responses to multiple stressors are not well understood. Flood-associated stressor conditions were observed near oyster habitats at multiple locations across the northern Gulf of Mexico during peak recruitment months in the spring and summer of 2021. In the laboratory, we examined the interactive effects of acidification, hypoxia, and low salinity on larval and juvenile life stages of the eastern oyster (Crassostrea virginica) to better understand the impact of flooding events on oyster development and survival. Salinity stress in isolation reduced larval growth and settlement, and decreased survival and growth at the juvenile stage. Hypoxia was more stressful to oyster larvae than to juveniles, whereas low pH had negative effects on juvenile growth. There were no synergistic effects of multiple flood-associated stressors on early oyster life stages and effects were either additive or predicted by the salinity stress response. The negative impacts of flooding disturbances on recruitment processes in benthic populations need to be considered in restoration planning and flood control mitigation strategies as the frequency and intensity of extreme freshwater events continue to rise worldwide.

Continue reading ‘Life-stage-dependent effects of multiple flood-associated stressors on a coastal foundational species’

Plastic responses lead to increased neurotoxin production in the diatom Pseudo-nitzschia under ocean warming and acidification

Ocean warming (OW) and acidification (OA) are recognized as two major climatic conditions influencing phytoplankton growth and nutritional or toxin content. However, there is limited knowledge on the responses of harmful algal bloom species that produce toxins. Here, the study provides quantitative and mechanistic understanding of the acclimation and adaptation responses of the domoic acid (DA) producing diatom Pseudo-nitzschia multiseries to rising temperature and pCO2 using both a one-year in situ bulk culture experiment, and an 800-day laboratory acclimation experiment. Ocean warming showed larger selective effects on growth and DA metabolism than ocean acidification. In a bulk culture experiment, increasing temperature +4 °C above ambient seawater temperature significantly increased DA concentration by up to 11-fold. In laboratory when the long-term warming acclimated samples were assayed under low temperatures, changes in growth rates and DA concentrations indicated that P. multiseries did not adapt to elevated temperature, but could instead rapidly and reversibly acclimate to temperature shifts. However, the warming-acclimated lines showed evidence of adaptation to elevated temperatures in the transcriptome data. Here the core gene expression was not reversed when warming-acclimated lines were moved back to the low temperature environment, which suggested that P. multiseries cells might adapt to rising temperature over longer timescales. The distinct strategies of phenotypic plasticity to rising temperature and pCO2 demonstrate a strong acclimation capacity for this bloom-forming toxic diatom in the future ocean.

Continue reading ‘Plastic responses lead to increased neurotoxin production in the diatom Pseudo-nitzschia under ocean warming and acidification’

Analysis of spawning behaviour and growth indices of zebrafish in response to CO2 acidification

The growth parameters and spawning behaviour of zebrafish in response to CO2 acidification demonstrated differential results. The growth performance of zebrafish is determined by key indices, BWG, SGR, CF and CV. BWG shows subtle gain in 1500 µatm group (0.09 g) and a slight decrease in 2200 µatm group (0.056 g). SGR index showed similar pattern of results, whereas CF showed a gradual decrease. The other growth index CV again showed an increase in 1500 µatm group and slight decrease in 2200 µatm group in comparison to the control group. A significant decrease in the performance of spawning behaviour was observed. At 96 hpf, the survival rate of the embryos showed a significant hit and the number of dead embryos increased dose dependently. The embryos exposed to CO2 showed a decrease in hatching rate with the increase in dose of CO2. The CO2 acidification causes notable changes in the growth and significant effect on reproductive behaviour.

Continue reading ‘Analysis of spawning behaviour and growth indices of zebrafish in response to CO2 acidification’

  • Reset

Subscribe

OA-ICC Highlights


%d bloggers like this: