Archive for the 'Science' Category

Effects of the ocean acidification on the functional structure of coral reef nematodes

A mesocosm experiment was designed to study the effects of acidification on the phytal nematofauna of a coral reef. We hypothesized that phytal nematodes are responsive to different seawater acidification levels and that their assemblage structure and functional indicators (combination of maturity index and trophic diversity index) are useful to evaluate the effects of acidification. Artificial substrate units (ASU) were first colonized in a coral reef zone (Recife de Fora Municipal Marine Park, Porto Seguro, Bahia, Brazil) to obtain standardized assemblage samples. ASUs were transferred to laboratory and exposed to control and three levels of seawater acidification (pH reduced by 0.3, 0.6 and 0.9 units below field levels) and collected after 15 and 30 d. Contrary to our expectations that acidification may change the taxonomic structure of nematodes, while the functional structure may deviate from the expected under high levels of acidification, we found that univariate functional indicators of the community (index of trophic diversity and maturity index) did not show significant differences between the control and experimental treatments throughout the exposure period. It is probably because the frequent exposure of shallow-water nematodes to rather large environmental variations leads the faunal response to acidification to be complex and subtle. On the other hand, the density of the life-history strategy groups 3 and 4 and the structure of nematode assemblages were significantly affected by different pH levels throughout the exposure period. Both history strategy groups include all kinds of feeding groups. These results suggest that the impact of pH changes predicted by the years 2100 and 2300 may be strong enough to provide different traits or life-history strategies of nematodes to take advantage under changing conditions.

Continue reading ‘Effects of the ocean acidification on the functional structure of coral reef nematodes’

Variable pH and subsequent change in pCO2 modulates the biofilm formation, synthesis of extracellular polymeric substances, and survivability of a marine bacterium Bacillus stercoris GST-03

Biofilm-forming bacteria adhere to the substrates and engage in the nutrient cycling process. However, environmental conditions may interrupt the biofilm formation ability, which ultimately may affect various biogeochemical cycles. The present study reports the effect of varying pH and subsequent change in pCO2 on the survivability, biofilm formation, and synthesis of extracellular polymeric substances (EPS) of a biofilm-forming marine bacterium Bacillus stercoris GST-03 isolated from the Bhitarkanika mangrove ecosystem, Odisha, India. Understanding the pH-dependent alteration in EPS constituents, and associated functional groups of a marine bacterium will provide better insight into the adaptability of the bacteria in future ocean acidification scenarios. The strain was found to tolerate and form biofilm up to pH 4, with the maximum biofilm formation at pH 6. EPS yield and the synthesis of the key components of the EPS, including carbohydrate, protein, and lipid, were found maximum at pH 6. Changes in biofilm formation patterns and various topological parameters at varying pH/pCO2 conditions were observed. A cellular chaining pattern was observed at pH 4, and maximum biofilm formation was obtained at pH 6 with biomass of 5.28582 ± 0.5372 μm3/μm2 and thickness of 9.982 ± 1.5288 μm. Structural characterization of EPS showed changes in various functional groups of constituent macromolecules with varying pH. The amorphous nature of the EPS and the changes in linkages and associated functional groups (-R2CHOR, –CH3, and –CH2) with pH variation was confirmed. EPS showed a two-step degradation with a maximum weight loss of 59.147% and thermal stability up to 480 °C at pH 6. The present work efficiently demonstrates the role of EPS in providing structural and functional stability to the biofilm in varying pH conditions. The findings will provide a better understanding of the adaptability of marine bacteria in the future effect of ocean acidification.

Continue reading ‘Variable pH and subsequent change in pCO2 modulates the biofilm formation, synthesis of extracellular polymeric substances, and survivability of a marine bacterium Bacillus stercoris GST-03′

Interactive effects of CO2, temperature, irradiance, and nutrient limitation on the growth and physiology of the marine cyanobacterium Synechococcus (Cyanophyceae)

The marine cyanobacterium Synechococcus elongatus was grown in a continuous culture system to study the interactive effects of temperature, irradiance, nutrient limitation, and the partial pressure of CO2 (pCO2) on its growth and physiological characteristics. Cells were grown on a 14:10 h light:dark cycle at all combinations of low and high irradiance (50 and 300 μmol photons ⋅ m−2 ⋅ s−1, respectively), low and high pCO2 (400 and 1000 ppmv, respectively), nutrient limitation (nitrate-limited and nutrient-replete conditions), and temperatures of 20–45°C in 5°C increments. The maximum growth rate was ~4.5 · d−1 at 30–35°C. Under nutrient-replete conditions, growth rates at most temperatures and irradiances were about 8% slower at a pCO2 of 1000 ppmv versus 400 ppmv. The single exception was 45°C and high irradiance. Under those conditions, growth rates were ~45% higher at 1000 ppmv. Cellular carbon:nitrogen ratios were independent of temperature at a fixed relative growth rate but higher at high irradiance than at low irradiance. Initial slopes of photosynthesis–irradiance curves were higher at all temperatures under nutrient-replete versus nitrate-limited conditions; they were similar at all temperatures under high and low irradiance, except at 20°C, when they were suppressed at high irradiance. A model of phytoplankton growth in which cellular carbon was allocated to structure, storage, or the light or dark reactions of photosynthesis accounted for the general patterns of cell composition and growth rate. Allocation of carbon to the light reactions of photosynthesis was consistently higher at low versus high light and under nutrient-replete versus nitrate-limited conditions.

Continue reading ‘Interactive effects of CO2, temperature, irradiance, and nutrient limitation on the growth and physiology of the marine cyanobacterium Synechococcus (Cyanophyceae)’

Impacts of warming and acidification on coral calcification linked to photosymbiont loss and deregulation of calcifying fluid pH

Corals are globally important calcifiers that exhibit complex responses to anthropogenic warming and acidification. Although coral calcification is supported by high seawater pH, photosynthesis by the algal symbionts of zooxanthellate corals can be promoted by elevated pCO2. To investigate the mechanisms underlying corals’ complex responses to global change, three species of tropical zooxanthellate corals (Stylophora pistillataPocillopora damicornis, and Seriatopora hystrix) and one species of asymbiotic cold-water coral (Desmophyllum pertusum, syn. Lophelia pertusa) were cultured under a range of ocean acidification and warming scenarios. Under control temperatures, all tropical species exhibited increased calcification rates in response to increasing pCO2. However, the tropical species’ response to increasing pCO2 flattened when they lost symbionts (i.e., bleached) under the high-temperature treatments—suggesting that the loss of symbionts neutralized the benefit of increased pCO2 on calcification rate. Notably, the cold-water species that lacks symbionts exhibited a negative calcification response to increasing pCO2, although this negative response was partially ameliorated under elevated temperature. All four species elevated their calcifying fluid pH relative to seawater pH under all pCO2 treatments, and the magnitude of this offset (Δ[H+]) increased with increasing pCO2. Furthermore, calcifying fluid pH decreased along with symbiont abundance under thermal stress for the one species in which calcifying fluid pH was measured under both temperature treatments. This observation suggests a mechanistic link between photosymbiont loss (‘bleaching’) and impairment of zooxanthellate corals’ ability to elevate calcifying fluid pH in support of calcification under heat stress. This study supports the assertion that thermally induced loss of photosymbionts impairs tropical zooxanthellate corals’ ability to cope with CO2-induced ocean acidification.

Continue reading ‘Impacts of warming and acidification on coral calcification linked to photosymbiont loss and deregulation of calcifying fluid pH’

The effects of ocean acidification and temperature rise on the thermal tolerance and critical thermal limit of Pacific herring (Clupea pallasii)

Anthropogenic climate change, including the interactive effects of ocean acidification and temperature rise, is projected to affect marine ecosystems by challenging the environmental tolerance limits of individual species. Such impacts have been documented in a handful of marine fishes, including major physiological effects experienced in early-life stages of Pacific herring, an important forage and commercial fish species widely distributed in coastal systems across the North Pacific. In this study, we investigated the effects of temperatures between 10-16°C and two pCO2 levels (ambient and high pCO2) on hatching and survival of Pacific herring. Survival after acute temperature exposure was assessed and compared between incubation treatments, as may be experienced by herring egg deposits during low tide on warm days. We compared early and late spawning populations to determine if their responses differed when exposed to chronic temperature and pCO2 conditions and to short term temperature stress. A subset of embryos from the 10°C and 16°C treatments were exposed to critical thermal maximum (𝐶𝑇𝑚𝑎𝑥) trials that simulated the acute temperature fluctuations associated with marine heat waves and tidal processes in shallow nearshore habitats. Hatching success was primarily influenced by temperature in both winter and spring embryos. 𝐶𝑇𝑚𝑎𝑥 results indicate that embryos were able to withstand acute exposure to 20°C regardless of spawning population or incubation treatments, but survival was greatly reduced after 2-3 hours at 25°C. Post-exposure heart contraction measurements revealed a greater rate of increase in heart rate in the combined treatment of 10°C and 𝐶𝑇𝑚𝑎𝑥 duration hours compared to 16°C, suggesting respiratory acclimation at higher incubation temperatures. Oxygen consumption rates (MO2) measured at stable incubation conditions resulted in higher MO2 values at elevated temperatures and pCO2 levels. Overall, this study reinforces that Pacific herring are resilient to moderate pCO2 and temperature stress but are vulnerable to acute temperature increases that may accompany marine heatwave events and late season low tide temperatures, and in some cases the combination of elevated pCO2 and temperature can introduce additional challenges for these important forage fish.

Continue reading ‘The effects of ocean acidification and temperature rise on the thermal tolerance and critical thermal limit of Pacific herring (Clupea pallasii)’

The effects of low pH and high water temperature on oxidative stress and cell damage in juvenile olive flounder Paralichthys olivaceus: comparison of single and combined environmental conditions

  • Correction to this article was published on 02 September 2022
  • This article has been updated

The use of fossil fuels by anthropogenic activities causes ocean acidification and warming, and these changes in the marine environment can negatively affect the metabolism, growth, and survival of fish. In the present study, we evaluated the ability of olive flounder Paralichthys olivaceus to cope with future marine environmental changes by investigating the oxidative stress (cortisol, HSP70), antioxidant enzyme (superoxide dismutase; SOD, catalase; CAT) activity, and apoptosis (caspase-3) after exposure to control conditions (20 °C and pH 8.1), warming (30 °C) and acidification (pH 7.5) conditions, and a combined environment (30 °C and pH 7.5) for 28 days. Under warming conditions, increased oxidative stress, activity of antioxidant enzymes, and apoptosis were observed. Acidifying conditions showed negative effects at the beginning of exposure, but these effects were offset over time. Even in a combined environment of acidification and warming, negative effects were seen only at the beginning of exposure and were not sustained. In conclusion, the effects of acidification on oxidative stress, antioxidant response, and apoptosis in Polivaceus did not exceed the effects of warming. These results suggest that P. olivaceus can cope with the predicted future acidifying environment.

Continue reading ‘The effects of low pH and high water temperature on oxidative stress and cell damage in juvenile olive flounder Paralichthys olivaceus: comparison of single and combined environmental conditions’

Temperature and reduced pH regulate stress and biomineralization gene expression in larvae and post-larvae of the sand dollar Dendraster excentricus

Seawater temperature, oxygen, salinity and pH are important abiotic factors, changes in which can generate stress in marine organisms. Subtidal and intertidal species, such as the sand dollar Dendraster excentricus, are daily exposed to stressors against which they have developed survival mechanisms to face environmental challenges. Analysing the expression of some key genes in response to stress factors due to changes in temperature and pH, especially in the early stages of development, opens a window of knowledge on the effect that these stressors have on benthos marine organisms. In the present work larvae and post-larvae of D. excentricus were exposed to high temperature and low pH scenarios. Survival, size and gene expression of five genes, involved in both stress response (hsp70 IV and hsp90 beta-like) and biomineralization for skeletogenesis (sm29sm30Acarbonic anhydrase 14-like and mitochondrial proton/calcium exchanger protein LOC575637), were analysed in 4-, 6-, 8-arms, competent larvae and post-larvae. Survival of stressed larvae and post-larvae presented a significant decrease, up to 37% in some stages. A size reduction of almost 30 μm was observed when larvae were exposed to stressful conditions, except in competent larvae and in post-larvae where no significant changes were detected. After stress treatments, transcripts of hsp90 beta-like were up-regulated in all larval stages but hsp70 IV transcripts were not. Under tested stressful conditions sm29 and sm30A expression was down-regulated in larvae and post-larvae, while carbonic anhydrase 14-like and LOC575637 expressions were up-regulated. It is evident that tolerance to changes in seawater temperature and pH has a direct effect on metabolic functions of D. excentricus larvae and post-larvae, which depends on the developmental stage. If laboratory results are extrapolated to marine ecosystems, it is possible that populations of this structuring organism may be disturbed with subsequent damage to ecosystem balance, until resilient organisms acclimatize and adapt to their changing habitats.

Continue reading ‘Temperature and reduced pH regulate stress and biomineralization gene expression in larvae and post-larvae of the sand dollar Dendraster excentricus’

Membrane lipid sensitivity to ocean warming and acidification poses a severe threat to Arctic pteropods

Ocean warming and acidification will be most pronounced in the Arctic. Both phenomena severely threaten thecosome pteropods (holoplanktonic marine gastropods) by reducing their survival (warming) and causing the dissolution of their aragonitic shell (acidification). Lipids, particularly phospholipids, play a major role in veligers and juveniles of the polar thecosome pteropod Limacina helicina comprising more than two-thirds of their total lipids. Membrane lipids (phospholipids) are important for the temperature acclimation of ectotherms. Hence, we experimentally investigated ocean warming and acidification effects on total lipids, lipid classes, and fatty acids of Arctic early-stage L. helicina. The temperature and pCO2 treatments chosen resembled Representative Concentration Pathway model scenarios for this century. We found a massive decrease in total lipids at elevated temperatures and at the highest CO2 concentration (1,100 μatm) of the in situ temperature. Clearly, temperature was the overriding factor. Total lipids were reduced by 47%–70%, mainly caused by a reduction of phospholipids by up to 60%. Further, based on pHT development in the incubation water of pteropods during the experiment, some evidence exists for metabolic downregulation in pteropods at high factor levels of temperature and pCO2. Consequently, the cell differentiation and energy balance of early-stage larvae were probably severely compromised. Comparison of our experimental with ‘wild’ organisms suggests phospholipid reduction to values clearly outside natural variability. Based on the well-known significance of phospholipids for membranogenesis, early development, and reproduction, negative warming effects on such a basal metabolic function may be a much more immediate threat for pteropods than so far anticipated shell dissolution effects due to acidification.

Continue reading ‘Membrane lipid sensitivity to ocean warming and acidification poses a severe threat to Arctic pteropods’

Calcification of planktonic foraminifer Neogloboquadrina pachyderma (sinistral) controlled by seawater temperature rather than ocean acidification in the Antarctic Zone of modern Southern Ocean

Neogloboquadrina pachyderma (sinistral), the dominant planktonic foraminiferal species in the mid-to-high latitude oceans, represents a major component of local calcium carbonate (CaCO3) production. However, the predominant factors, governing the calcification of this species and its potential response to the future marine environmental changes, are poorly understood. The present study utilized an improved cleaning method for the size-normalized weight (SNW) measurement to estimate the SNW of N. pachyderma (sin.) in surface sediments from the Amundsen Sea, the Ross Sea, and the Prydz Bay in the Antarctic Zone of the Southern Ocean. It was found that SNW of N. pachyderma (sin.) is not controlled by deep-water carbonate dissolution post-mortem, and can be therefore, used to reflect the degree of calcification. The comparison between N. pachyderma (sin.) SNW and environmental parameters (temperature, salinity, nutrient concentration, and carbonate system) in the calcification depth revealed that N. pachyderma (sin.) SNWs in the size ranges of 200–250, 250–300, and 300–355 µm are significantly and positively correlated with seawater temperature. Moreover, SNW would increase by ∼30% per degree increase in temperature, thereby suggesting that the calcification of N. pachyderma (sin.) in the modern Antarctic Zone of the Southern Ocean is mainly controlled by temperature, rather than by other environmental parameters such as ocean acidification. Importantly, a potential increase in calcification of N. pachyderma (sin.) in the Antarctic Zone to produce CaCO3 will release CO2 into the atmosphere. In turn, the future ocean warming will weaken the ocean carbon sink, thereby generating positive feedback for global warming.

Continue reading ‘Calcification of planktonic foraminifer Neogloboquadrina pachyderma (sinistral) controlled by seawater temperature rather than ocean acidification in the Antarctic Zone of modern Southern Ocean’

Adaptive responses of the sea anemone Heteractis crispa to the interaction of acidification and global warming

Simple Summary

This study investigated the effects of the interaction of acidification and warming on the photosynthetic apparatus and sterol metabolism of sea anemone Heteractis crispa. Thermal stress is the dominant driver of the deteriorating health of H. crispa, which might be relatively insensitive to the impact of ocean acidification; upregulation of chlorophyll content is suggested as an important strategy for symbionts to adapt to high pCO2. However, warming and acidification (alone or combined) significantly affected the cholesterol or sterol levels. Indeed, environmental changes like warming and acidification will affect the sterol metabolism and health of H. crispa in the coming decades.


Ocean acidification and warming are two of the most important threats to the existence of marine organisms and are predicted to co-occur in oceans. The present work evaluated the effects of acidification (AC: 24 ± 0.1 °C and 900 μatm CO2), warming (WC: 30 ± 0.1 °C and 450 μatm CO2), and their combination (CC: 30 ± 0.1 °C and 900 μatm CO2) on the sea anemone, Heteractis crispa, from the aspects of photosynthetic apparatus (maximum quantum yield of photosystem II (PS II), chlorophyll level, and Symbiodiniaceae density) and sterol metabolism (cholesterol content and total sterol content). In a 15-day experiment, acidification alone had no apparent effect on the photosynthetic apparatus, but did affect sterol levels. Upregulation of their chlorophyll level is an important strategy for symbionts to adapt to high partial pressure of CO2 (pCO2). However, after warming stress, the benefits of high pCO2 had little effect on stress tolerance in H. crispa. Indeed, thermal stress was the dominant driver of the deteriorating health of H. crispa. Cholesterol and total sterol contents were significantly affected by all three stress conditions, although there was no significant change in the AC group on day 3. Thus, cholesterol or sterol levels could be used as important indicators to evaluate the impact of climate change on cnidarians. Our findings suggest that H. crispa might be relatively insensitive to the impact of ocean acidification, whereas increased temperature in the future ocean might impair viability of H. crispa.

Continue reading ‘Adaptive responses of the sea anemone Heteractis crispa to the interaction of acidification and global warming’

Acidification of seawater attenuates the allelopathic effects of Ulva pertusa on Karenia mikimotoi

Acidification of seawater resulting from absorption of excessive carbon dioxide from the atmosphere is posing a serious threat to marine ecosystem. In this study, we hypothesized that acidified seawater attenuates allelopathic effects of macroalgae on red tide algae because the increase of dissolved carbon dioxide benefits algal growth, and investigated the allelopathic effects of Ulva pertusa on Karenia mikimotoi in response to seawater acidification by determining cell density, photosynthetic pigment content, chlorophyll fluorescence parameters, and chloroplast structure of K. mikimotoi under U. pertusa stress in original (pH=8.2) and acidified (pH=7.8) seawater. U. pertusa inhibited the growth of K. mikimotoi in the original and acidizing seawater, and the inhibition rate was positively correlated with treatment time and concentration of U. pertusa. However, acidizing condition significantly weakened the inhibition degree of U. pertusa on K. mikimotoi (P < 0.05), with the inhibition rates decreased from 51.85 to 43.16% at 10 gFW/L U. pertusa for 96 h. U. pertusa reduced contents of chlorophyll a, chlorophyll c, and carotenoid, maximum photochemical quantum yield (Fv/Fm), actual quantum yield, maximum relative electron transfer efficiency (rETRmax) of PSII, real-time fluorescence value (F), and maximum fluorescence value (Fm′) of PSII of K. mikimotoi under original and acidified conditions. And, the inhibition degree of U. pertusa under acidizing condition was significantly lower than that of original seawater group. Furthermore, the damage degree of chloroplast structure of K. mikimotoi under U. pertusa stress was more serious under original seawater condition. These results indicate that acidification of seawater attenuates the allelopathic effects of U. pertusa on K. mikimotoi.

Continue reading ‘Acidification of seawater attenuates the allelopathic effects of Ulva pertusa on Karenia mikimotoi

Effect of rising temperature and carbon dioxide on the growth, photophysiology, and elemental ratios of marine Synechococcus: a multistressor approach

Marine picocyanobacteria belonging to the genus Synechococcus are one of the most abundant photosynthetic organisms on Earth. They are often exposed to large fluctuations in temperature and CO2 concentrations in the ocean, which are expected to further change in the coming decades due to ocean acidification and warming resulting from rising atmospheric CO2 levels. To decipher the effect of changing temperature and CO2 levels on Synechococcus, six Synechococcus strains previously isolated from various coastal and open ocean sites were exposed to a matrix of three different temperatures (22 °C, 24 °C and 26 °C) and CO2 levels (400 ppm, 600 ppm and 800 ppm). Thereafter, the specific growth rates, photophysiological parameters (σPSII and Fv/Fm), C/N (mol/mol) ratios and the nitrogen stable isotopic composition (δ15N (‰)) of the strains were measured. Temperature was found to be a stronger driver of the changes in specific growth rates and photophysiology in the Synechococcus strains. Carbon-concentrating mechanisms (CCM) operational in these strains that shield the photosynthetic machinery from directly sensing ambient changes in CO2 possibly played a major role in causing minimal changes in the specific growth rates under the varying CO2 levels.

Continue reading ‘Effect of rising temperature and carbon dioxide on the growth, photophysiology, and elemental ratios of marine Synechococcus: a multistressor approach’

The cold-water coral Solenosmilia variabilis as a paleoceanographic archive for the reconstruction of intermediate water mass temperature variability on the Brazilian continental margin

Recent oceanographic observations have identified significant changes of intermediate water masses characterized by increased temperatures, lowered pH and deoxygenation. In order to improve our understanding as to how these changes may impact deep-sea ecosystems one important strategy is to reconstruct past oceanic conditions. Here we examine the applicability of the scleractinian cold-water coral Solenosmilia variabilis as a marine archive for the reconstructions of past intermediate water mass temperatures by using Lithium (Li)/Magnesium (Mg) ratios. In particular, our study addresses 1) the calibration of Li/Mg ratios against in-situ temperature data, 2) the reconstruction of past intermediate water mass temperatures using scleractinian coral fossil samples from the Brazilian continental margin and 3) the identification of intraspecies variability within the coral microstructure. Results showed that Li/Mg ratios measured in the skeletons of S. variabilis fit into existing Li/Mg-T calibrations of other cold-water scleractinian. Furthermore, the coral microstructure exhibits interspecies variability of Li/Ca and Mg/Ca ratios were also similar to what has been observed in other cold-water scleractinian corals, suggesting a similar biomineralization control on the incorporation of Li and Mg into the skeleton. However, the Li/Mg based temperature reconstruction using fossil samples resulted in unexpectedly high variations >10°C, which might not be solely related to temperature variations of the intermediate water mass over the last 160 ka on the Brazilian continental margin. We speculate that such temperature variability may be caused by vertical movements of the aragonite saturation horizon and the associated seawater pH changes, which in turn influence the incorporation of Li and Mg into the coral skeleton. Based on these results it is recommended that future studies investigating past oceanic conditions need to consider the carbonate system parameters and how they might impact the mechanisms of Li and Mg being incorporated into skeletons of cold-water coral species such as S. variabilis.

Continue reading ‘The cold-water coral Solenosmilia variabilis as a paleoceanographic archive for the reconstruction of intermediate water mass temperature variability on the Brazilian continental margin’

Physical and biological controls on anthropogenic CO2 sink of the Ross Sea

The Antarctic continental shelf is known as a critical anthropogenic CO2 (Cant) sink due to its cold waters, high primary productivity, and unique circulation, which allow it to sequester large amounts of organic and inorganic carbon into the deep ocean. However, climate change is currently causing significant alteration to the Antarctic marine carbon cycle, with unknown consequences on the Cant uptake capacity, making model-based estimates of future ocean acidification of polar regions highly uncertain. Here, we investigated the marine carbonate system in the Ross Sea in order to assess the current anthropogenic carbon content and how physical–biological processes can control the Cant sequestration along the shelf-slope continuum. The Winter Water mass generated from convective events was characterized by high Cant level (28 µmol kg−1) as a consequence of the mixed layer break-up during the cold season, whereas old and less-ventilated Circumpolar Deep Water entering the Ross Sea revealed a very scarce contribution of anthropogenic carbon (7 µmol kg−1). The Cant concentration was also different between polynya areas and the shelf break, as a result of their specific hydrographic characteristics and biological processes: surface waters of the Ross Sea and Terra Nova Bay polynyas served as strong CO2 sink (up to −185 mmol m−2), due to the remarkable net community production, estimated from the summertime surface-dissolved inorganic carbon deficit. However, a large amount of the generated particulate organic carbon was promptly consumed by intense microbial activity, giving back carbon dioxide into the intermediate and deep layers of the continental shelf zone. Further Cant also derived from High-Salinity Shelf Water produced during winter sea ice formation (25 µmol kg−1), fueling dense shelf waters with additional input of Cant, which was finally stored into the abyssal sink through continental slope outflow (19 µmol kg−1). Our results suggest that summer biological activity over the Ross Sea shelf is pivotal for the shunt of anthropogenic CO2 between the organic and inorganic carbon pools, enhancing the ocean acidification of the upper mesopelagic zone and the long-term Cant sequestration into the deep ocean.

Continue reading ‘Physical and biological controls on anthropogenic CO2 sink of the Ross Sea’

Acclimatory gene expression of primed clams enhances robustness to elevated pCO2

Sublethal exposure to environmental challenges may enhance ability to cope with chronic or repeated change, a process known as priming. In a previous study, pre-exposure to seawater enriched with pCO2 improved growth and reduced antioxidant capacity of juvenile Pacific geoduck Panopea generosa clams, suggesting that transcriptional shifts may drive phenotypic modifications post-priming. To this end, juvenile clams were sampled and TagSeq gene expression data were analysed after (i) a 110-day acclimation under ambient (921 μatm, naïve) and moderately elevated pCO2 (2870 μatm, pre-exposed); then following (ii) a second 7-day exposure to three pCO2 treatments (ambient: 754 μatm; moderately elevated: 2750 μatm; severely elevated: 4940 μatm), a 7-day return to ambient pCO2 and a third 7-day exposure to two pCO2 treatments (ambient: 967 μatm; moderately elevated: 3030 μatm). Pre-exposed geoducks frontloaded genes for stress and apoptosis/innate immune response, homeostatic processes, protein degradation and transcriptional modifiers. Pre-exposed geoducks were also responsive to subsequent encounters, with gene sets enriched for mitochondrial recycling and immune defence under elevated pCO2 and energy metabolism and biosynthesis under ambient recovery. In contrast, gene sets with higher expression in naïve clams were enriched for fatty-acid degradation and glutathione components, suggesting naïve clams could be depleting endogenous fuels, with unsustainable energetic requirements if changes in carbonate chemistry persist. Collectively, our transcriptomic data indicate that pCO2 priming during post-larval periods could, via gene expression regulation, enhance robustness in bivalves to environmental change. Such priming approaches may be beneficial for aquaculture, as seafood demand intensifies concurrent with increasing climate change in marine systems.

Continue reading ‘Acclimatory gene expression of primed clams enhances robustness to elevated pCO2

Net community production in the northwestern Mediterranean Sea from glider and buoy measurements

The Mediterranean Sea comprises just 0.8 % of the global oceanic surface, yet considering its size, it is regarded as a disproportionately large sink for anthropogenic carbon due to its physical and biogeochemical characteristics. An underwater glider mission was carried out in March–April 2016 close to the BOUSSOLE and DyFAMed time series moorings in the northwestern Mediterranean Sea. The glider deployment served as a test of a prototype ion-sensitive field-effect transistor pH sensor. Dissolved oxygen (O2) concentrations and optical backscatter were also observed by the glider and increased between 19 March and 1 April, along with pH. These changes indicated the start of a phytoplankton spring bloom, following a period of intense mixing. Concurrent measurements of CO2 fugacity and O2 concentrations at the BOUSSOLE mooring buoy showed fluctuations, in qualitative agreement with the pattern of glider measurements. Mean net community production rates (N) were estimated from glider and buoy measurements of dissolved O2 and inorganic carbon (DIC) concentrations, based on their mass budgets. Glider and buoy DIC concentrations were derived from a salinity-based total alkalinity parameterisation, glider pH and buoy CO2 fugacity. The spatial coverage of glider data allowed the calculation of advective O2 and DIC fluxes. Mean N estimates for the euphotic zone between 10 March and 3 April were (-17±36) for glider O2, (44±94) for glider DIC, (17±37) for buoy O2 and (49±86)  for buoy DIC, all indicating net metabolic balance over these 25 d. However, these 25 d were actually split into a period of net DIC increase and O2 decrease between 10 and 19 March and a period of net DIC decrease and O2 increase between 19 March and 3 April. The latter period is interpreted as the onset of the spring bloom. The regression coefficients between O2 and DIC-based N estimates were 0.25 ± 0.08 for the glider data and 0.54 ± 0.06 for the buoy, significantly lower than the canonical metabolic quotient of 1.45±0.15. This study shows the added value of co-locating a profiling glider with moored time series buoys, but also demonstrates the difficulty in estimating N, and the limitations in achievable precision.

Continue reading ‘Net community production in the northwestern Mediterranean Sea from glider and buoy measurements’

Bioaccumulation of inorganic and organic mercury in the cuttlefish Sepia officinalis: influence of ocean acidification and food type

The bioaccumulation of mercury (Hg) in marine organisms through various pathways has not yet been fully explored, particularly in cephalopods. This study utilises radiotracer techniques using the isotope 203Hg to investigate the toxicokinetics and the organotropism of waterborne inorganic Hg (iHg) and dietary inorganic and organic Hg (methylHg, MeHg) in juvenile common cuttlefish Sepia officinalis. The effect of two contrasting CO2 partial pressures in seawater (400 and 1600 μatm, equivalent to pH 8.08 and 7.54 respectively) and two types of prey (fish and shrimp) were tested as potential driving factors of Hg bioaccumulation. After 14 days of waterborne exposure, juvenile cuttlefish showed a stable concentration factor of 709 ± 54 and 893 ± 117 at pH 8.08 and 7.54, respectively. The accumulated dissolved i203Hg was depurated relatively rapidly with a radiotracer biological half-life (Tb1/2) of 44 ± 12 and 55 ± 16 days at pH 8.08 and 7.54, respectively. During the whole exposure period, approximately half of the i203Hg was found in the gills, but i203Hg also increased in the digestive gland. When fed with 203Hg-radiolabelled prey, cuttlefish assimilated almost all the Hg provided (>95%) independently of the prey type. Nevertheless, the prey type played a major role on the depuration kinetics with Hg Tb1/2 approaching infinity in fish fed cuttlefish vs. 25 days in shrimp fed cuttlefish. Such a difference is explained by the different proportion of Hg species in the prey, with fish prey containing more than 80% of MeHg vs. only 30% in shrimp. Four days after ingestion of radiolabelled food, iHg was primarily found in the digestive organs while MeHg was transferred towards the muscular tissues. No significant effect of pH/pCO2 variation was observed during both the waterborne and dietary exposures on the bioaccumulation kinetics and tissue distribution of i203Hg and Me203Hg. Dietary exposure is the predominant pathway of Hg bioaccumulation in juvenile cuttlefish.

Continue reading ‘Bioaccumulation of inorganic and organic mercury in the cuttlefish Sepia officinalis: influence of ocean acidification and food type’

Chapter 84 – ocean acidification

The problem with climate change which increases the concentration of carbon dioxide in the atmosphere is that it promotes acidification of the oceans. This acidification impairs the ability of bivalve mollusks living in acidified waters to have normal reproduction and growth. The climate issue has broad implications for aquacultured species with alterations in water temperature (increases), disease patterns, harmful algal blooms, rainfall patterns, sea surface salinity, or severe weather events which may have an overall net negative impact on aquaculture production. This chapter discusses the implications of climate ocean acidification on the health of mollusks.

Continue reading ‘Chapter 84 – ocean acidification’

Adaptation of a marine diatom to ocean acidification increases its sensitivity to toxic metal exposure


  • Adaptation to OA increased marine diatom’s sensitivity to heavy metals (HM).
  • OA-adapted cells decreased their growth and photosynthesis at high HM levels.
  • The increase in sensitivity is associated with reduced metabolic activity.


Most previous studies investigating the interplay of ocean acidification (OA) and heavy metal on marine phytoplankton were only conducted in short-term, which may provide conservative estimates of the adaptive capacity of them. Here, we examined the physiological responses of long-term (~900 generations) OA-adapted and non-adapted populations of the diatom Phaeodactylum tricornutum to different concentrations of the two heavy metals Cd and Cu. Our results showed that long-term OA selected populations exhibited significantly lower growth and reduced photosynthetic activity than ambient CO2 selected populations at relatively high heavy metal levels. Those findings suggest that the adaptations to high CO2 results in an increased sensitivity of the marine diatom to toxic metal exposure. This study provides evidence for the costs and the cascading consequences associated with the adaptation of phytoplankton to elevated CO2 conditions, and improves our understanding of the complex interactions of future OA and heavy metal pollution in marine waters.

Continue reading ‘Adaptation of a marine diatom to ocean acidification increases its sensitivity to toxic metal exposure’

Nutritional response of a coccolithophore to changing pH and temperature

Coccolithophores are a calcifying unicellular phytoplankton group that are at the base of the marine food web, and their lipid content provides a source of energy to consumers. Coccolithophores are vulnerable to ocean acidification and warming, therefore it is critical to establish the effects of climate change on these significant marine primary producers, and determine potential consequences that these changes can have on their consumers. Here, we quantified the impact of changes in pH and temperature on the nutritional condition (lipid content, particulate organic carbon/nitrogen), growth rate, and morphology of the most abundant living coccolithophore species, Emiliania huxleyi. We used a regression type approach with nine pH levels (ranging from 7.66 to 8.44) and two temperatures (15°C and 20°C). Lipid production was greater under reduced pH, and growth rates were distinctly lower at 15°C than at 20°C. The production potential of lipids, which estimates the availability of lipids to consumers, increased under 20°C, but decreased under low pH. The results indicate that, while consumers will benefit energetically under ocean warming, this benefit will be mitigated by ocean acidification. The carbon to nitrogen ratio was higher at 20°C and low pH, indicating that the nutritional quality of coccolithophores for consumers will decline under climate change. The impact of low pH on the structural integrity of the coccosphere may also mean that coccolithophores are easier to digest for consumers. Many responses suggest cellular stress, indicating that increases in temperature and reductions in pH may have a negative impact on the ecophysiology of coccolithophores.

Continue reading ‘Nutritional response of a coccolithophore to changing pH and temperature’

  • Reset


OA-ICC Highlights

%d bloggers like this: