Archive for the 'Science' Category

Hands-on exploration of ocean acidification with a living calcifier

This hands-on lab allows students to explore concepts and quantify effects of ocean acidification. Many laboratory activities simplify ocean acidification through computer simulations or dripping acid on nonliving materials (e.g., sea shells) but do not provide adequate opportunities for students to measure, inquire, or see real consequences for living organisms. Thus, we developed this low-cost, easily accessible experiment to imitate ocean acidification on living, calcifying organisms.

Continue reading ‘Hands-on exploration of ocean acidification with a living calcifier’

Continuous monitoring and future projection of ocean warming, acidification, and deoxygenation on the subarctic coast of Hokkaido, Japan

As the ocean absorbs excessive anthropogenic CO2 and ocean acidification proceeds, it is thought to be harder for marine calcifying organisms, such as shellfish, to form their skeletons and shells made of calcium carbonate. Recent studies have suggested that various marine organisms, both calcifiers and non-calcifiers, will be affected adversely by ocean warming and deoxygenation. However, regardless of their effects on calcifiers, the spatiotemporal variability of parameters affecting ocean acidification and deoxygenation has not been elucidated in the subarctic coasts of Japan. This study conducted the first continuous monitoring and future projection of physical and biogeochemical parameters of the subarctic coast of Hokkaido, Japan. Our results show that the seasonal change in biogeochemical parameters, with higher pH and dissolved oxygen (DO) concentration in winter than in summer, was primarily regulated by water temperature. The daily fluctuations, which were higher in the daytime than at night, were mainly affected by daytime photosynthesis by primary producers and respiration by marine organisms at night. Our projected results suggest that, without ambitious commitment to reducing CO2 and other greenhouse gas emissions, such as by following the Paris Agreement, the impact of ocean warming and acidification on calcifiers along subarctic coasts will become serious, exceeding the critical level of high temperature for 3 months in summer and being close to the critical level of low saturation state of calcium carbonate for 2 months in mid-winter, respectively, by the end of this century. The impact of deoxygenation might often be prominent assuming that the daily fluctuation in DO concentration in the future is similar to that at present. The results also suggest the importance of adaptation strategies by local coastal industries, especially fisheries, such as modifying aquaculture styles.

Continue reading ‘Continuous monitoring and future projection of ocean warming, acidification, and deoxygenation on the subarctic coast of Hokkaido, Japan’

The variable circulation and carbonate chemistry of ocean upwelling systems

Ocean upwelling is a process in which winds drive deep waters to the surface ocean. The biogeochemical state of these waters causes upwelling regions to have some of the strongest air-sea fluxes of carbon dioxide (CO2) and most productive fisheries in the global oceans. In this dissertation, I use Earth System models to investigate the variability and projected impacts of climate change on upwelling systems. I first use the Community Earth System Model Large Ensemble (CESM-LE) to project the impacts of climate change on upwelling in the California Current. The CESM-LE provides an ensemble of potential trajectories of the climate system that differ due to internal climate variability. I find that upwelling is expected to weaken over the next century in the summer and intensify poleward in the spring due to anthropogenic climate change. Next, I use the CESM-LE to highlight the role of internal climate variability in modulating air-sea CO2 fluxes in the major Eastern Boundary Upwelling Systems (EBUS). I identify the major mode of internal variability that influences air-sea CO2 flux in each EBUS. I then quantify how the given mode of variability modifies local conditions, which in turn leads to the anomalous air-sea CO2 fluxes. Following this, I use a version of the CESM-LE that is configured for climate prediction to examine predictability of ocean acidification in the California Current. I find that our system makes skillful forecasts of surface pH out to fourteen months relative to observations and has a potential ceiling of skillful prediction out to five years in some regions. Finally, I use the Model for Prediction Across Scales Ocean (MPAS-O) to investigate the pathways over which carbon upwells in the Southern Ocean. I seed a high-resolution version of MPAS-O with 1,000,000 Lagrangian floats and find that regions with complex ocean topography have a disproportionate influence on bringing carbon-rich waters from the deep Southern Ocean to the surface. The results of this dissertation highlight the value of using ensemble methods and the Lagrangian perspective in Earth System models to better understand the dynamic and variable biogeochemistry in ocean upwelling systems.

Continue reading ‘The variable circulation and carbonate chemistry of ocean upwelling systems’

Efect del pH en las tasas de bioacumulación de metales pesados en la macroalga Bostrychia calliptera (Rhodomelaceae, Ceramiales)(in Spanish)

Uno de los factores que más influye las características químicas de un metal en solución es el nivel de acidez. El pH por lo tanto, afecta la reactividad del ion y por ende, su interacción con los puntos de unión de la pared celular de la planta. Este estudio evaluó el efecto del pH en la capacidad de bioacumulación de metales pesados en el alga roja Bostrychia calliptera (Rhodophyta, Rhodomelaceae), expuesta a diferentes rangos de pH. Se sometieron talos del alga a diferentes concentraciones de mercurio (Hg) y Plomo (Pb) a concentraciones desde: 0,1 hasta 10 mg l-1, para Hg y desde 0,1 hasta 15 mg l-1 para Pb, durante periodos exposición de 0, 12, 24 y 96 horas para cada ion, bajo diferentes niveles de pH. Las concentraciones de metal fueron determinadas por espectrofotometría de absorción atómica de acuerdo a los métodos estándar APHA. Las mayores tasas de acumulación se encontraron cuando el alga estaba expuesta a pH 7.8 (tanto para Hg como para Pb) el cual es un nivel de pH muy cercano al medido en el área de estudio. La concentración de metal en el alga se incrementó de manera lineal hasta las 48 hrs, tiempo donde se evidenció una mayor eficiencia de acumulación durante el primer intervalo del periodo del bioensayo.

Continue reading ‘Efect del pH en las tasas de bioacumulación de metales pesados en la macroalga Bostrychia calliptera (Rhodomelaceae, Ceramiales)(in Spanish)’

Combined effects of climate change and the herbicide diuron on the coral Acropora millepora

The Great Barrier Reef (GBR) is threatened by climate change and local pressures, including contaminants in nearshore habitats. This study investigated the combined effects of a GBR-relevant contaminant, the herbicide diuron, under current and two future climate scenarios on the coral Acropora millepora. All physiological responses tested (effective quantum yield (ΔF/Fm′), photosynthesis, calcification rate) were negatively affected with increasing concentrations of diuron. Interactive effects between diuron and climate were observed for all responses; however, climate had no significant effect on ΔF/Fm′ or calcification rates. Photosynthesis was negatively affected as the climate scenarios were adjusted from ambient (28.1 °C, pCO2 = 397 ppm) to RCP8.5 2050 (29.1 °C, pCO2 = 680 ppm) and 2100 (30.2 °C, pCO2 = 858 ppm) with EC50 values declining from 19.4 to 10.6 and 2.6 μg L−1 diuron in turn. These results highlight the likelihood that water quality guideline values may need to be adjusted as the climate changes.

Continue reading ‘Combined effects of climate change and the herbicide diuron on the coral Acropora millepora’

Two offshore coral species show greater acclimatization capacity to environmental variation than nearshore counterparts in southern Belize

Coral reefs are enduring decline due to the intensifying impacts of anthropogenic global change. This widespread decline has resulted in increased efforts to identify resilient coral populations and develop novel restoration strategies. Paramount in these efforts is the need to understand how environmental variation and thermal history affect coral physiology and resilience. Here, we assess the acclimatization capacity of Siderastrea siderea and Pseudodiploria strigosa corals via a 17-month reciprocal transplant experiment between nearshore and offshore reefs on the Belize Mesoamerican Barrier Reef System. These nearshore reefs are more turbid, eutrophic, warm, and thermally variable than offshore reefs. All corals exhibited some evidence of acclimatization after transplantation. Corals transplanted from nearshore to offshore calcified slower than in their native habitat, especially S. siderea corals which exhibited 60% mortality and little to no net growth over the duration of the 17-month study. Corals transplanted from offshore to nearshore calcified faster than in their native habitat with 96% survival. Higher host tissue δ15N in nearshore corals indicated that increased heterotrophic opportunity or nitrogen sources between nearshore and offshore reefs likely promoted elevated calcification rates nearshore and may facilitate adaptation in nearshore populations to such conditions over time. These results demonstrate that offshore populations of S. siderea and P. strigosa possess the acclimatization capacity to survive in warmer and more turbid nearshore conditions, but that local adaptation to native nearshore conditions may hinder the plasticity of nearshore populations, thereby limiting their utility in coral restoration activities outside of their native habitat in the short term.

Continue reading ‘Two offshore coral species show greater acclimatization capacity to environmental variation than nearshore counterparts in southern Belize’

Impact of increasing carbon dioxide on dinitrogen and carbon fixation rates under oligotrophic conditions and simulated upwelling

Dinitrogen (N2) fixation is a major source of bioavailable nitrogen to oligotrophic ocean communities. Yet, we have limited understanding how ongoing climate change could alter N2 fixation. Most of our understanding is based on short-term laboratory experiments conducted on individual N2-fixing species whereas community-level approaches are rare. In this longer-term in situ mesocosm study, we aimed to improve our understanding on the role of rising atmospheric carbon dioxide (CO2) and simulated deep water upwelling on N2 and carbon (C) fixation rates in a natural oligotrophic plankton community. We deployed nine mesocosms in the subtropical North Atlantic Ocean and enriched seven of these with CO2 to yield a range of treatments (partial pressure of CO2pCO2 = 352–1025 μatm). We measured rates of N2 and C fixation in both light and dark incubations over the 55-day study period. High pCO2 negatively impacted light and dark N2 fixation rates in the oligotrophic phase before simulated upwelling, while the effect reversed in the light N2 fixation rates in the bloom decay phase after added nutrients were consumed. Dust deposition and simulated upwelling of nutrient-rich deep water increased N2 fixation rates and nifH gene abundances of selected clades including the unicellular diazotrophic cyanobacterium clade UCYN-B. Elevated pCO2 increased C fixation rates in the decay phase. We conclude that elevated pCO2 and pulses of upwelling have pronounced effects on diazotrophy and primary producers, and upwelling and dust deposition modify the pCO2 effect in natural assemblages.

Continue reading ‘Impact of increasing carbon dioxide on dinitrogen and carbon fixation rates under oligotrophic conditions and simulated upwelling’

A pronounced spike in ocean productivity triggered by the Chicxulub impact


There is increasing evidence linking the mass-extinction event at the Cretaceous-Paleogene boundary to an asteroid impact near Chicxulub, Mexico. Here we use model simulations to explore the combined effect of sulfate aerosols, carbon dioxide and dust from the impact on the oceans and the marine biosphere in the immediate aftermath of the impact. We find a strong temperature decrease, a brief algal bloom caused by nutrients from both the deep ocean and the projectile, and moderate surface ocean acidification. Comparing the modeled longer-term post-impact warming and changes in carbon isotopes with empirical evidence points to a substantial release of carbon from the terrestrial biosphere. Overall, our results shed light on the decades to centuries after the Chicxulub impact which are difficult to resolve with proxy data.

Plain Language Summary

The sudden disappearance of the dinosaurs and many other species during the end-Cretaceous mass extinction 66 million years ago marks one of the most profound events in the history of life on Earth. The impact of a large asteroid near Chicxulub, Mexico, is increasingly recognised as the trigger of this extinction, causing global darkness and a pronounced cooling. However, the links between the impact and the changes in the biosphere are not fully understood. Here, we investigate how life in the ocean reacts to the perturbations in the decades and centuries after the impact. We find a short-lived algal bloom caused by the upwelling of nutrients from the deep ocean and nutrient input from the impactor.

Continue reading ‘A pronounced spike in ocean productivity triggered by the Chicxulub impact’

Experimental techniques to assess coral physiology in situ under global and local stressors: current approaches and novel insights

Coral reefs are declining worldwide due to global changes in the marine environment. The increasing frequency of massive bleaching events in the tropics is highlighting the need to better understand the stages of coral physiological responses to extreme conditions. Moreover, like many other coastal regions, coral reef ecosystems are facing additional localized anthropogenic stressors such as nutrient loading, increased turbidity, and coastal development. Different strategies have been developed to measure the health status of a damaged reef, ranging from the resolution of individual polyps to the entire coral community, but techniques for measuring coral physiology in situ are not yet widely implemented. For instance, while there are many studies of the coral holobiont response in single or limited-number multiple stressor experiments, they provide only partial insights into metabolic performance under more complex and temporally and spatially variable natural conditions. Here, we discuss the current status of coral reefs and their global and local stressors in the context of experimental techniques that measure core processes in coral metabolism (respiration, photosynthesis, and biocalcification) in situ, and their role in indicating the health status of colonies and communities. We highlight the need to improve the capability of in situ studies in order to better understand the resilience and stress response of corals under multiple global and local scale stressors.

Continue reading ‘Experimental techniques to assess coral physiology in situ under global and local stressors: current approaches and novel insights’

Planktic foraminiferal and pteropod contributions to carbon dynamics in the Arctic Ocean (North Svalbard Margin)

Planktic foraminifera and shelled pteropods are some of the major producers of calcium carbonate (CaCO3) in the ocean. Their calcitic (foraminifera) and aragonitic (pteropods) shells are particularly sensitive to changes in the carbonate chemistry and play an important role for the inorganic and organic carbon pump of the ocean. Here, we have studied the abundance distribution of planktic foraminifera and pteropods (individuals m–3) and their contribution to the inorganic and organic carbon standing stocks (μg m–3) and export production (mg m–2 day–1) along a longitudinal transect north of Svalbard at 81° N, 22–32° E, in the Arctic Ocean. This transect, sampled in September 2018 consists of seven stations covering different oceanographic regimes, from the shelf to the slope and into the deep Nansen Basin. The sea surface temperature ranged between 1 and 5°C in the upper 300 m. Conditions were supersaturated with respect to CaCO3 (Ω > 1 for both calcite and aragonite). The abundance of planktic foraminifera ranged from 2.3 to 52.6 ind m–3 and pteropods from 0.1 to 21.3 ind m–3. The planktic foraminiferal population was composed mainly of the polar species Neogloboquadrina pachyderma (55.9%) and the subpolar species Turborotalita quinqueloba (21.7%), Neogloboquadrina incompta (13.5%) and Globigerina bulloides (5.2%). The pteropod population was dominated by the polar species Limacina helicina (99.6%). The rather high abundance of subpolar foraminiferal species is likely connected to the West Spitsbergen Current bringing warm Atlantic water to the study area. Pteropods dominated at the surface and subsurface. Below 100 m water depth, foraminifera predominated. Pteropods contribute 66–96% to the inorganic carbon standing stocks compared to 4–34% by the planktic foraminifera. The inorganic export production of planktic foraminifera and pteropods together exceeds their organic contribution by a factor of 3. The overall predominance of pteropods over foraminifera in this high Arctic region during the sampling period suggest that inorganic standing stocks and export production of biogenic carbonate would be reduced under the effects of ocean acidification.

Continue reading ‘Planktic foraminiferal and pteropod contributions to carbon dynamics in the Arctic Ocean (North Svalbard Margin)’

  • Search

  • Categories

  • Tags

  • Post Date

Subscribe to the RSS feed

Follow AnneMarin on Twitter

Blog Stats

  • 1,408,900 hits


Ocean acidification in the IPCC AR5 WG II

OUP book

%d bloggers like this: