Posts Tagged 'molecular biology'



Little evidence of adaptation potential to ocean acidification in sea urchins living in “future ocean” conditions at a CO2 vent

Ocean acidification (OA) can be detrimental to calcifying marine organisms, with stunting of invertebrate larval development one of the most consistent responses. Effects are usually measured by short‐term, within‐generation exposure, an approach that does not consider the potential for adaptation. We examined the genetic response to OA of larvae of the tropical sea urchin Echinometra sp. C. raised on coral reefs that were either influenced by CO2 vents (pH ~ 7.9, future OA condition) or nonvent control reefs (pH 8.2). We assembled a high quality de novo transcriptome of Echinometra embryos (8 hr) and pluteus larvae (48 hr) and identified 68,056 SNPs. We tested for outlier SNPs and functional enrichment in embryos and larvae raised from adults from the control or vent sites. Generally, highest FST values in embryos were observed between sites (intrinsic adaptation, most representative of the gene pool in the spawned populations). This comparison also had the highest number of outlier loci (40). In the other comparisons, classical adaptation (comparing larvae with adults from the control transplanted to either the control or vent conditions) and reverse adaptation (larvae from the vent site returned to the vent or explanted at the control), we only observed modest numbers of outlier SNPs (6–19) and only enrichment in two functional pathways. Most of the outliers detected were silent substitutions without adaptive potential. We conclude that there is little evidence of realized adaptation potential during early development, while some potential (albeit relatively low) exists in the intrinsic gene pool after more than one generation of exposure.

Continue reading ‘Little evidence of adaptation potential to ocean acidification in sea urchins living in “future ocean” conditions at a CO2 vent’

Mangrove lagoons of the Great Barrier Reef support coral populations persisting under extreme environmental conditions

Global degradation of coral reefs has increased the urgency of identifying stress-tolerant coral populations, to enhance understanding of the biology driving stress tolerance, as well as identifying stocks of stress-hardened populations to aid reef rehabilitation. Surprisingly, scientists are continually discovering that naturally extreme environments house established coral populations adapted to grow within extreme abiotic conditions comparable to seawater conditions predicted over the coming century. Such environments include inshore mangrove lagoons that carry previously unrecognised ecosystem service value for corals, spanning from refuge to stress preconditioning. However, the existence of such hot-spots of resilience on the Great Barrier Reef (GBR) remains entirely unknown. Here we describe, for the first time, 2 extreme GBR mangrove lagoons (Woody Isles and Howick Island), exposing taxonomically diverse coral communities (34 species, 7 growth morphologies) to regular extreme low pH (<7.6), low oxygen (7°C) conditions. Coral cover was typically low (0.5 m diameter), with net photosynthesis and calcification rates of 2 dominant coral species (Acropora millepora, Porites lutea) reduced (20-30%), and respiration enhanced (11-35%), in the mangrove lagoon relative to adjacent reefs. Further analysis revealed that physiological plasticity (photosynthetic ‘strategy’) and flexibility of Symbiodiniaceae taxa associations appear crucial in supporting coral capacity to thrive from reef to lagoon. Prevalence of corals within these extreme conditions on the GBR (and elsewhere) increasingly challenge our understanding of coral resilience to stressors, and highlight the need to study unfavourable coral environments to better resolve mechanisms of stress tolerance.

Continue reading ‘Mangrove lagoons of the Great Barrier Reef support coral populations persisting under extreme environmental conditions’

Factors regulating nitrification in the Arctic Ocean: potential impact of sea ice reduction and ocean acidification

Nitrification is susceptible to changes in light and pH and, thus, could be influenced by recent sea ice reductions and acidification in the Arctic Ocean. We investigated the sensitivity of nitrification to light, pH, and substrate availability in a natural nitrifier community of the Arctic Ocean. Nitrification was active near the bottom of the shelf region (250 m). In pH control experiments, nitrification rates significantly declined when the pH was manipulated to be 0.22 lower than the controls. However, nitrification was relatively insensitive to changes in pH compared to changes in light. Light control experiments showed that nitrification was inhibited by a light intensity above 0.11 mol photons m−2 day−1, which was presumably the light threshold. A light intensity greater than the light threshold extended to the shelf bottom and upper halocline layer, limiting nitrification in these waters. Satellite data analyses indicated that the area where light levels inhibit nitrification has increased throughout the Arctic Ocean due to the recent sea ice reduction, which may lead to a declining trend in nitrification. Our results suggest that stronger light levels in the future Arctic Ocean could further suppress nitrification and alter the composition of inorganic nitrogen, with implications for the structure of ecosystems.

Continue reading ‘Factors regulating nitrification in the Arctic Ocean: potential impact of sea ice reduction and ocean acidification’

The inhibition of ocean acidification on the formation of oyster calcified shell by regulating the expression of Cgchs1 and Cgchit4

The biosynthesis of a calcified shell is critical for the development of oyster larvae. This process can be severely inhibited by CO2-induced ocean acidification, causing mass mortality of oyster larvae. However, the underlying molecular mechanism of such process has not been well explored until now. In the present study, a homolog of chitin synthase (named as Cgchs1) and a homolog of chitinase (named as Cgchit4) were identified from the Pacific oyster Crassostrea gigas. The cDNA sequences of Cgchs1 and Cgchit4 were of 813 bp and 2118 bp, encoding a putative polypeptide of 271 amino acids and 706 amino acids, respectively. There were a Chitin_synth_2 domain and a Glyco_18 domain in the inferred amino acid sequences of Cgchs1 and Cgchit4, respectively. Both Cgchs1 and Cgchit4 shared high sequence identity with their homologs in vertebrates. In addition, when oyster larvae were exposed to acidification treatment (pH 7.4), their shell biosynthesis process was seriously restrained. The expression level of Cgchs1 mRNA was significantly suppressed while that of Cgchit4 was dramatically activated upon acidification treatment. Cgchs1 and Cgchit4 are critical enzymes for chitin metabolism, and such changes in their mRNA expression could result in the decrease of chitin content in oyster larvae’s shells, which might lead to the failure of shell formation. Therefore, results in the present study suggested that acidified seawater might inhibit the formation of oyster calcified shell by suppressing the biosynthesis of chitin.

Continue reading ‘The inhibition of ocean acidification on the formation of oyster calcified shell by regulating the expression of Cgchs1 and Cgchit4’

Hsp70 knockdown reduced the tolerance of Litopenaeus vannamei post larvae to low pH and salinity

Highlights

• Injection of the white-leg shrimp with Hsp70 dsRNA eliminated Hsp70 mRNA and protein in post-larvae but had no apparent effect on survival.

• However, the survival of post larvae lacking Hsp70, as compared to those containing the heat shock protein, was reduced more than two-fold 48 h after exposure to low salinity and pH, strongly indicating that Hsp70 is required for protection against these abiotic stressors.

• This is the first time to our knowledge that RNAi has been used to demonstrate a role for Hsp70 in protecting P. vannamei post larvae against salinity and pH stress, an effect undoubtedly due to the importance Hsp70 assumes in maintaining protein homeostasis within cells.

Abstract

To better understand stress tolerance of the White leg shrimp, Litopenaeus vannamei, RNA interference (RNAi) was used to assess the role of the molecular chaperone, Hsp70 in protecting post larvae against low pH and salinity. As revealed by SDS-polyacrylamide gel electrophoresis and immunoprobing of western blots, injection of L. vannamei post larvae with Hsp70 and Hsc70 dsRNA reduced Hsp70 but had no apparent effect on survival. However, the survival of post larvae lacking Hsp70, as compared to those containing the heat shock protein, was reduced more than two-fold 48 h after exposure to low salinity and pH, strongly indicating that Hsp70 is required for protection against these abiotic stressors. This is the first time to our knowledge that RNAi has been used to demonstrate a role for Hsp70 in protecting L. vannamei post larvae against salinity and pH stress, an effect undoubtedly due to the importance Hsp70 assumes in maintaining protein homeostasis within cells. Information generated in this work provides further understanding of Hsp70 function in the stress response of Penaeid shrimp and will assist in the development of strategies to mitigate abiotic stresses experienced by aquatic invertebrates during aquaculture.

Continue reading ‘Hsp70 knockdown reduced the tolerance of Litopenaeus vannamei post larvae to low pH and salinity’

De novo transcriptome assembly and gene expression profile of thermally challenged green abalone (Haliotis fulgens: Gastropoda) under acute hypoxia and hypercapnia

Highlights

• Abalone gene expression under warming, hypoxia, and hypercapnia, individually and combined.

• The response reflects enhanced damage control at the expense of energy metabolism.

• Gene networks of gill and muscle conform with different levels of thermal sensitivity.

• Warming combined with hypercapnia and hypoxia enhanced mitochondrial capacity.

Abstract

Transcriptional regulation constitutes a rapid response of marine organisms facing stressful environmental conditions, such as the concomitant exposure to warming, ocean acidification and hypoxia under climate change. In previous studies, we investigated whole-organism physiological patterns and cellular metabolism in gill and muscle of the marine gastropod Haliotis fulgens in response to increasing temperature (18 °C to 32 °C at +3 °C per day) under hypoxia (50% air saturation), hypercapnia (1000 μatm pCO2) and both factors combined. Here, we report investigations of the molecular responses of H. fulgens to temperature and identify mechanisms concomitantly affected by hypoxia and hypercapnia. A de novo transcriptome assembly with subsequent quantitative PCR and correlation network analysis of genes involved in the molecular response were used to unravel the correlations between gene expression patterns under the different experimental conditions. The correlation networks identified a shift from the expression of genes involved in energy metabolism (down-regulated) to the up-regulation of Hsp70 during warming under all experimental conditions in gill and muscle, indicating a strong up-regulation of damage prevention and repair systems at sustained cellular energy production. However, a higher capacity for anaerobic succinate production was evicted in gill, matching with observations from our previous studies indicating succinate accumulation in gill but not in muscle. Additionally, warming under hypoxia and hypercapnia kept mRNA levels of citrate synthase in both tissues unchanged following a similar pattern as muscle enzyme capacity from a previous study, suggesting an emphasis on maintaining rather than down-regulating mitochondrial activity.

Continue reading ‘De novo transcriptome assembly and gene expression profile of thermally challenged green abalone (Haliotis fulgens: Gastropoda) under acute hypoxia and hypercapnia’

Company matters: the presence of other genotypes alters traits and intraspecific selection in an Arctic diatom under climate change

Arctic phytoplankton and their response to future conditions shape one of the most rapidly changing ecosystems on the planet. We tested how much the phenotypic responses of strains from the same Arctic diatom population diverge and whether the physiology and intraspecific composition of multistrain populations differs from expectations based on single strain traits. To this end, we conducted incubation experiments with the diatom Thalassiosira hyalina under present‐day and future temperature and pCO2 treatments. Six fresh isolates from the same Svalbard population were incubated as mono‐ and multistrain cultures. For the first time, we were able to closely follow intraspecific selection within an artificial population using microsatellites and allele‐specific quantitative PCR. Our results showed not only that there is substantial variation in how strains of the same species cope with the tested environments but also that changes in genotype composition, production rates, and cellular quotas in the multistrain cultures are not predictable from monoculture performance. Nevertheless, the physiological responses as well as strain composition of the artificial populations were highly reproducible within each environment. Interestingly, we only detected significant strain sorting in those populations exposed to the future treatment. This study illustrates that the genetic composition of populations can change on very short timescales through selection from the intraspecific standing stock, indicating the potential for rapid population level adaptation to climate change. We further show that individuals adjust their phenotype not only in response to their physicochemical but also to their biological surroundings. Such intraspecific interactions need to be understood in order to realistically predict ecosystem responses to global change.

Continue reading ‘Company matters: the presence of other genotypes alters traits and intraspecific selection in an Arctic diatom under climate change’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,292,141 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book