Posts Tagged 'primary production'



A triple trophic boost: how carbon emissions indirectly change a marine food chain

The pervasive enrichment of CO2 in our oceans is a well‐documented stressor to marine life. Yet, there is little understanding about how CO2 affects species indirectly in naturally complex communities. Using natural CO2 vents, we investigated the indirect effects of CO2 enrichment through a marine food chain. We show how CO2 boosted the biomass of three trophic levels: from the primary producers (algae), through to their grazers (gastropods), and finally through to their predators (fish). We also found that consumption by both grazers and predators intensified under CO2 enrichment, but, ultimately, this top‐down control failed to compensate for the boosted biomass of both primary producers and herbivores (bottom‐up control). Our study suggests that indirect effects can buffer the ubiquitous and direct, negative effects of CO2 enrichment by allowing the upward propagation of resources through the food chain. Maintaining the natural complexity of food webs in our ocean communities could, therefore, help minimize the future impacts of CO2 enrichment.

Continue reading ‘A triple trophic boost: how carbon emissions indirectly change a marine food chain’

Impact of ocean acidification and high solar radiation on productivity and species composition of a late summer phytoplankton community of the coastal Western Antarctic Peninsula

The Western Antarctic Peninsula (WAP), one of the most productive regions of the Southern Ocean, is currently undergoing rapid environmental changes such as ocean acidification (OA) and increased daily irradiances from enhanced surface‐water stratification. To assess the potential for future biological CO2 sequestration of this region, we incubated a natural phytoplankton assemblage from Ryder Bay, WAP, under a range of pCO2 levels (180 μatm, 450 μatm, and 1000 μatm) combined with either moderate or high natural solar radiation (MSR: 124 μmol photons m−2 s−1 and HSR: 435 μmol photons m−2 s−1, respectively). The initial and final phytoplankton communities were numerically dominated by the prymnesiophyte Phaeocystis antarctica, with the single cells initially being predominant and solitary and colonial cells reaching similar high abundances by the end. Only when communities were grown under ambient pCO2 in conjunction with HSR did the small diatom Fragilariopsis pseudonana outcompete P. antarctica at the end of the experiment. Such positive light‐dependent growth response of the diatom was, however, dampened by OA. These changes in community composition were caused by an enhanced photosensitivity of diatoms, especially F. pseudonana, under OA and HSR, reducing thereby their competitiveness toward P. antarctica. Moreover, community primary production (PP) of all treatments yielded similar high rates at the start and the end of the experiment, but with the main contributors shifting from initially large to small cells toward the end. Even though community PP of Ryder Bay phytoplankton was insensitive to the changes in light and CO2 availability, the observed size‐dependent shift in productivity could, however, weaken the biological CO2 sequestration potential of this region in the future.

Continue reading ‘Impact of ocean acidification and high solar radiation on productivity and species composition of a late summer phytoplankton community of the coastal Western Antarctic Peninsula’

In-situ behavioural and physiological responses of Antarctic microphytobenthos to ocean acidification

Ocean acidification (OA) is predicted to alter benthic marine community structure and function, however, there is a paucity of field experiments in benthic soft sediment communities and ecosystems. Benthic diatoms are important components of Antarctic coastal ecosystems, however very little is known of how they will respond to ocean acidification. Ocean acidification conditions were maintained by incremental computer controlled addition of high fCO2 seawater representing OA conditions predicted for the year 2100. Respiration chambers and PAM fluorescence techniques were used to investigate acute behavioural, photosynthetic and net production responses of benthic microalgae communities to OA in in-situ field experiments. We demonstrate how OA can modify behavioural ecology, which changes photo-physiology and net production of benthic microalgae. Ocean acidification treatments significantly altered behavioural ecology, which in turn altered photo-physiology. The ecological trends presented here have the potential to manifest into significant ecological change over longer time periods.

Continue reading ‘In-situ behavioural and physiological responses of Antarctic microphytobenthos to ocean acidification’

Effects of elevated CO2 and phytoplankton-derived organic matter on the metabolism of bacterial communities from coastal waters (update)

Microcosm experiments to assess the bacterioplankton’s response to phytoplankton-derived organic matter obtained under current and future ocean CO2 levels were performed. Surface seawater enriched with inorganic nutrients was bubbled for 8 days with air (current CO2 scenario) or with a 1000ppm CO2 air mixture (future CO2 scenario) under solar radiation. The organic matter produced under the current and future CO2 scenarios was subsequently used as an inoculum. Triplicate 12L flasks filled with 1.2µm of filtered natural seawater enriched with the organic matter inocula were incubated in the dark for 8 days under CO2 conditions simulating current and future CO2 scenarios, to study the bacterial response. The acidification of the media increased bacterial respiration at the beginning of the experiment, while the addition of the organic matter produced under future levels of CO2 was related to changes in bacterial production and abundance. This resulted in a 67% increase in the integrated bacterial respiration under future CO2 conditions compared to present CO2 conditions and 41% higher integrated bacterial abundance with the addition of the acidified organic matter compared to samples with the addition of non acidified organic matter. This study demonstrates that the increase in atmospheric CO2 levels can impact bacterioplankton metabolism directly, by changes in the respiration rate, and indirectly, by changes on the organic matter, which affected bacterial production and abundance.

Continue reading ‘Effects of elevated CO2 and phytoplankton-derived organic matter on the metabolism of bacterial communities from coastal waters (update)’

Toxic algal bloom induced by ocean acidification disrupts the pelagic food web

Ocean acidification, the change in seawater carbonate chemistry due to the uptake of anthropogenic CO2, affects the physiology of marine organisms in multiple ways1. Diverse competitive and trophic interactions transform the metabolic responses to changes in community composition, seasonal succession and potentially geographical distribution of species. The health of ocean ecosystems depends on whether basic biotic functions are maintained, ecosystem engineers and keystone species are retained, and the spread of nuisance species is avoided2. Here, we show in a field experiment that the toxic microalga Vicicitus globosus has a selective advantage under ocean acidification, increasing its abundance in natural plankton communities at CO2 levels higher than 600 µatm and developing blooms above 800 µatm CO2. The mass development of V. globosus has had a dramatic impact on the plankton community, preventing the development of the micro- and mesozooplankton communities, thereby disrupting trophic transfer of primary produced organic matter. This has prolonged the residence of particulate matter in the water column and caused a strong decline in export flux. Considering its wide geographical distribution and confirmed role in fish kills3, the proliferation of V. globosus under the IPCC4 CO2 emission representative concentration pathway (RCP4.5 to RCP8.5) scenarios may pose an emergent threat to coastal communities, aquaculture and fisheries.

Continue reading ‘Toxic algal bloom induced by ocean acidification disrupts the pelagic food web’

Primary production and calcification rates of algae‐dominated reef flat and seagrass communities

Monitoring variability in coral reef primary production and calcification is needed to understand changes over time and between reef systems, which helps separate differences due to natural and/or anthropogenic factors happening now and in the future. This study measured net productivity and calcification for two reef systems at Shark Bay, Heron Reef in the southern Great Barrier Reef and Saipan Lagoon, Commonwealth of the Northern Mariana Islands. Net primary productivity and calcification were strongly correlated for reef flats with an adjusted R2 = 0.66. Night time dissolution occurred at Shark Bay reef flat with an average of −12.66  mmol  CaCO3 · m−2 · hr−1, while calcification increased at night for the Saipan reef flat. For both reef flat sites, net productivity from oxygen flux was much lower than rates calculated from change in dissolved inorganic carbon. This study provided the first baseline estimates of net productivity and calcification for a reef flat and seagrass community in Saipan Lagoon. The seagrass community had the lowest productivity of all sites. However, the high presence of calcareous algae at the site highlights the need for more research on the carbonate chemistry of these habitats. All sites had high net productivity that was most likely associated with the dominant presence of algae. Continue reading ‘Primary production and calcification rates of algae‐dominated reef flat and seagrass communities’

Rhodoliths holobionts in a changing ocean: host-microbes interactions mediate coralline algae resilience under ocean acidification

Life in the ocean will increasingly have to contend with a complex matrix of concurrent shifts in environmental properties that impact their physiology and control their life histories. Rhodoliths are coralline red algae (Corallinales, Rhodophyta) that are photosynthesizers, calcifiers, and ecosystem engineers and therefore represent important targets for ocean acidification (OA) research. Here, we exposed live rhodoliths to near-future OA conditions to investigate responses in their photosynthetic capacity, calcium carbonate production, and associated microbiome using carbon uptake, decalcification assays, and whole genome shotgun sequencing metagenomic analysis, respectively. The results from our live rhodolith assays were compared to similar manipulations on dead rhodolith (calcareous skeleton) biofilms and water column microbial communities, thereby enabling the assessment of host-microbiome interaction under climate-driven environmental perturbations.

Continue reading ‘Rhodoliths holobionts in a changing ocean: host-microbes interactions mediate coralline algae resilience under ocean acidification’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,272,582 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book