Posts Tagged 'modeling'

Using meta-analysis to explore the roles of global upwelling exposure and experimental design in bivalve responses to low pH


  • Meta-analysis was used to assess bivalve responses to low pH.
  • Strong upwelling regions may yield bivalves that are less sensitive to low pH.
  • Upwelling explains up to 49 % variability of bivalve metabolic responses to low pH.
  • Larger carbonate chemistry deltas in experiments yield stronger responses.


Low pH conditions, associated with ocean acidification, represent threats to many commercially and ecologically important organisms, including bivalves. However, there are knowledge gaps regarding factors explaining observed differences in biological responses to low pH in laboratory experiments. Specific sources of local adaptation such as upwelling exposure and the role of experimental design, such as carbonate chemistry parameter changes, should be considered. Linking upwelling exposure, as an individual oceanographic phenomenon, to responses measured in laboratory experiments may further our understanding of local adaptation to global change. Here, meta-analysis is used to test the hypotheses that upwelling exposure and experimental design affect outcomes of individual, laboratory-based studies that assess bivalve metabolic (clearance and respiration rate) responses to low pH. Results show that while bivalves generally decrease metabolic activity in response to low pH, upwelling exposure and experimental design can significantly impact outcomes. Bivalves from downwelling or weak upwelling areas decrease metabolic activity in response to low pH, but bivalves from strong upwelling areas increase or do not change metabolic activity in response to low pH. Furthermore, experimental temperature, exposure time and magnitude of the change in carbonate chemistry parameters all significantly affect outcomes. These results suggest that bivalves from strong upwelling areas may be less sensitive to low pH. This furthers our understanding of local adaptation to global change by demonstrating that upwelling alone can explain up to 49 % of the variability associated with bivalve metabolic responses to low pH. Furthermore, when interpreting outcomes of individual, laboratory experiments, scientists should be aware that higher temperatures, shorter exposure times and larger changes in carbonate chemistry parameters may increase the chance of suppressed metabolic activity.

Continue reading ‘Using meta-analysis to explore the roles of global upwelling exposure and experimental design in bivalve responses to low pH’

Upwelling intensity and source water properties drive high interannual variability of corrosive events in the California Current

Ocean acidification is progressing rapidly in the California Current System (CCS), a region already susceptible to reduced aragonite saturation state due to seasonal coastal upwelling. Results from a high-resolution (~ 3 km), coupled physical-biogeochemical model highlight that the intensity, duration, and severity of undersaturation events exhibit high interannual variability along the central CCS shelfbreak. Variability in dissolved inorganic carbon (DIC) along the bottom of the 100-m isobath explains 70–90% of event severity variance over the range of latitudes where most severe conditions occur. An empirical orthogonal function (EOF) analysis further reveals that interannual event variability is explained by a combination coastal upwelling intensity and DIC content in upwelled source waters. Simulated regional DIC exhibits low frequency temporal variability resembling that of the Pacific Decadal Oscillation, and is explained by changes to water mass composition in the CCS. While regional DIC concentrations and upwelling intensity individually explain 9 and 43% of year-to-year variability in undersaturation event severity, their combined influence accounts for 66% of the variance. The mechanistic description of exposure to undersaturated conditions presented here provides important context for monitoring the progression of ocean acidification in the CCS and identifies conditions leading to increased vulnerability for ecologically and commercially important species.

Continue reading ‘Upwelling intensity and source water properties drive high interannual variability of corrosive events in the California Current’

An empirical projection of ocean acidification in southwestern Japan over the 21st century

Most of Japan’s coral reefs are distributed in the Ryukyu Islands, in the southwestern part of Japan. Since they support biodiversity in the tropical and subtropical seas and are vulnerable to ocean acidification as well as ocean heat waves and pollution, projecting acidification over multidecadal or longer periods of time is a topic. Currently, the majority of long-term acidification projections are based on Earth System Models (ESMs), and the validation of these projections relies on intercomparisons among ESMs. This study evaluated the multi-decadal trends in total dissolved inorganic carbon (DIC) around the Ryukyu Islands over the past 25 years from 1995 to 2019. Multiple linear regression using temperature, salinity and time parameters as explanatory variables was applied to evaluate the salinity-normalized dissolved inorganic carbon (nDIC) concentrations. The coefficient of time (+1.15 ± 0.03 μmol kg−1 yr−1) was insignificantly different from the growth rate of nDIC that was calculated from the growth rate of atmospheric CO2 concentrations during the same period. Assuming that nDIC in this region will continue to increase at a rate that is consistent with the expected growth rate of atmospheric CO2 concentrations, we projected future trends of pH and aragonite saturation state (ΩA) under scenarios RCP4.5 and RCP8.5. The empirical projection of acidification by the end of the 21st century was generally consistent with projections based on ESMs. At present, global corals are generally distributed in waters with ΩA > 3.0. According to the empirical projection under the RCP8.5 scenario, ΩA around Okinawa Island would fall below 3.0 in winter in the 2030s and throughout the year in the 2060s.

Continue reading ‘An empirical projection of ocean acidification in southwestern Japan over the 21st century’

Model development to assess carbon fluxes during shell formation in blue mussels

In order to quantify the amount of carbonate, precipitated as calcium-carbonate in the shells of blue mussel (Mytilus edulis) in a temperate climate, an existing Dynamic Energy Budget (DEB) model for the blue mussel was adapted by separating shell growth from soft tissue growth. Hereby, two parameters were added to the original DEB-model, a calcification cost [J/mgCaCO3] and an energy allocation fraction [-], which resulted in the energy allocated for structural growth being divided between shell and meat growth. As values for these new parameters were lacking, they were calibrated by fitting the model to field data. Calibration results showed that an Energy allocation fraction of 0.5 and a calcification cost of 0.9 J/mgCaCO3, resulted in the best fit when fitted on 2017 and 2018 field data separately. These values however, show the best fit for data obtained within the first couple of years of the shellfish life, and do not take later years into account. Also it could be discussed that some parameters vary throughout the lifespan of the species. The results were compared to a regular DEB model, where the shell output was calculated through a simple allometric relationship. It is sometimes assumed that the carbon storage in shell material as calcium carbonate could be regarded as a form of carbon sequestration, with a positive impact on the atmospheric CO2 concentrations. However, studies on the physical-chemical processes related to shell formation have shown that from an oceanographic perspective, shell formation should be regarded as a source of atmospheric CO2 rather than a sink. The removal of carbonates, through the biocalcification process, reduces the buffer capacity (alkalinity) of the water to store CO2. As a result CO2 is released from the water to the atmosphere when shell material is formed. The actual amount of CO2 that escapes from the water to the atmosphere as a result of biocalcification depends strongly on local water characteristics. In this study, the effect of calcification by mussels on the CO2 flux to the atmosphere is studied using an adapted DEB model where energy costs of calcification are modelled explicitly. The model was subsequently run under two future climate scenarios, (RCP 4.5 and RCP 8.3) with elevated temperature and decreased pH, and the total released CO2 as a result of shell formation was calculated with the SeaCarb model. This showed growth of mussels, under future climate conditions to be slower, and with that the cumulative shell mass and carbonate precipitated to CaCO3 to decrease. Yet the amount of CO2 released, due to biocalcification, increased. This is due to the fact that the amount of CO2 released/gr of CaCO3 precipitated will be higher, as a result of the decreased buffering capacity of seawater under future climatic environmental conditions.

In summary the conclusions of the project were:

  • Biocalcification (shell formation) of marine organisms, such as bivalves, cannot be regarded as a process resulting in negative CO2 emission to the atmosphere;
  • The actual amount of CO2 that, due to biocalcification, is released from the water to the atmosphere depends on the physicochemical characteristics of the water, which are influenced by (future) climate conditions;
  • Our first model calculations suggest that at future climate conditions mussel’s grow rate will be somewhat reduced. While the amount of CO2 that due to biocalcification, escapes to the atmosphere during its life-time will slightly increase. Making the ratio of g CO2 release/g CaCO3 precipitated slightly higher;
  • Our model calculations should be considered an exercise rather than a definite prediction of how mussels will respond to future climate scenarios. Additional information/experimentation is strongly needed to validate the model settings, and to test the validity of the above mentioned outcome of the model.
Continue reading ‘Model development to assess carbon fluxes during shell formation in blue mussels’

Implementing a coral reef CaCO3 production module in the iLOVECLIM climate model

Coral reef development is intricately linked to both climate and the concentration of atmospheric CO2, specifically through temperature and carbonate chemistry in the upper ocean. In turn, the calcification of corals modifies the concentration of dissolved inorganic carbon and total alkalinity in the ocean, impacting air-sea gas exchange, atmospheric CO2 concentration, and ultimately the climate. This retroaction between atmospheric conditions and coral biogeochemistry can only be accounted for with a coupled coral-carbon-climate model. Here we present the implementation of a coral reef calcification module into an Earth System model. Simulated coral reef production of the calcium carbonate mineral aragonite depends on photosynthetically active radiation, nutrient concentrations, salinity, temperature and the aragonite saturation state. An ensemble of 210 parameter perturbation simulations was performed to identify carbonate production parameter values that optimise the simulated distribution of coral reefs and associated carbonate production. The tuned model simulates the presence of coral reefs and regional-to-global carbonate production values in good agreement with data-based estimates. The model enables assessment of past and future coral-climate coupling on seasonal to millennial timescales, highlighting how climatic trends and variability may affect reef development and the resulting climate-carbon feedback.

Continue reading ‘Implementing a coral reef CaCO3 production module in the iLOVECLIM climate model’

Carbonate pump feedbacks on alkalinity and the carbon cycle in the 21st century and beyond

Ocean acidification is likely to impact all stages of the ocean carbonate pump, i.e. the production, export, dissolution and burial of biogenic CaCO3. However, the associated feedbacks on anthropogenic carbon uptake and ocean acidification have received little attention. It has previously been shown that Earth system model (ESM) carbonate pump parameterizations can affect and drive biases in the representation of ocean alkalinity, which is critical to the uptake of atmospheric carbon and provides buffering capacity towards associated acidification. In the sixth phase of the Coupled Model Intercomparison Project (CMIP6), we show divergent responses of CaCO3 export at 100 m this century, with anomalies by 2100 ranging from -74 % to +23 % under a high-emissions scenario. The greatest export declines are projected by ESMs that consider pelagic CaCO3 production to depend on the local calcite/aragonite saturation state. Despite the potential effects of other processes on alkalinity, there is a robust negative correlation between anomalies in CaCO3 export and salinity-normalized surface alkalinity across the CMIP6 ensemble. Motivated by this relationship and the uncertainty in CaCO3 export projections across ESMs, we perform idealized simulations with an ocean biogeochemical model and confirm a limited impact of carbonate pump anomalies on twenty-first century ocean carbon uptake and acidification. However between 2100 and 2300, we highlight a potentially abrupt shift in the dissolution of CaCO3 from deep to subsurface waters when the global scale mean calcite saturation state reaches about 1.23 at 500 m (likely when atmospheric CO2 reaches 900 to 1100 ppm). During this shift, upper ocean acidification due to anthropogenic carbon uptake induces deep ocean acidification driven by a substantial reduction in CaCO3 deep dissolution following its decreased export at depth. Although the effect of a diminished carbonate pump on global ocean carbon uptake and surface ocean acidification remains limited until 2300, it can have a large impact on regional air-sea carbon fluxes, particularly in the Southern Ocean.

Continue reading ‘Carbonate pump feedbacks on alkalinity and the carbon cycle in the 21st century and beyond’

Feeding in mixoplankton enhances phototrophy increasing bloom-induced pH changes with ocean acidification

Plankton phototrophy consumes CO2, increasing seawater pH, while heterotrophy does the converse. Elevation of pH (>8.5) during coastal blooms becomes increasingly deleterious for plankton. Mixoplankton, which can be important bloom-formers, engage in both photoautotrophy and phagoheterotrophy; in theory, this activity could create a relatively stable pH environment for plankton growth. Using a systems biology modelling approach, we explored whether different mixoplankton functional groups could modulate the environmental pH compared to the extreme activities of phototrophic phytoplankton and heterotrophic zooplankton. Activities by most mixoplankton groups do not stabilize seawater pH. Through access to additional nutrient streams from internal recycling with phagotrophy, mixoplankton phototrophy is enhanced, elevating pH; this is especially so for constitutive and plastidic specialist non-constitutive mixoplankton. Mixoplankton blooms can exceed the size of phytoplankton blooms; the synergisms of mixoplankton physiology, accessing nutrition via phagotrophy as well as from inorganic sources, enhance or augment primary production rather than depressing it. Ocean acidification will thus enable larger coastal mixoplankton blooms to form before basification becomes detrimental. The dynamics of such bloom developments will depend on whether the mixoplankton are consuming heterotrophs and/or phototrophs and how the plankton community succession evolves.

Continue reading ‘Feeding in mixoplankton enhances phototrophy increasing bloom-induced pH changes with ocean acidification’

Forecasting seasonal changes in ocean acidification using a novel Grey Seasonal Model with Grey Wolf Optimization

Ocean acidification forecasting has important implications for studying global carbon dioxide emissions reductions. However, due to seasonal and cyclical features, ocean acidification forecasting remains an extremely challenging task. Therefore, this paper proposes a grey wolf optimized fractional-order-accumulation discrete grey seasonal model (GFSM(1,1)). The GFSM(1,1) model improves the prediction of ocean acidification in two ways: The new information priority of seasonal data is improved by the fractional accumulation operator, and the adaptability of the grey model to seasonal data is increased by seasonal item parameters. The above two works have significantly improved the prediction accuracy of the grey prediction model for ocean acidification. The prediction results in practical cases prove that the prediction effect of the GFSM(1,1) model is not only better than the existing grey models (FMGM(1,N). NSGM(1,N), and GM(1,1)) but also better than statistical models (Nonlinear regression and ARIMA), traditional neural network model (LSTM) and deep learning model (SVM). Finally, the GFSM(1,1) model is applied to the prediction of seawater acidification. The forecast results show that the ocean will be acidified at a rate of 0.001863 per year, and the pH of the ocean will decrease by about 0.03% per year compared to the same period in previous years.

Continue reading ‘Forecasting seasonal changes in ocean acidification using a novel Grey Seasonal Model with Grey Wolf Optimization’

Methane-derived authigenic carbonates – a case for a globally relevant marine carbonate factory

Precipitation of methane-derived authigenic carbonates (MDAC) is an integral part of marine methane production and consumption, but MDAC’s relative significance to the global marine carbon cycle is not well understood. Here we provide a synthesis and perspective to highlight MDAC from a global marine carbon biogeochemistry viewpoint. MDAC formation is a result and archive of carbon‑sulfur (C – S) coupling in the shallow sulfatic zone and carbon‑silicon (C – Si) coupling in deeper methanic sediments. MDAC constitute a carbon sequestration of 3.93 Tmol C yr−1 (range 2.34–5.8 Tmol C yr−1) in the modern ocean and are the third-largest carbon burial mechanism in marine sediments. This burial compares to 29% (11–57%) organic carbon and 10% (6–23%) skeletal carbonate carbon burial along continental margins. MDAC formation is also an important sink for benthic alkalinity and, thereby, a potential contributor to bottom water acidification. Our understanding of the impact of MDAC on global biogeochemical cycles has evolved over the past five decades from what was traditionally considered a passive carbon sequestration mechanism in a seep-oasis setting to what is now considered a dynamic carbonate factory expanding from deep sediments to bottom waters—a factory that has been operational since the Precambrian. We present a strong case for the need to improve regional scale quantification of MDAC accumulation rates and associated carbonate biogeochemical parameters, leading to their incorporation in present and paleo‑carbon budgets in the next phase of MDAC exploration.

Continue reading ‘Methane-derived authigenic carbonates – a case for a globally relevant marine carbonate factory’

Predicting carbonate chemistry on the Northwest Atlantic shelf using neural networks

The Northwest Atlantic Shelf (NAS) region has experienced accelerated warming, heatwaves, and is susceptible to ocean acidification, yet also suffers from a paucity of carbonate chemistry observations, particularly at depth. We address this critical data gap by developing three different neural network models to predict dissolved inorganic carbon (DIC) and total alkalinity (TA) in the NAS region from more readily available hydrographic and satellite data. The models predicted DIC with r2 between 0.913 – 0.963 and root mean square errors (RMSE) between 15.4 – 23.7 (µmol kg-1) and TA with r2 between 0.986 – 0.983 and RMSE between 9.0 – 10.4 (µmol kg-1) on an unseen test data set that was not used in training the models. Cross-validation analysis revealed that all models were insensitive to the choice of training data and had good generalization performance on unseen data. Uncertainty in DIC and TA were low (coefficients of variation 0.1-1%). Compared with other predictive models of carbonate system variables in this region, a larger and more diverse dataset with full seasonal coverage and a more sophisticated model architecture resulted in a robust predictive model with higher accuracy and precision across all seasons. We used one of the models to generate a reconstructed seasonal distribution of carbonate chemistry fields based on DIC and TA predictions that shows a clear seasonal progression and large spatial gradients consistent with observations. The distinct models will allow for a range of applications based on the predictor variables available and will be useful to understand and address ocean sustainability challenges.

Continue reading ‘Predicting carbonate chemistry on the Northwest Atlantic shelf using neural networks’

Planktic foraminiferal resilience to environmental change associated with the PETM

Carbonate-forming organisms play an integral role in the marine inorganic carbon cycle, yet the links 21 between carbonate production and the environment are insufficiently understood. Carbonate production is driven by the abundance of calcifiers, and the amount of calcite produced by each individual (their size and weight). Here we investigate how foraminiferal carbonate production changes in the Atlantic, Pacific and Southern Ocean in response to a 4-5°C warming and a 0.3 surface ocean pH reduction during the Palaeocene-Eocene Thermal Maximum (PETM). To put these local data into a global context, we apply a trait-based plankton model (ForamEcoGEnIE) to the geologic record for the first time. Our data illustrates negligible change in the assemblage test size and abundance of foraminifers. ForamEcoGEnIE resolves small reductions in size and biomass, but these are short-lived. The response of foraminifersshowsspatial variability linked to a warming-induced poleward migration and suggested differences in nutrient availability between open-ocean and shelf locations. Despite low calcite saturation at high latitudes, we reconstruct stable foraminiferal size-normalised weight. Based on these findings, we postulate that sea surface warming had a greater impact on foraminiferal carbonate production during the PETM than ocean acidification. Changes in the composition of bulk carbonate suggest a higher sensitivity of coccolithophores to environmental change during the PETM than foraminifers.

Continue reading ‘Planktic foraminiferal resilience to environmental change associated with the PETM’

The roles of carbonate, borate, and bicarbonate ions in affecting zooplankton hatching success under ocean acidification

Two ocean acidification studies about egg hatching success (HS) in geographically important marine copepods, Calanus finmarchicus and C. helgolandicus, were reanalyzed with improved statistical procedures. The new results at low and moderate levels of seawater acidification showed no HS inhibition at normal habitat temperatures but statistically significant inhibition at warmer and colder temperatures. These HS results were compared with seawater carbonate system and borate concentrations from precise seawater measurements. The temperature dependent differences in HS could not be directly explained by changes in the seawater concentrations of either H+, bicarbonate (HCO3), or CO2* (CO2* being the sum of unhydrated CO2 and H2CO3). In contrast, HS differences did match trends in seawater carbonate (CO32−) concentrations. A numerical model was developed which evaluates the concentrations of O2 or CO2*, HCO3, and CO32− at the cellular level across an egg and embryo by considering both gas diffusion with the seawater and respiration by the embryo. Again, temperature-dependent trends in HS could not be explained changes in intracellular CO2* or HCO3 concentrations, but HS did trend with the changes in intracellular CO32− concentrations. Carbonate ions form strong coordination complexes with metals, so acidification-driven decreases in external seawater carbonate concentrations, which are amplified at warmer temperatures, could release injurious metals, thus driving the HS inhibition at warmer temperatures. Increases in cytoplasmic carbonate concentrations at warmer temperatures caused by seawater acidification could complex with biochemically-needed nutrient-type metals within the cells, also causing the increased HS inhibition at warmer temperatures. Furthermore, boron is essential in chemically signaling within and between cells. Seawater borate concentrations were closely correlated with HS inhibition via Michaelis-Menton equations, suggesting that acidification-driven decreases in seawater borate concentrations may also inhibit HS. Finally, the acidification-driven increases in CO2 diffusion into cells dramatically increased intracellular bicarbonate concentrations. At mild levels of seawater acidification, an organism might compensate by exporting bicarbonate from the cells to the haemolymph and then to the seawater. Although the energetic cost, as percentage of ATP production, might be high, increased respiration rates at warmer temperatures might better allow the organism to survive. However, as temperature is lowered, the cellular respiration rate declines more rapidly with respect to temperature than does the gas diffusion coefficient. Consequently, bicarbonate accumulation driven by inward CO2 diffusion might overwhelm the egg’s bicarbonate export capacity at colder temperatures, explaining the colder temperature HS inhibition.

Continue reading ‘The roles of carbonate, borate, and bicarbonate ions in affecting zooplankton hatching success under ocean acidification’

A glimpse into the climate, seasonality, hydrological cycle, carbonate chemistry and marine ecosystem shift of the pre-Petm and the Petm using Ncar Cesm1.2

The Paleocene-Eocene Thermal Maximum (PETM, ~56 my ago, 170,000y event) is characterized by a negative δ13C excursion into the atmosphere. This event caused global temperature to increase by about 5-6 °C, followed by climate responses such as marine acidification, ocean stratification, shoaling of calcite compensation depth (CCD), stronger hydrological cycle, and significant changes in marine ecosystems. It is one of the very few analogies of today’s global warming climate and thus is valuable to study. It still holds much potential for research, including using the state-of-the-art model CESM1.2. Proxy records are limited due to the nature of geological preservation and tectonic evolution. Modeling and simulations can provide insights to supplement the limited proxy records research.  Here, we explore the seasonality, hydrological cycles, and controlling factors of their changes from pre-PETM to the PETM in the first paper; the ability of CESM1.2 to simulate carbonate chemistry, changes in lysocline and CCD in the Atlantic Ocean in the second paper; and the shift of phytoplankton functional groups, using the same preferendum to capture first-hand reactions to environmental changes, from pre-industrial pCO2 to pre-PETM in the third paper. All papers use CESM1.2 simulation results with or without BEC. Our results show that from pre-PETM to PETM, seasonality increases in mid-latitude continental interiors and decreases in high and low latitudes, along with globally enhanced moisture transfer in hydrological cycles. The main controlling factors of these areas are snow-albedo effect, soil moisture, and precipitation. CESM1.2 and ocean Biogeochemical (BGC) Elemental Cycling (BEC) can simulate the changes of carbonate chemistry of the Atlantic Ocean, with certain modifications in the code base and without the need of extra models. There are noticeable and significant changes in chlorophyll, nutrient and NPP from PETM in pre-industrial pCO2 and pre-PETM, but distinct variations from pre-industrial and PETM in pre-industrial pCO2 simulations.  Proxy record scarcity is the main limitation of the studies on PETM and should be used with care. In the meantime, machine learning is encouraged for multi-disciplinary research of complicated topics such as carbon chemistry and phytoplankton functional group preferendum and ecosystem dynamics.

Continue reading ‘A glimpse into the climate, seasonality, hydrological cycle, carbonate chemistry and marine ecosystem shift of the pre-Petm and the Petm using Ncar Cesm1.2’

Increased biogenic calcification and burial under elevated pCO2 during the Miocene: a model-data comparison


Ocean acidification due to anthropogenic CO2 emission reduces ocean pH and carbonate saturation, with the projection that marine calcifiers and associated ecosystems will be negatively affected in the future. On longer time scale, however, recent studies of deep-sea carbonate sediments suggest significantly increased carbonate production and burial in the open ocean during the warm Middle Miocene. Here, we present new model simulations in comparison to published Miocene carbonate accumulation rates to show that global biogenic carbonate production in the pelagic environment was approximately doubled relative to present-day values when elevated atmospheric pCO2 led to substantial global warming ∼13–15 million years ago. Our analysis also finds that although high carbonate production was associated with high dissolution in the deep-sea, net pelagic carbonate burial was approximately 30%–45% higher than modern. At the steady state of the long-term carbon cycle, this requires an equivalent increase in riverine carbonate alkalinity influx during the Middle Miocene, attributable to enhanced chemical weathering under a warmer climate. Elevated biogenic carbonate production resulted in a Miocene ocean that had carbon (dissolved inorganic carbon) and alkalinity (total alkalinity) inventories similar to modern values but was poorly buffered and less saturated in both the surface and the deep ocean relative to modern.

Key Points

  • Pelagic carbonate production during the warm Middle Miocene was approximately doubled relative to present-day values
  • Net pelagic carbonate burial of the Middle Miocene was likely ∼30%–45% higher than modern values
  • The decreases in [urn:x-wiley:08866236:media:gbc21438:gbc21438-math-0001]sw and carbonate production toward the present kept Neogene dissolved inorganic carbon and total alkalinity nearly constant despite a global pCO2 decrease
Continue reading ‘Increased biogenic calcification and burial under elevated pCO2 during the Miocene: a model-data comparison’

Severe 21st-century ocean acidification demands continuance and expansion of Antarctic Marine Protected Areas

Antarctic coastal waters are home to several established or proposed Marine Protected Areas (MPAs) supporting exceptional biodiversity, which is threatened by anthropogenic climate change. Despite a particular sensitivity to ocean acidification (OA), little is known about the future carbonate chemistry of high-latitude Southern Ocean waters. Here, we use a high resolution ocean–sea ice–biogeochemistry model with realistic ice-shelf geometry to investigate 21st-century OA in Antarctic MPAs under four emission scenarios. By 2100, we project surface pH declines of up to 0.42 (total scale), corresponding to a 161% increase in hydrogen ion concentration relative to the 1990s. End-of-century aragonite undersaturation is ubiquitous across MPAs under the three highest emission scenarios. Vigorous vertical mixing of anthropogenic carbon on the continental shelves produces severe OA within the Weddell Sea, East Antarctic, and Ross Sea MPAs. Our findings call for continuity and expansion of Antarctic MPAs to reduce pressures on ecosystem integrity.

Continue reading ‘Severe 21st-century ocean acidification demands continuance and expansion of Antarctic Marine Protected Areas’

Demonstration of direct ocean carbon capture using hollow fiber membrane contactors

The focus of membrane carbon capture to date has been primarily on point source capture, such as power plants and industrial capture. However, membrane technology can also play a role in negative emissions technology, such as direct air capture and direct ocean capture. Direct ocean capture has a few potential advantages over direct air capture, such as avoiding land use and coupling with offshore wind and offshore storage. The use and feasibility of hollow fiber membrane contactors (HFMCs) for direct ocean carbon capture with benign aqueous basic carbon dioxide solvents is assessed here through a multifaceted approach. A 1D HFMC model incorporates fluid dynamics and the chemical kinetics of both ocean water and aqueous sodium hydroxide solvent in order to simulate CO2 flux behavior in two flow configurations. Lab scale experiments of this system then guide a model refinement and validation process until experimental behaviors are predicted through computation. A preliminary technoeconomic assessment then uses computational and experimental results to estimate the carbon capture cost when the system is scaled to remove 0.98 Mtonnes CO2/year. Computational results suggest that higher seawater flow rates and temperatures relative to the sodium hydroxide solvent improve CO2 flux. The technoeconomic assessment suggests that HFMCs may only be cost-competitive if seawater pH is decreased at the membrane interface, thereby increasing the local concentration of dissolved carbon dioxide. These findings indicate that local pH swing on the seawater side will be necessary to feasibly remove carbon dioxide from seawater using HFMCs.

Continue reading ‘Demonstration of direct ocean carbon capture using hollow fiber membrane contactors’

Uncertainty in the evolution of northwest North Atlantic circulation leads to diverging biogeochemical projections

The global ocean’s coastal areas are rapidly experiencing the effects of climate change. These regions are highly dynamic, with relatively small-scale circulation features like shelf-break currents playing an important role. Projections can produce widely diverging estimates of future regional circulation structures. Here, we use the northwest North Atlantic, a hotspot of ocean warming, as a case study to illustrate how the uncertainty in future estimates of regional circulation manifests itself and affects projections of shelf-wide biogeochemistry. Two diverging climate model projections are considered and downscaled using a high-resolution regional model with intermediate biogeochemical complexity. The two resulting future scenarios exhibit qualitatively different circulation structures by 2075 where along-shelf volume transport is reduced by 70 % in one of them and while remaining largely unchanged in the other. The reduction in along-shelf transport creates localized areas with either amplified warming (+3 °C) and salinification (+0.25 units) or increased acidification (-0.25 units) in shelf bottom waters. Our results illustrate that a wide range of outcomes is possible for continental margins and suggest a need for accurate projections of small-scale circulation features like shelf-break currents in order to improve the reliability of biogeochemical projections.

Continue reading ‘Uncertainty in the evolution of northwest North Atlantic circulation leads to diverging biogeochemical projections’

Interaction matters: bottom-up driver interdependencies alter the projected response of phytoplankton communities to climate change

Phytoplankton growth is controlled by multiple environmental drivers, which are all modified by climate change. While numerous experimental studies identify interactive effects between drivers, large-scale ocean biogeochemistry models mostly account for growth responses to each driver separately and leave the results of these experimental multiple-driver studies largely unused. Here, we amend phytoplankton growth functions in a biogeochemical model by dual-driver interactions (CO2 and temperature, CO2 and light), based on data of a published meta-analysis on multiple-driver laboratory experiments. The effect of this parametrization on phytoplankton biomass and community composition is tested using present-day and future high-emission (SSP5-8.5) climate forcing. While the projected decrease in future total global phytoplankton biomass in simulations with driver interactions is similar to that in control simulations without driver interactions (5%–6%), interactive driver effects are group-specific. Globally, diatom biomass decreases more with interactive effects compared with the control simulation (−8.1% with interactions vs. no change without interactions). Small-phytoplankton biomass, by contrast, decreases less with on-going climate change when the model accounts for driver interactions (−5.0% vs. −9.0%). The response of global coccolithophore biomass to future climate conditions is even reversed when interactions are considered (+33.2% instead of −10.8%). Regionally, the largest difference in the future phytoplankton community composition between the simulations with and without driver interactions is detected in the Southern Ocean, where diatom biomass decreases (−7.5%) instead of increases (+14.5%), raising the share of small phytoplankton and coccolithophores of total phytoplankton biomass. Hence, interactive effects impact the phytoplankton community structure and related biogeochemical fluxes in a future ocean. Our approach is a first step to integrate the mechanistic understanding of interacting driver effects on phytoplankton growth gained by numerous laboratory experiments into a global ocean biogeochemistry model, aiming toward more realistic future projections of phytoplankton biomass and community composition.

Continue reading ‘Interaction matters: bottom-up driver interdependencies alter the projected response of phytoplankton communities to climate change’

Ocean afforestation’s effect on deep-sea biogeochemistry

If climate change is left unchecked it will lead to unprecedented deterioration of human health, economy and ecology. According to the IPCC, in order to avoid severe consequences, global warming will need to be limited to 1.5°C. However, the 1.5°C warming will be exceeded if current trends continue, which is why the need for Carbon Dioxide Removal (CDR) has become increasingly apparent. Ocean afforestation is currently one of the most promising CDR approaches, with the least competition for space, high carbon sequestration potential and high technical feasibility. Ocean afforestation approaches attempt to sequester carbon by sinking seaweed to deep-sea areas. This research looks at the consequences of the seaweed input to deep-seafloor. An early diagenetic model called RADI is used to predict the fate of the carbon and the effect on biogeochemistry. The model was adapted to include new sources of sedimentary organic matter, such as seaweed (Sargassum, Saccharina, Macrocystis) and Sugarcane bagasse, which are currently considered potential candidates for ocean afforestation purposes. Sargassum, an invasive free-floating species, has a large sequestration potential and is readily available. Sinking Sargassum in pulse, large amounts over short times, leads to high carbon retention in the sediment (up to 25% after two years) but leads to hypoxic conditions in the sediment for at least two years after addition. Continuous Sargassum sinking also leads to carbon sequestration but with a much less invasive impact on the seafloor. The carbon from continuous sinking does not remain in the sediment but is remineralized and flows out to the bottom water as inorganic carbon. Saccharina, an edible coastal species, could be used to grow on free floating organic buoy. Having the additional sequestration benefit from the carbon fixed in the organics. Carbon retention is highest for the pulse addition of this seaweed (33% after two years), compared to a continuous approach (30%) in which the seaweed is added over longer timescales in small amounts. Since this pulse input also leads to hypoxic conditions in the sediment, the continuous approach is more favourable for this approach. Macrocystis, the giant kelp known for forming ecosystems, is a fast-growing coastal species. This species requires harvesting and baling for use in carbon sequestration. Carbon retention is much higher for pulse addition (30%). Sugar cane bagasse is an agricultural residue with high carbon content. Sinking this residue to anoxic basins, has been proven to retain more carbon than in oxygenated bottom waters. This can be confirmed with the results which showed a carbon retention of up to 50% after two years. The effect on the benthic biome is also less intense since the low oxygen conditions already necessitate a specialized microbiome. Sugarcane bagasse is furthermore the only addition capable of increasing bottom water pH. Whereas all seaweed approaches had higher dissolved inorganic carbon than alkalinity flow to the bottom water, resulting in net acidification. This research provides a first look into the effects of ocean afforestation on deep sea biogeochemistry, and illustrates the importance of the composition, quantity and input duration of the seaweed used.

Continue reading ‘Ocean afforestation’s effect on deep-sea biogeochemistry’

Reduction in size of the calcifying phytoplankton Calcidiscus leptoporus to environmental changes between the Holocene and modern Subantarctic Southern Ocean

The Subantarctic Zone of the Southern Ocean plays a disproportionally large role on the Earth system. Model projections predict rapid environmental change in the coming decades, including ocean acidification, warming, and changes in nutrient supply which pose a serious risk for marine ecosystems. Yet despite the importance of the Subantarctic Zone, annual and inter-annual time series are extremely rare, leading to important uncertainties about the current state of its ecosystems and hindering predictions of future response to climate change. Moreover, as the longest observational time series available are only a few decades long, it remains unknown whether marine pelagic ecosystems have already responded to ongoing environmental change during the industrial era. Here, we take advantage of multiple sampling efforts – monitoring of surface layer water properties together with sediment trap, seafloor surface sediment and sediment core sampling – to reconstruct the modern and pre-industrial state of the keystone calcifying phytoplankton Calcidiscus leptoporus, central to the global marine carbonate cycle. Morphometric measurements reveal that modern C. leptoporus coccoliths are 15% lighter and 25% smaller than those preserved in the underlying Holocene-aged sediments. The cumulative effect of multiple environmental drivers appears responsible for the coccolith size variations since the Last Deglaciation, with warming and ocean acidification most likely playing a predominant role during the industrial era. Notably, extrapolation of our results suggests a future reduction in cell and coccolith size which will have a negative impact on the efficiency of the biological pump in the Southern Ocean through a reduction of carbonate ballasting. Lastly, our results tentatively suggest that C. leptoporus coccolith size could be used as a palaeo-proxy for growth rate. Future culture experiments will be needed to test this hypothesis.

Continue reading ‘Reduction in size of the calcifying phytoplankton Calcidiscus leptoporus to environmental changes between the Holocene and modern Subantarctic Southern Ocean’

  • Reset


OA-ICC Highlights