Posts Tagged 'mortality'

Interactive effects of chronic ocean acidification and warming on the growth, survival, and physiological responses of adults of the temperate sea urchin Strongylocentrotus intermedius

Highlights

  • Ocean acidification and warming (OAW) repressed the survival and growth of Strongylocentrotus intermedius.
  • OAW altered the relative expression and activities of key metabolic enzymes of S. intermedius.
  • OAW attenuated the ATP production and antioxidant capability of S. intermedius.
  • Interactive effects of OAW on S. intermedius were analyzed in detail.

Abstract

To investigate the interactive effects of chronic ocean acidification and warming (OAW) on the growth, survival, and physiological responses of sea urchins, adults of the temperate sea urchin Strongylocentrotus intermedius were incubated separately/jointly in acidic (ΔpHNBS = −0.5 units) and thermal (ΔT = +3.0 °C) seawater for 120 days under lab-controlled conditions based on the projected ocean pH and temperature for 2100 put forward by the Intergovernmental Panel on Climate Change (IPCC). Survival rate (SR), average food consumption rate (FCR), gut index (GuI), specific growth rate (SGR), digestive capability, energy production, and antioxidant capability were subsequently determined. The results showed that 1) the SR, FCR, GuI and SGR decreased sharply under OAW conditions. Significant interactive effects of OAW on SR and SGR were observed at 120 days post-incubation (dpi), and on FCR this occurred at 90 dpi. 2) OAW altered the activities of both digestive and antioxidant enzymes. There were significant interaction effects of OAW on the activities of amylase, trehalase, and superoxide dismutase. 3) The relative gene expression levels and activities of key enzymes involved in glycometabolism pathways (i.e., glycolysis and the tricarboxylic acid cycle) were significantly affected by OAW, resulting in an alteration of the total ATP content in the sea urchins. Interaction effects of OAW were observed in both relative gene expression and the activity of enzymes involved in glycolysis (hexokinase), the transformation of glycolysis end-products (lactate dehydrogenase), the tricarboxylic acid cycle (citrate synthetase), and ATP production (Na+/K+-ATPase). The data from this study will enrich our knowledge concerning the combined effects of global climate change on the survival, growth, and physiological responses of echinoderms.

Continue reading ‘Interactive effects of chronic ocean acidification and warming on the growth, survival, and physiological responses of adults of the temperate sea urchin Strongylocentrotus intermedius’

Biological response of eelgrass epifauna, Taylor’s sea hare (Phyllaplysia taylori) and eelgrass isopod (Idotea resecata), to elevated ocean alkalinity

Marine carbon dioxide removal (mCDR) approaches are under development to mitigate the effects of climate change with potential co-benefits of local reduction of ocean acidification impacts. One such method is ocean alkalinity enhancement (OAE). A specific OAE method that avoids issues of solid dissolution kinetics and the release of impurities into the ocean is the generation of aqueous alkalinity via electrochemistry to enhance the alkalinity of the surrounding water and extract acid from seawater. While electrochemical acid extraction is a promising method for increasing the carbon dioxide sequestration potential of the ocean, the biological effects of this method are relatively unknown. This study aims to address this knowledge gap by testing the effects of increased pH and alkalinity, delivered in the form of aqueous base, on two ecologically important eelgrass epifauna in the U.S. Pacific Northwest, Taylor’s sea hare (Phyllaplysia taylori) and eelgrass isopod (Idotea resecata), across pH treatments ranging from 7.8 to 9.3. Four-day experiments were conducted in closed bottles to allow measurements of the evolution of carbonate species throughout the experiment with water refreshed twice daily to maintain elevated pH. Sea hares experienced mortality in all pH treatments, ranging from 40 % mortality at pH 7.8 to 100 % mortality at pH 9.3. Isopods experienced lower mortality rates in all treatment groups, which did not significantly increase with higher pH treatments. Different invertebrate species will likely have different responses to increased pH and alkalinity, depending on their physiological vulnerabilities. Investigation of the potential vulnerabilities of local marine species will help inform the decision-making process regarding mCDR planning and permitting.

Continue reading ‘Biological response of eelgrass epifauna, Taylor’s sea hare (Phyllaplysia taylori) and eelgrass isopod (Idotea resecata), to elevated ocean alkalinity’

Exploring the mechanisms behind swimming performance limits to ocean warming and acidification in the Atlantic king scallop, Pecten maximus

Recently, we could show that scallops show limitations of muscular performance like a reduced force under ocean warming and acidification. However, the underlying mechanisms at the cellular level are not completely understood. Metabolomics has become a valuable tool to evaluate the responses of marine organisms to various stressors. In the present study we therefore used a semi-targeted, multi tissue NMR based metabolomic approach to analyze metabolite patterns in the Atlantic king scallop, Pecten maximus, that were long-term acclimated to different end of century conditions of ocean warming (OW), ocean acidification (OA) and their combination (OWA). We investigated tissue specific metabolic profiles and metabolite concentrations in frozen tissues from gills, mantle and phasic and tonic adductor muscle of P. maximus under present conditions using 1H-HR-MAS NMR spectroscopy. A set of 33 metabolites revealed a clear tissue-specific pattern which can be attributed to the individual functions of the respective tissue type. We then evaluated the impact of OW, OA and OWA on the metabolic profiles of the different tissues. OW was the main driver of the changes in metabolites. In particular, energy-related metabolites seem to play an important role in the physiological response of scallops to OW and OWA. In combination with pathway analysis and network exploration we propose a possible correlation between metabolic changes in the adductor muscle and limited swimming performance of P. maximus under future climate. While the metabolic response of the phasic muscle seems to mainly depend on net consumption of energy related metabolites such as ATP and phospho-L-arginine, the tonic muscle seems to rely on metabolizing specific amino acids and beta-oxidation to account for the elevated energetic requirements under ocean warming and acidification.

Continue reading ‘Exploring the mechanisms behind swimming performance limits to ocean warming and acidification in the Atlantic king scallop, Pecten maximus’

Narrowed gene functions and enhanced transposon activity are associated with high tolerance to ocean acidification in a juvenile subarctic crustacean

Ocean acidification (OA) threatens marine crustaceans, particularly those at high latitudes where conditions are rapidly changing. Red king crab (RKC) support important fisheries in Alaskan waters. RKC early life stages are sensitive to OA when exposure occurs as embryos and juveniles. However, in a supporting study, RKC were surprisingly tolerant of varying OA conditions (pH 7.5, 7.8, & 8.0) when reared long-term from larval hatching to the first crab stage (C1). Here, we examined gene expression in the C1 juveniles to characterize transcriptional activity of these OA-tolerant crabs. Expression of nearly half of all genes (44%) correlated with OA treatment, suggesting a strong molecular response to OA, contrary to the phenotypic results. Downregulated functions were numerous in response to OA, and included reduced energy production, biosynthesis, immune function, and notably lipid and carbohydrate metabolic processes, which suggest a shift in metabolic strategy to protein catabolism, possibly to reduce CO2 production and facilitate acid/base regulation. Only a handful of functions were enriched in OA-induced genes, which were related to transcription regulation, control of growth and cell death, and signaling activity. Transposon activity was high in OA-reared crab, many of which were upregulated at consistent levels, suggesting that transposon mobilization may be a component of the RKC OA-response system. Genetic composition did not differ among OA treatments indicating that transcriptional differences in OA-reared crab were more likely attributed to phenotypic plasticity than selective mortality. Our results suggest that OA-reared RKC have a narrowed, possibly optimized, set of gene functions that enables OA-tolerance through the early juvenile stage. OA-exposure from hatch may benefit RKC and related species by “hardening” them against OA through physiological reprogramming. Future studies should test OA-hardened crabs in additional challenges, as metabolic and immune limitations may ultimately make them more vulnerable to infection or secondary stressors.

Continue reading ‘Narrowed gene functions and enhanced transposon activity are associated with high tolerance to ocean acidification in a juvenile subarctic crustacean’

Respiratory protein-driven selectivity during the Permian–Triassic mass extinction

Extinction selectivity determines the direction of macroevolution, especially during mass extinction; however, its driving mechanisms remain poorly understood. By investigating the physiological selectivity of marine animals during the Permian–Triassic mass extinction, we found that marine clades with lower O2-carrying capacity hemerythrin proteins and those relying on O2 diffusion experienced significantly greater extinction intensity and body-size reduction than those with higher O2-carrying capacity hemoglobin or hemocyanin proteins. Our findings suggest that animals with high O2-carrying capacity obtained the necessary O2 even under hypoxia and compensated for the increased energy requirements caused by ocean acidification, which enabled their survival during the Permian–Triassic mass extinction. Thus, high O2-carrying capacity may have been crucial for the transition from the Paleozoic to the Modern Evolutionary Fauna.

Continue reading ‘Respiratory protein-driven selectivity during the Permian–Triassic mass extinction’

Disparate response of decapods to low pH: a meta-analysis of life history, physiology and behavior traits across life stages and environments

Highlights

  • Predicted level of ocean acidification is a threat for calcifier marine invertebrates.
  • Decapods, thought debatable, are presumably resilient.
  • Our meta-analysis revealed few impacts that mainly vary across biological traits.
  • Effect sizes little vary depending on the life stages and environments.

Abstract

We employed a meta-analysis to determine if the presumed resilience of decapods to ocean acidification extends to all biological aspects, environments, and life stages. Most response categories appeared unaffected by acidification. However, certain fitness-related traits (growth, survival, and, to some extent, calcification) were impacted. Acid-base balance and stress response scaled positively with reductions in pH, which maintains homeostasis, possibly at the cost of other processes. Juveniles were the only stage impacted by acidification, which is believed to reduce recruitment. We observed few differences in responses to acidification among decapods inhabiting contrasting environments. Our meta-analysis shows decapods as a group slightly to moderately sensitive to low pH, with impacts on some biological aspects rather than on all specific life stages or habitats. Although extreme pH scenarios may not occur in the open ocean, coastal and estuarine areas might experience lower pH levels in the near to medium future, posing potential challenges for decapods.

Continue reading ‘Disparate response of decapods to low pH: a meta-analysis of life history, physiology and behavior traits across life stages and environments’

Adverse environmental perturbations may threaten kelp farming sustainability by exacerbating enterobacterales diseases

Globally kelp farming is gaining attention to mitigate land-use pressures and achieve carbon neutrality. However, the influence of environmental perturbations on kelp farming remains largely unknown. Recently, a severe disease outbreak caused extensive kelp mortality in Sanggou Bay, China, one of the world’s largest high-density kelp farming areas. Here, through in situ investigations and simulation experiments, we find indications that an anomalously dramatic increase in elevated coastal seawater light penetration may have contributed to dysbiosis in the kelp Saccharina japonica’s microbiome. This dysbiosis promoted the proliferation of opportunistic pathogenic Enterobacterales, mainly including the genera Colwellia and Pseudoalteromonas. Using transcriptomic analyses, we revealed that high-light conditions likely induced oxidative stress in kelp, potentially facilitating opportunistic bacterial Enterobacterales attack that activates a terrestrial plant-like pattern recognition receptor system in kelp. Furthermore, we uncover crucial genotypic determinants of Enterobacterales dominance and pathogenicity within kelp tissue, including pathogen-associated molecular patterns, potential membrane-damaging toxins, and alginate and mannitol lysis capability. Finally, through analysis of kelp-associated microbiome data sets under the influence of ocean warming and acidification, we conclude that such Enterobacterales favoring microbiome shifts are likely to become more prevalent in future environmental conditions. Our study highlights the need for understanding complex environmental influences on kelp health and associated microbiomes for the sustainable development of seaweed farming.

Continue reading ‘Adverse environmental perturbations may threaten kelp farming sustainability by exacerbating enterobacterales diseases’

Trade-off between growth and reproduction in Argopecten purpuratus (L.) scallops exposed to medium-term hypoxia and acidification

Highlights

  • •Scallops showed physiological adaptations to survive and reproduce under medium-term exposure.
  • •The most pronounced impact of hypoxia and low pH were on clearance and calcification rates.
  • •The combined effect of hypoxia and low pH produced relatively high survival (>70%).
  • •Hypoxia and low pH generated early gonad development and high reproductive potential.

Abstract

Peruvian bays that are home to aquatic organisms of commercial interest are increasingly affected by hypoxia and low pH events. These stressors produce unfavorable conditions for the aquatic fauna, leading to mass mortality events. In this study, we evaluated the ecophysiological responses of the scallop Argopecten purpuratus exposed to moderate hypoxia (20% DO saturation) and low pH (OA, pH 7.4) using a 2 × 2 factorial design. We found that a 51-day exposure to low pH (OA treatment) had greater negative effects on A. purpuratus performances than hypoxia (lower survival and decreased clearance and calcification rates), but stimulated early gonad maturation. The survival rate was 1.3-fold higher under hypoxia than under acidic treatment. The interaction between hypoxia and low pH had an antagonistic effect on survival, since the combined treatment (HOA) resulted in lower scallop mortality than the single stress treatments. Calcification was negatively affected by all stress treatments, whereas hypoxia and OA both stimulated gametogenesis. OA treatment resulted in higher frequencies of previtellogenic and vitellogenic oocytes, greater gonad coverage area, and lower frequency of atretic oocytes, suggesting higher reproductive potential. HOA was positively related to oocyte development and high frequency of post-vitellogenic and atretic oocytes. These results suggest that, due to hypoxia and low pH, feeding is reduced and energy allocation prioritizes scallop gonad maturation. This trend would have negative effects on scallop growth and calcification, while increased reproduction under environmental stress could mitigate the effect on recruitment.

Continue reading ‘Trade-off between growth and reproduction in Argopecten purpuratus (L.) scallops exposed to medium-term hypoxia and acidification’

Ocean acidification increases susceptibility to sub-zero air temperatures in ecosystem engineers and limits poleward range shifts

Ongoing climate change has caused rapidly increasing temperatures and an unprecedented decline in seawater pH, known as ocean acidification. Increasing temperatures are redistributing species toward higher and cooler latitudes that are most affected by ocean acidification. While the persistence of intertidal species in cold environments is related to their capacity to resist sub-zero air temperatures, studies have never considered the interacting impacts of ocean acidification and freeze stress on species survival and distribution. Here, a full-factorial experiment was used to study whether ocean acidification increases mortality in subtidal Mytilus trossulus and subtidal Mgalloprovincialis, and intertidal M. trossulus following sub-zero air temperature exposure. We examined physiological processes behind variation in freeze tolerance using 1H NMR metabolomics, analyses of fatty acids, and amino acid composition. We show that low pH conditions (pH = 7.5) significantly decrease freeze tolerance in both intertidal and subtidal populations of Mytilus spp. Under current day pH conditions (pH = 7.9), intertidal M. trossulus was more freeze tolerant than subtidal M. trossulus and subtidal M. galloprovincialis. Conversely, under low pH conditions, subtidal M. trossulus was more freeze tolerant than the other mussel categories. Differences in the concentration of various metabolites (cryoprotectants) or in the composition of amino acids and fatty acids could not explain the decrease in survival. These results suggest that ocean acidification can offset the poleward range expansions facilitated by warming and that reduced freeze tolerance could result in a range contraction if temperatures become lethal at the equatorward edge.

Continue reading ‘Ocean acidification increases susceptibility to sub-zero air temperatures in ecosystem engineers and limits poleward range shifts’

How do sea urchins prepare offspring to face ocean acidification? Gamete intraspecific differences and adaptability

Introduction: Due to their relevant ecological position and well-studied biology, sea urchins are reference organisms for ocean acidification studies, at both within- and trans-generational levels. In this study, we examined gamete quality in specimens exposed to future predicted (-0.4 units) pH conditions during gametogenesis.

Methods: Egg physical characteristics, biochemical composition, and fatty acid profiles were assessed after two and six months of exposure, while sperm viability and velocity were analyzed after six months of exposure. Considering the documented intraspecific variability in response to ocean acidification, this study involved two populations of Paracentrotus lividus. One population was sampled from the highly variable lagoon of Venice (Site 1), while the other was obtained from a coastal area (Site 2) characterized by more stable environmental conditions and facing minimal anthropogenic stress.

Results: A different response was highlighted in the two sites. Noteworthy trends emerged, especially in the fatty acid profile and sperm traits. Although adults were fed the same diet, Site 1 eggs contained more high-energetic fatty acids than Site 2, potentially boosting the survival odds for the next generation. Moreover, Site 1 sperms displayed higher viability but slower motility compared to those from Site 2. Within sites, a significant difference between time points and a change in the fitness strategy of sea urchin females emerged when comparing eggs spawned after two and six months of exposure to reduced pH. The effects of time and exposure pH are more pronounced in animals from Site 1, suggesting a higher adaptability of this population rather than negative effects of ocean acidification.

Discussion: Overall, our findings suggest that sea urchins have the potential to acclimate to reduced pH and to produce gametes of the same quality as controls held at the currently natural pH. Our findings emphasize the relevance of combining investigations of gamete quality characteristics, particularly egg biochemistry and fatty acid composition, and considering site variability to fully understand the transgenerational response potential of sea urchins to ocean acidification.

Continue reading ‘How do sea urchins prepare offspring to face ocean acidification? Gamete intraspecific differences and adaptability’

Effects of reduced seawater pH and oil contamination on bacterial communities and biochemical markers of estuarine animal hosts

Ecosystem functioning depends on complex interactions between microorganisms, hosts, and the environment. Changes in environmental conditions (e.g., ocean acidification) in combination with anthropogenic pollution have been shown to affect the composition and function of free-living microbial communities, but little is known about the effects these stressors on host-associated communities. This study aims to characterize the response of host-associated bacterial communities of the bottom-dwelling polychaete Hediste diversicolor and the epibenthic gastropod Peringia ulvae to oil contamination and reduced seawater pH. The independent and interactive effects of both stressors were simulated under controlled conditions. The response of host-associated bacterial communities was assessed using the high-throughput sequencing of the 16S rRNA gene and several biochemical markers related to host metabolic pathways, e.g., neurotransmission, anaerobic metabolism, biotransformation, oxidative stress, and energy consumption. In H. diversicolor, reduced seawater pH was associated with a high relative abundance of Cyanobacteria, while in P. ulvae oil contamination was associated with a reduction in the relative abundance of Chitinophagales. In P. ulvae, enrichment with oil hydrocarbon-degrading bacteria suggests a possible role of these organisms in the dispersion of oil hydrocarbon degraders. Furthermore, oil supplementation shifted some specific biochemical markers of gastropods related to oxidative stress and energy consumption, which suggests host stress. In general, the bacterial communities and biochemical markers of the gastropod were more affected by stressors than those of the polychaete. Overall, this study contributes to a better understanding of the response of host-associated bacterial communities of benthic macrofauna to anthropogenic contamination and environmental change.

Continue reading ‘Effects of reduced seawater pH and oil contamination on bacterial communities and biochemical markers of estuarine animal hosts’

Quantifying the impacts of multiple stressors on the production of marine benthic resources

Coastal ecosystems are among the most heavily affected by climate change and anthropogenic activities, which impacts their diversity, productivity and functioning and puts many of the key ecosystem services that they provide at risk. Although empirical studies have moved beyond single-stressor-single-species experiments with limited extrapolation potential and have increasingly investigated the cumulative effects of simultaneously occurring multiple stressors, consistent generalities have not yet been identified. Upscaling from controlled experiments to natural ecosystems, therefore, remains an unsolved challenge. Disentangling the independent and cumulative effects of multiple stressors across different levels of biological complexity, revealing the underlying mechanisms and understanding how coastal ecosystems may respond to predicted scenarios of global change is critical to manage and protect our natural capital.

In this thesis, I advance multiple stressor research by applying complementary approaches to quantify the impact of multiple stressors on marine benthic resources and thereby help predict the consequences of expected climate change for coastal habitats. First, I present the newly developed experimental platform QIMS (Quantifying the Impacts of Multiple Stressors) that overcomes some of the shortfalls of previous multiple stressor research (Chapter 2). Second, in a novel empirical study, I investigate the independent and combined effects of moderate ocean warming and acidification on the functioning and production of mussels and algae, considering the effects of interspecific interactions in the presence or absence of the respective other species (Chapter 3). Third, I synthesise monitoring data from Dublin Bay (representative of a typical metropolitan estuary) using conditional interference and a Bayesian Network model and provide alternative system trajectories according to different climate change scenarios. From this new model, I deepen the understanding of the complex linkages between environmental conditions and the diversity and functioning of Dublin Bay to support local decision making and management (Chapter 4).

Continue reading ‘Quantifying the impacts of multiple stressors on the production of marine benthic resources’

Biological and physiological responses of marine crabs to ocean acidification: a review

Marine crabs play an integral role in the food chain and scavenge the debris in the ecosystem. Gradual increases in global atmospheric carbon dioxide cause ocean acidification (OA) and global warming that leads to severe consequences for marine organisms including crabs. Also, OA combined with other stressors like temperature, hypoxia, and heavy metals causes more severe adverse effects in marine crabs. The present review was made holistic discussion of information from 111 articles, of which 37 peer-reviewed original research papers reported on the effect of OA experiments and its combination with other stressors like heavy metals, temperature, and hypoxia on growth, survival, molting, chitin quality, food indices, tissue biochemical constituents, hemocytes population, and biomarker enzymes of marine crabs. Nevertheless, the available reports are still in the infancy of marine crabs, hence, this review depicts the possible gaps and future research needs on the impact of OA on marine crabs.

Continue reading ‘Biological and physiological responses of marine crabs to ocean acidification: a review’

Hidden cost of pH variability in seagrass beds on marine calcifiers under ocean acidification

Highlights

  • The presence of seagrass creates variability in pH/pCO2.
  • High pCO2/low pH negatively impacts growth and calcification of sea urchin larvae.
  • The variability associated with the presence of seagrass negatively impacts growth under ocean acidification.
  • Two different calcification strategies are observed in presence and absence of seagrass.

Abstract

Coastal ecosystems experience large environmental variability leading to local adaptation. The key role of variability and adaptation in modulating the biological sensitivity to ocean acidification is increasingly acknowledged. Monitoring and understanding the ecological niche at the right spatio-temporal scale is key to understand the sensitivity of any organism and ecosystems. However, the role of the variability in relevant carbonate chemistry parameters as a driver is often overlooked. For example, the balance between photosynthesis and respiration over the day/night cycle is leading to high pH/pCO2 variability in seagrass beds. We hypothesized that (i) the calcifying larvae of the sea urchin Echinus esculentus exposed to seagrass-driven variability would have some physiological mechanisms to respond to such variability; and (ii) these mechanisms would reach their limit under ocean acidification. We compared the presence and absence of the seagrass Zostera marina in flow through mesocosms fed with seawater with 4 pHs. The carbonate chemistry was monitored and biological response of a sea urchin larvae was documented over 3 weeks. Growth and net calcification rates were measured twice a day to encompass diurnal variability. Our results show that larvae growth rate significantly decreased with decreasing average pHT in both absence and presence of seagrass. Moreover, sea urchin larvae showed a slower growth rate in presence of seagrass, only visible in the lowest pH conditions. In addition, larvae raised in presence of seagrass, maximized calcification during the day, and lower their calcification during the night. In contrast, no significant difference was observed between day and night for the net calcification rate in larvae raised in absence of seagrass. Our results demonstrate the limit of local adaptation to the present range of variability under ocean acidification conditions. It also demonstrates that photosynthetic ecosystems such as seagrass may not play a role of refuge against future ocean acidification.

Continue reading ‘Hidden cost of pH variability in seagrass beds on marine calcifiers under ocean acidification’

Transcriptomics, proteomics, and physiological assays reveal immunosuppression in the eastern oyster Crassostrea virginica exposed to acidification stress

Ocean acidification (OA) is recognized as a major stressor for a broad range of marine organisms, particularly shell-building invertebrates. OA can cause alterations in various physiological processes such as growth and metabolism, although its effect on host-pathogen interactions remains largely unexplored. In this study, we used transcriptomicsproteomics, and physiological assays to evaluate changes in immunity of the eastern oyster Crassostrea virginica exposed to OA conditions (pH = 7.5 vs pH = 7.9) at various life stages. The susceptibility of oyster larvae to Vibrio infection increased significantly (131 % increase in mortality) under OA conditions, and was associated with significant changes in their transcriptomes. The significantly higher mortality of larvae exposed to pathogens and acidification stress could be the outcome of an increased metabolic demand to cope with acidification stress (as seen by upregulation of metabolic genes) at the cost of immune function (downregulation of immune genes). While larvae were particularly vulnerable, juveniles appeared more robust to the stressors and there were no differences in mortality after pathogen (Aliiroseovarius crassostrea and Vibrio spp.) exposure. Proteomic investigations in adult oysters revealed that acidification stress resulted in a significant downregulation of mucosal immune proteins including those involved in pathogen recognition and microbe neutralization, suggesting weakened mucosal immunityHemocyte function in adults was also impaired by high pCO2, with a marked reduction in phagocytosis (67 % decrease in phagocytosis) in OA conditions. Together, results suggest that OA impairs immune function in the eastern oyster making them more susceptible to pathogen-induced mortality outbreaks. Understanding the effect of multiple stressors such as OA and disease is important for accurate predictions of how oysters will respond to future climate regimes.

Continue reading ‘Transcriptomics, proteomics, and physiological assays reveal immunosuppression in the eastern oyster Crassostrea virginica exposed to acidification stress’

The combined effects of acidification and acute warming on the embryos of Pacific herring (Clupea pallasii)

Anthropogenic climate change is projected to affect marine ecosystems by challenging the environmental tolerance of individuals. Marine fishes may be particularly vulnerable to emergent climate stressors during early life stages. Here we focus on embryos of Pacific herring (Clupea pallasii), an important forage fish species widely distributed across the North Pacific. Embryos were reared under a range of temperatures (10-16°C) crossed with two pCO2 levels (600 and 2000 μatm) to investigate effects on metabolism and survival. We further tested how elevated pCO2 affects critical thermal tolerance (CTmax) by challenging embryos to short-term temperature fluctuations. Experiments were repeated on embryos collected from winter and spring spawning populations to determine if spawning phenology corresponds with different limits of environmental tolerance in offspring. We found that embryos could withstand acute exposure to 20°C regardless of spawning population or incubation treatment, but that survival was greatly reduced after 2-3 hours at 25°C. We found that pCO2 had limited effects on CTmax. The survival of embryos reared under chronically warm conditions (12°, 14°, or 16°C) was significantly lower relative to 10°C treatments in both populations. Oxygen consumption rates (MO2) were also higher at elevated temperatures and pCO2 levels. However, heart contraction measurements made 48 hours after CTmax exposure revealed a greater increase in heart rate in embryos reared at 10°C compared to 16°C, suggesting acclimation at higher incubation temperatures. Our results indicate that Pacific herring are generally tolerant of pCO2 but are vulnerable to acute temperature stress. Importantly, spring-spawning embryos did not clearly exhibit a higher tolerance to heat stress compared to winter offspring.

Continue reading ‘The combined effects of acidification and acute warming on the embryos of Pacific herring (Clupea pallasii)’

A meta-analysis reveals global change stressors potentially aggravate mercury toxicity in marine biota

Growing evidence demonstrates that global change can modulate mercury (Hg) toxicity in marine organisms; however, the consensus on such effect is lacking. Here, we conducted a meta-analysis to evaluate the effects of global change stressors on Hg biotoxicity according to the IPCC projections (RCP 8.5) for 2100, including ocean acidification (−0.4 units), warming (+4 °C), and their combination (acidification-warming). The results indicated an overall aggravating effect (ln RRΔ = −0.219) of global change on Hg toxicity in marine organisms, while the effect varied with different stressors; namely, acidification potentially alleviates Hg biotoxicity (ln RRΔ = 0.117) while warming and acidification-warming have an aggravating effect (ln RRΔ = −0.328 and −0.097, respectively). Moreover, warming increases Hg toxicity in different trophic levels, i.e., primary producers (ln RRΔ = −0.198) < herbivores (ln RRΔ = −0.320) < carnivores (ln RRΔ = −0.379), implying increasing trends of Hg biomagnification through the food web. Notably, ocean hypoxia appears to boost Hg biotoxicity, although it was not considered in our meta-analysis because of the small sample size. Given the persistent global change and combined effects of these stressors in marine environments, multigeneration and multistressor research is urgently needed to fully disclose the impacts of global change on Hg pollution and its risk.

Continue reading ‘A meta-analysis reveals global change stressors potentially aggravate mercury toxicity in marine biota’

Sometimes (often?) responses to multiple stressors can be predicted from single-stressor effects: a case study using an agent-based population model of croaker in the Gulf of Mexico

Abstract

Objective

Rapid changes in the world’s oceans make assessment of fish population responses to multiple stressors, especially on scales relevant to management, increasingly important. I used an existing agent-based, spatially explicit model of Atlantic Croaker Micropogonias undulatus in the northern Gulf of Mexico to examine how temperature, hypoxia, and ocean acidification, singly and in combinations, affect long-term population dynamics.

Methods

I performed a factorial simulation experiment with each stressor at three levels and analyzed various treatment combinations to assess the additivity and multiplicity of interactions. The response variables were long-term equilibrium (final year) values of spawning stock biomass (SSB), recruitment, weight at age, and two measures of stock productivity (recruits per SSB and maximum recruitment) derived from the spawner–recruit relationship fitted to model output. I used the single-stressor effects from the experiment to predict how the response variables would change when all three stressors were changed. Single-stressor effects were combined as the sum of the fractional changes (additive scale) and the product of ratios of changes (multiplicative scale) and compared to the responses in simulations with all stressors imposed.

Result

Analyzing the factorial design for two-way and three-way interactions showed that there were many interactions on the additive scale but very few on the multiplicative scale. Thus, the responses to multiple stressors were well predicted from single stressor effects when combined as multiplicative effects.

Conclusion

I discuss how the lack of strong interactions could be due to model assumptions, the structure of the model, or oversimplified representation of stressor effects. Alternatively, the model and analysis may be sufficiently realistic and weak interactions on the multiplicative scale may be common. This would reduce a complicated multi-factor situation to a series of more tractable single-factor effects. A critical next step is to determine how we can a priori identify situations of low interactions (i.e., predictable from single-stressor effects) without having to already know the multi-stressor response.

Continue reading ‘Sometimes (often?) responses to multiple stressors can be predicted from single-stressor effects: a case study using an agent-based population model of croaker in the Gulf of Mexico’

Effect of low pH on embryonic and larval traits in the estuarine semi-terrestrial crab Neohelice granulata

Introduction

The life cycle of marine invertebrates alternates between development phases which exhibit different physiological and ecological characteristics. The larvae (and sometimes the eggs) of most crustaceans, echinoderms, and mollusks, for example, are small and conventionally mobile, and they constitute the dispersive stages. In addition, larvae and embryos are considered in some traits less “complex” than adults, often lacking certain physiological mechanisms that allow advanced stages to cope with slight or even higher changes in the environment. However, early life stages are as important as subsequent instars; either population renewal, dispersion as connectivity, rely on the ability of these stages to overcome the adverse environmental conditions (Levin, 2006; DiBacco et al., 2006). As any impact observed in those early life phases will be deleterious to the whole population, functioning as a “bottleneck”, it is fundamental to understand the effect and capacity of response to the different stressors.

Continue reading ‘Effect of low pH on embryonic and larval traits in the estuarine semi-terrestrial crab Neohelice granulata’

The impacts of climate change on the reproduction of native and invasive kelps

Climate change represents a threat to coastal marine ecosystems through variable effects on community structure and function due to increasing mean sea-surface temperatures (SST), marine heatwaves, variation in salinity, and ocean acidification. Among the most at risk species are California kelps, which have already experienced significant die-offs over the past several years as a result of elevated SST and urchin grazing. However, the effects of these stresses on the very sensitive microscopic kelp life stage (gametophyte) are much less understood. Gametophytes are generally less resilient to changes in abiotic conditions, so global environmental change could result in drastic changes in kelp forest community structure and composition via impacts on this life stage. My dissertation research used manipulative laboratory experiments to investigate the interacting role of abiotic stressors on kelp reproduction and community compositions, specifically, the growth and survival of early kelp life stages. My first chapter focused on the effects of climate-driven temperature increases and ocean acidification on bull kelp (Nereocystis luetkeana) gametophytes from Point Arena, CA (Korabik et al. 2023). From 2014 to 2016, the largest marine heatwave in history appeared off the coast of California resulting in large kelp die off events. In this chapter, I asked how increased temperature and lowered pH impact the survival of bull kelp gametophytes and the production of juvenile bull kelp sporophytes. My results showed that increased temperature resulted in a significant decrease in the survival of gametophytes and a lower number of juveniles produced, whereas lowered pH only had a significant effect on the production of juveniles, slowing their rate of development. These results indicate that the predicted increase of marine heatwaves could have devastating effects on the persistence of bull kelp forest ecosystems. My second chapter considered the interacting effects of climate driven changes in temperature and salinity and interactions with the invasive seaweed (Sargassum muticum) on the growth and survival of giant kelp (Macrocystis pyrifera) gametophytes from Tomales Bay, CA. In my experiments, I tested: 1) how different salinities and temperatures impact giant kelp early life stages from different sources within Tomales Bay, 2) how the presence of invasive Sargassum propagules affect giant kelp gametophyte development, and 3) how the combined effects of salinity, temperature, and Sargassum presence affect giant kelp early life stages. My results indicate that 1) the presence of Sargassum had little effect on the survival of giant kelp gametophytes, 2) Sargassum accelerated development of giant kelp juvenile sporophytes, and 3) high temperatures resulted in the greatest reduction of giant kelp gametophyte survival. These results imply that giant kelp reproduction and presence within estuaries is more influenced by temperature than salinity and microscopic-stage competition with invasive species. My third chapter examined the effects of increased temperature and lowered salinities on invasive Wakame (Undaria pinnatifida) gametophytes in the San Francisco Bay. Previous studies have shown that low salinity can limit the distribution of Undaria, but there is no information about these effects on gametophyte stages. Using a full factorial design, I exposed Undaria gametophytes to five salinity conditions ranging from low to ambient salinity and two temperatures representing pre-2013 temperature maxima in San Francisco and maximum increased temperatures experienced under the 2014-2016 marine heatwave. I found that Undaria microstages were unable to survive below 20 psu and generally survived better under warmer temperatures of 18°C. Climate change in California is predicted to result in higher temperatures and reduced annual rainfall in drought years, which may facilitate future northward expansion of Wakame populations. With this research, I can better predict the impacts of climate change on kelp ecosystems to help coastal managers prioritize future protection efforts. Early life stages are often the most vulnerable to stress, and in this era of rapid climate change, understanding early life stage responses to stress will allow scientists and managers to better work towards the protection of our planet.

Continue reading ‘The impacts of climate change on the reproduction of native and invasive kelps’

Subscribe

Search

  • Reset

OA-ICC Highlights

Resources