Archive for July, 2020



Purified meta-cresol purple dye perturbation: how it influences spectrophotometric pH measurements

Highlights

• The addition of an indicator dye perturbs the sample original pH and limits the spectrophotometric pH measurement accuracy.

• Dye perturbation on the sample pH varies depending on the sample properties and the indicator dye properties.

• To experimentally correct dye perturbation, sample properties like total alkalinity and salinity should be taken into consideration.

• A MATLAB function is proposed to calculate theoretical dye perturbation.

Abstract

Ocean acidification, a phenomenon of seawater pH decreasing due to increasing atmospheric CO2, has a global effect on seawater chemistry, marine biology, and ecosystems. Ocean acidification is a gradual and global long-term process, the study of which demands high-quality pH data. The spectrophotometric technique is capable of generating accurate and precise pH measurements but requires adding an indicator dye that perturbs the sample original pH. While the perturbation is modest in well-buffered seawater, applications of the method in environments with lower buffer capacity such as riverine, estuarine, sea-ice meltwater and lacustrine environments are increasingly common, and uncertainties related to larger potential dye perturbations need further evaluation. In this paper, we assess the effect of purified meta-Cresol Purple (mCP) dye addition on the sample pH and how to correct for this dye perturbation. We conducted numerical simulations by incorporating mCP speciation into the MATLAB CO2SYS program to examine the changes in water sample pH caused by the dye addition and to reveal the dye perturbation mechanisms. Then, laboratory experiments were carried out to verify the simulation results. The simulations suggest that the dye perturbation on sample pH is a result of total alkalinity (TA) contributions from the indicator dye and chemical equilibrium shifts that are related to both the water sample properties (pH, TA, and salinity) and the indicator dye solution properties (pH and solvent matrix). The laboratory experiments supported the simulation results; the same dye solution can lead to different dye perturbations in water samples with different pH, TA, and salinity values. The modeled adjustments agreed well with the empirically determined adjustments for salinities >5, but it showed greater errors for lower salinities with disagreements as large as 0.005 pH units. Adjustments are minimized when the pH and salinity of the dye are matched to the sample. When the dye is used over a wide range of salinity, we suggest that it should be prepared in deionized water to minimize the dye perturbation effect on pH in the fresher sample waters with less well-constrained perturbation adjustments. We also suggest that the dye perturbation correction should be based on double dye addition experiments performed over a wide range of pH, TA, and salinity. Otherwise, multiple volume dye addition experiments are recommended for each sample to determine the dye perturbation adjustment. We further create a MATLAB function dyeperturbation.m that calculates the expected dye perturbation. This function can be used to validate empirically-derived adjustments or in lieu of empirical adjustments if dye addition experiments are unfeasible (e.g., for historical data). This study of dye perturbation evaluation and correction will improve the accuracy of the pH data, necessary for monitoring the long-term anthropogenic-driven changes in the seawater carbonate system.

Continue reading ‘Purified meta-cresol purple dye perturbation: how it influences spectrophotometric pH measurements’

Alaska Ocean Acidification Network: Sherry Tamone

Sherry Tamone is a crustacean physiologist at the University of Alaska Southeast in Juneau who recently started studying the affects of OA on shrimp.

Q: We hear you’re launching a new project on OA and shrimp. What will you be testing and what are your hypotheses?

I recently received funding from Alaska Sea Grant to study the potential effects of ocean acidification and warming temperatures on the physiology of the Northern spot shrimp (Pandalus platyceros). My lab is interested the physiology of molting (growth) and we know that molting is an energetically expensive process. We think that living in a warming an increasingly acidic environment will have a metabolic cost to growing animals. We will test this hypothesis using juvenile spot shrimp that may be most susceptible since they need to molt more often.

Continue reading ‘Alaska Ocean Acidification Network: Sherry Tamone’

Do males and females respond differently to ocean acidification? an experimental study with the sea urchin Paracentrotus lividus

Seawater pH lowering, known as ocean acidification, is considered among the major threats to marine environment. In this study, post-spawning adults of the sea urchin Paracentrotus lividus were maintained at three pH values (8.0, 7.7, 7.4) for 60 days. Physiological, biochemical, cellular, behavioural and reproductive responses were evaluated in males and females. Significant differences between sexes were observed, with higher ammonia excretion and lower catalase activity in males. Respiration rate (after 21 days), catalase activity in gonads and total coelomocyte count showed the same increasing trend in males and females under low pH. Ammonia excretion, gonadosomatic index and lysozyme activity exhibited opposite responses to low pH, with an increasing trend in males and decreasing in females. Results demonstrated that exposure to low pH could result in different response strategies of male and female sea urchins at a physiological, biochemical and immunological level. Reduced female gonadosomatic index under low pH suggested decreased energy investment in reproduction.

Continue reading ‘Do males and females respond differently to ocean acidification? an experimental study with the sea urchin Paracentrotus lividus’

Liberian ocean expert joins scientists to discuss global solutions to ocean acidification

Liberia’s Oceanographer and Queen’s University Belfast PhD Scholar, Sheck A. Sherif joined scientists from across the world to discuss actions to address global ocean acidification – a challenge facing the ocean and marine resources worldwide particularly in Africa. Mr. Sherif, a Co-Chair of the Ocean Acidification Africa Regional Network (OA-Network)- a pan-African network specifically supports coordinated approach to promote ocean acidification (OA) awareness and research in Africa.

The Liberian scientist Sherif said Africa’s major challenge is the lack of fully equipped laboratories to conduct ocean acidification testing especially in the long term, and viable research cruises to address the danger posed by ocean acidification.

Continue reading ‘Liberian ocean expert joins scientists to discuss global solutions to ocean acidification’

Future acidification of the Baltic Sea – A sensitivity study

Highlights

• Sensitivity of pH and the carbonate system to potential future changes in the Baltic Sea

• pH response to future atmospheric CO2, climate change, and changes in the catchment

• CO2-induced acidification can be enhanced or mitigated by other processes in coastal seas.

• Unlikely that acidification of the Baltic Sea can be counteracted unless CO2 emissions decline

Abstract

Future acidification of coastal seas will depend not only on the development of atmospheric CO2 partial pressure (pCO2), but also on changes in the catchment areas, exchange with the adjacent ocean, and internal cycling of carbon and nutrients. Here we use a coupled physical-biogeochemical Baltic Sea model to quantify the sensitivity of pH to changes both in external forcing and internal processes. The experiments include changes in runoff, supply of dissolved inorganic carbon (DIC) and total alkalinity (AT), nutrient loads, exchange between the Baltic and North Seas, and atmospheric pCO2. We furthermore address the potential different future developments of runoff and river loads in boreal and continental catchments, respectively. Changes in atmospheric pCO2 exert the strongest control on future pH according to our calculations. This CO2-induced acidification could be further enhanced in the case of desalination of the Baltic Sea, although increased concentrations of AT in the river runoff due to increased weathering to some extent could counteract acidification. Reduced nutrient loads and productivity would reduce the average annual surface water pH but at the same time slightly increase wintertime surface water pH (the annual pH minimum). The response time of surface water pH to sudden changes in atmospheric pCO2 is approximately one month, whereas response times to changes in e.g. runoff and AT/DIC loads are more related to residence times of water and salt (>30 years). It seems unlikely that the projected future increase in atmospheric pCO2 and associated pH reduction could be fully counteracted by any of the other processes addressed in our experiments.

Continue reading ‘Future acidification of the Baltic Sea – A sensitivity study’

Aeration-induced marine sediment acidification in the vicinity of Rizhao Port, western Yellow Sea

Two short-term summer cruises were performed in the vicinity of Rizhao Port, western Yellow Sea, to investigate summer water stratification and the phenomenon of marine sediment acidification. Results show that water stratification has formed as early as in May. The chemoclines of dissolved oxygen (DO) and pH usually occur deeper than the thermocline. Sometimes the chemoclines of DO and pH occur synchronously at the same depths, but sometimes they do not synchronize. Above the chemocline DO fluctuates markedly and maintains at a high level or even oversaturation in daytime, suggesting the far-field impact of vessel propulsion. Below the chemocline it invariably remains at a low and stable level and slowly drops downward. The pH values of surface sediments vary in the range of 6.3–7.6. A conspicuous sediment acidification is observed along the navigation region. This phenomenon is chiefly attributed to the intermittent disruption of summer stratification by shipping activity along the shipping channel and waterways. Water stratification precludes the penetration of DO down to the bottom sediments on fair ocean status, and maintains anoxia below the sediment–water interface, whereas the abrupt DO increase driven by propeller agitating is nearly restricted in the navigation area. Therefore, the aeration effect accelerating oxidation of reducing substances and organic matter is primarily responsible for enhanced acid accumulation in surface sediments. In addition, the suspension effect is identified by the negative offsets of zero point on pH–mV diagram. Most of the measured points are scattered correspondingly on three distinct regression lines, with similar slopes but different negative offsets of pH 6.53, 6.87, and 6.99, respectively. Their geographical distribution suggests that this effect has a positive relationship with the intensity of anthropogenic disturbance. Although the suspension effect is caused by the adsorption of charged particles at the pH glass electrode interface (Yang et al. in Part Sci Technol 7:139–152, 1989), its various intensity observed in practice may also reflect the inherent distinction of depositional environments in physicochemical conditions.

Continue reading ‘Aeration-induced marine sediment acidification in the vicinity of Rizhao Port, western Yellow Sea’

Acidification in the U.S. Southeast: causes, potential consequences and the role of the Southeast Ocean and Coastal Acidification Network

Coastal acidification in southeastern U.S. estuaries and coastal waters is influenced by biological activity, run-off from the land, and increasing carbon dioxide in the atmosphere. Acidification can negatively impact coastal resources such as shellfish, finfish, and coral reefs, and the communities that rely on them. Organismal responses for species located in the U.S. Southeast document large negative impacts of acidification, especially in larval stages. For example, the toxicity of pesticides increases under acidified conditions and the combination of acidification and low oxygen has profoundly negative influences on genes regulating oxygen consumption. In corals, the rate of calcification decreases with acidification and processes such as wound recovery, reproduction, and recruitment are negatively impacted. Minimizing the changes in global ocean chemistry will ultimately depend on the reduction of carbon dioxide emissions, but adaptation to these changes and mitigation of the local stressors that exacerbate global acidification can be addressed locally. The evolution of our knowledge of acidification, from basic understanding of the problem to the emergence of applied research and monitoring, has been facilitated by the development of regional Coastal Acidification Networks (CANs) across the United States. This synthesis is a product of the Southeast Coastal and Ocean Acidification Network (SOCAN). SOCAN was established to better understand acidification in the coastal waters of the U.S. Southeast and to foster communication among scientists, resource managers, businesses, and governments in the region. Here we review acidification issues in the U.S. Southeast, including the regional mechanisms of acidification and their potential impacts on biological resources and coastal communities. We recommend research and monitoring priorities and discuss the role SOCAN has in advancing acidification research and mitigation of and adaptation to these changes.

Continue reading ‘Acidification in the U.S. Southeast: causes, potential consequences and the role of the Southeast Ocean and Coastal Acidification Network’

Chemical exposure due to anthropogenic ocean acidification increases risks for estuarine calcifiers in the Salish Sea: biogeochemical model scenarios

Ocean acidification (OA) is projected to have profound impacts on marine ecosystems and resources, especially in estuarine habitats. Here, we describe biological risks under current levels of exposure to anthropogenic OA in the Salish Sea, an estuarine system that already experiences inherently low pH and aragonite saturation state (Ωar) conditions. We used the Pacific Northwest National Laboratory and Washington State Department of Ecology Salish Sea biogeochemical model (SSM) informed by a selection of OA-related biological thresholds of ecologically and economically important calcifiers, pteropods, and Dungeness crabs. The SSM was implemented to assess current exposure and associated risk due to reduced Ωar and pH conditions with respect to the magnitude, duration, and severity of exposure below the biological thresholds in the Salish Sea in comparison to the pre-industrial era. We further investigated the individual effects of atmospheric CO2 uptake and nutrient-driven eutrophication on changes in chemical exposure since pre-industrial times. Our model predicts average decreases in Ωar and pH since pre-industrial times of about 0.11 and 0.06, respectively, in the top 100 m of the water column of the Salish Sea. These decreases predispose pelagic calcifiers to increased duration, intensity, and severity of exposure. For pteropods, present-day exposure is below the thresholds related to sublethal effects across the entire Salish Sea basin, while mortality threshold exposure occurs on a spatially limited basis. The greatest risk for larval Dungeness crabs is associated with spatially limited exposures to low calcite saturation state in the South Sound in the springtime, triggering an increase in internal dissolution. The main anthropogenic driver behind the predicted impacts is atmospheric CO2 uptake, while nutrient-driven eutrophication plays only a marginal role over spatially and temporally limited scales. Reduction of CO2 emissions can help sustain biological species vital for ecosystem functions and society.

Continue reading ‘Chemical exposure due to anthropogenic ocean acidification increases risks for estuarine calcifiers in the Salish Sea: biogeochemical model scenarios’

Diatom aggregation when exposed to crude oil and chemical dispersant: potential impacts of ocean acidification

Diatoms play a key role in the marine carbon cycle with their high primary productivity and release of exudates such as extracellular polymeric substances (EPS) and transparent exopolymeric particles (TEP). These exudates contribute to aggregates (marine snow) that rapidly transport organic material to the seafloor, potentially capturing contaminants like petroleum components. Ocean acidification (OA) impacts marine organisms, especially those that utilize inorganic carbon for photosynthesis and EPS production. Here we investigated the response of the diatom Thalassiosira pseudonana grown to present day and future ocean conditions in the presence of a water accommodated fraction (WAF and OAWAF) of oil and a diluted chemically enhanced WAF (DCEWAF and OADCEWAF). T. pseudonana responded to WAF/DCEWAF but not OA and no multiplicative effect of the two factors (i.e., OA and oil/dispersant) was observed. T. pseudonana released more colloidal EPS ( 3 kDa) in the presence of WAF/DCEWAF/OAWAF/OADCEWAF than in the corresponding Controls. Colloidal EPS and particulate EPS in the oil/dispersant treatments have higher protein-to-carbohydrate ratios than those in the control treatments, and thus are likely stickier and have a greater potential to form aggregates of marine oil snow. More TEP was produced in response to WAF than in Controls; OA did not influence its production. Polyaromatic hydrocarbon (PAH) concentrations and distributions were significantly impacted by the presence of dispersants but not OA. PAHs especially Phenanthrenes, Anthracenes, Chrysenes, Fluorenes, Fluoranthenes, Pyrenes, Dibenzothiophenes and 1-Methylphenanthrene show major variations in the aggregate and surrounding seawater fraction of oil and oil plus dispersant treatments. Studies like this add to the current knowledge of the combined effects of aggregation, marine snow formation, and the potential impacts of oil spills under ocean acidification scenarios.

Continue reading ‘Diatom aggregation when exposed to crude oil and chemical dispersant: potential impacts of ocean acidification’

Aquatic plants may help Chesapeake Bay resist ocean acidification

In freshwater vegetation flats upstream of the Chesapeake, chemical reactions create molecules that raise pH levels in the bay.

The Chesapeake Bay stretches nearly 325 kilometers north to south and is 8 kilometers wide in some places. The riparian habitat is home to mammals like bears and river otters, hundreds of species of birds and fish, bottlenose dolphins, and even manatees. The seafood industry in Maryland and Virginia generates more than $3 billion per year and supports more than 30,000 jobs.

In the late 1960s, the bay was plagued by pollution and the loss of submerged aquatic vegetation (SAV). Although conservation efforts have restored SAV beds and improved the overall health of the bay, it’s still experiencing local effects of climate change: rising temperatures, oxygen-free dead zones, and acidification. Although the bay’s surface reaches pH levels around 8.2, its subsurface pH can be as low as 7.4.

Continue reading ‘Aquatic plants may help Chesapeake Bay resist ocean acidification’

Seawater pH reconstruction using boron isotopes in multiple planktonic foraminifera species with different depth habitats and their potential to constrain pH and pCO2 gradients (update)

Boron isotope systematics of planktonic foraminifera from core-top sediments and culture experiments have been studied to investigate the sensitivity of δ11B of calcite tests to seawater pH. However, our knowledge of the relationship between δ11B and pH remains incomplete for many taxa. Thus, to expand the potential scope of application of this proxy, we report δ11B data for seven different species of planktonic foraminifera from sediment core tops. We utilize a method for the measurement of small samples of foraminifera and calculate the δ11B-calcite sensitivity to pH for Globigerinoides ruber, Trilobus sacculifer (sacc or without sacc), Orbulina universa, Pulleniatina obliquiloculata, Neogloboquadrina dutertrei, Globorotalia menardii, and Globorotalia tumida, including for unstudied core tops and species. These taxa have diverse ecological preferences and are from sites that span a range of oceanographic regimes, including some that are in regions of air–sea equilibrium and others that are out of equilibrium with the atmosphere. The sensitivity of δ11Bcarbonate to δ11Bborate (e.g., Δδ11Bcarbonate∕Δδ11Bborate) in core tops is consistent with previous studies for T. sacculifer and G. ruber and close to unity for N. dutertrei, O. universa, and combined deep-dwelling species. Deep-dwelling species closely follow the core-top calibration for O. universa, which is attributed to respiration-driven microenvironments likely caused by light limitation and/or symbiont–host interactions. Our data support the premise that utilizing boron isotope measurements of multiple species within a sediment core can be utilized to constrain vertical profiles of pH and pCO2 at sites spanning different oceanic regimes, thereby constraining changes in vertical pH gradients and yielding insights into the past behavior of the oceanic carbon pumps.

Continue reading ‘Seawater pH reconstruction using boron isotopes in multiple planktonic foraminifera species with different depth habitats and their potential to constrain pH and pCO2 gradients (update)’

Emergent properties of branching morphologies modulate the sensitivity of coral calcification to high PCO2

Experiments with coral fragments (i.e. nubbins) have shown that net calcification is depressed by elevated PCO2. Evaluating the implications of this finding requires scaling of results from nubbins to colonies, yet the experiments to codify this process have not been carried out. Building from our previous research demonstrating that net calcification of Pocillopora verrucosa (2–13 cm diameter) was unaffected by PCO2 (400 and 1000 µatm) and temperature (26.5 and 29.7°C), we sought generality to this outcome by testing how colony size modulates PCO2 and temperature sensitivity in a branching acroporid. Together, these taxa represent two of the dominant lineages of branching corals on Indo-Pacific coral reefs. Two trials conducted over 2 years tested the hypothesis that the seasonal range in seawater temperature (26.5 and 29.2°C) and a future PCO2 (1062 µatm versus an ambient level of 461 µatm) affect net calcification of an ecologically relevant size range (5–20 cm diameter) of colonies of Acropora hyacinthus. As for P. verrucosa, the effects of temperature and PCO2 on net calcification (mg day−1) of A. verrucosa were not statistically detectable. These results support the generality of a null outcome on net calcification of exposing intact colonies of branching corals to environmental conditions contrasting seasonal variation in temperature and predicted future variation in PCO2. While there is a need to expand beyond an experimental culture relying on coral nubbins as tractable replicates, rigorously responding to this need poses substantial ethical and logistical challenges.

Continue reading ‘Emergent properties of branching morphologies modulate the sensitivity of coral calcification to high PCO2’

Alkaline guts contribute to immunity during exposure to acidified seawater in the sea urchin larva

Larval stages of members of the Abulacraria superphylum including echinoderms and hemichordates have highly alkaline midguts. To date, the reason for the evolution of such extreme pH conditions in the gut of these organisms remains unknown. Here, we test the hypothesis that, analogous to the acidic stomachs of vertebrates, these alkaline conditions may represent a first defensive barrier to protect from environmental pathogens. pH-optimum curves for five different species of marine bacteria demonstrated a rapid decrease in proliferation rates by 50–60% between pH 8.5 and 9.5. Using the marine bacterium Vibrio diazotrophicus, which elicits a coordinated immune response in the larvae of the sea urchin Strongylocentrotus purpuratus, we studied the physiological responses of the midgut pH regulatory machinery to this pathogen. Gastroscopic microelectrode measurements demonstrate a stimulation of midgut alkalization upon infection with V. diazotrophicus accompanied by an upregulation of acid–base transporter transcripts of the midgut. Pharmacological inhibition of midgut alkalization resulted in an increased mortality rate of larvae during Vibrio infection. Reductions in seawater pH resembling ocean acidification conditions lead to moderate reductions in midgut alkalization. However, these reductions in midgut pH do not affect the immune response or resilience of sea urchin larvae to a Vibrio infection under ocean acidification conditions. Our study addressed the evolutionary benefits of the alkaline midgut of Ambulacraria larval stages. The data indicate that alkaline conditions in the gut may serve as a first defensive barrier against environmental pathogens and that this mechanism can compensate for changes in seawater pH.

Continue reading ‘Alkaline guts contribute to immunity during exposure to acidified seawater in the sea urchin larva’

Understanding ocean acidification: using NOAA’s new educational tools

Date: August 13 @ 3:00 pm – 4:00 pm

Description: Data in the Classroom is designed to help teachers and students use real scientific NOAA data to explore dynamic Earth processes and understand the impact of environmental events on a regional and global scale. The interactive module provides authentic research questions and scaled data interactions that give students the opportunity to explore this question (and more). In this presentation, participants will dive deep into Data in the Classroom’s Ocean Acidification Module to explore the processes that cause acidification, examine data from across the globe and take a virtual tour of the new web-based curricular modules and data tools.

Continue reading ‘Understanding ocean acidification: using NOAA’s new educational tools’

Sustainable oceans series: using data to save our oceans

World Ocean Day, celebrated every year on 8 June, is an opportunity to reflect on the importance of oceans to our lives and livelihoods, and the environmental impact of human activity on oceans.

The University of Bergen (Norway), United Nations Academic Impact (UNAI) SDG Hub for Goal 14: Life below water, is a center of scholarship, research and innovation for the preservation of oceans for the future of mankind.

In this series commemorating World Oceans Day, the University of Bergen explores various aspects of sustainable oceans and how universities can contribute to the stewardship of this natural resource. In this article, the university explores the use of data management to combat ocean acidification.

Continue reading ‘Sustainable oceans series: using data to save our oceans’

Ocean acidification threatens bivalve industry

Worldwide, ocean levels are rising at an accelerated pace. Cape May County is feeling the effects of exacerbated weather events, as a result.

Yet, there is another drastic change affecting the oceans – a decrease in the water’s pH levels. This is a change that industry leaders and scientists fear will drastically affect the county, namely its bivalve (aquatic invertebrates with a hinged shell) industry that is, as marine and coastal sustainability expert Dr. Daphne Munroe said, “At the heart of the economy in this region.”

As carbon is released into the atmosphere, it was once speculated that the ocean’s tendency to absorb emissions would be a net positive, as it spared the Earth’s atmosphere from the worst of the emissions. Dr. Feely, senior scientist at National Oceanic and Atmospheric Administration (NOAA), said, “[It’s] a huge service the oceans are doing that significantly reduces global temperature.”

Continue reading ‘Ocean acidification threatens bivalve industry’

Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections

Anthropogenic climate change is projected to lead to ocean warming, acidification, deoxygenation, reductions in near-surface nutrients, and changes to primary production, all of which are expected to affect marine ecosystems. Here we assess projections of these drivers of environmental change over the twenty-first century from Earth system models (ESMs) participating in the Coupled Model Intercomparison Project Phase 6 (CMIP6) that were forced under the CMIP6 Shared Socioeconomic Pathways (SSPs). Projections are compared to those from the previous generation (CMIP5) forced under the Representative Concentration Pathways (RCPs). A total of 10 CMIP5 and 13 CMIP6 models are used in the two multi-model ensembles. Under the high-emission scenario SSP5-8.5, the multi-model global mean change (2080–2099 mean values relative to 1870–1899) ± the inter-model SD in sea surface temperature, surface pH, subsurface (100–600 m) oxygen concentration, euphotic (0–100 m) nitrate concentration, and depth-integrated primary production is +3.47±0.78 ∘C, −0.44±0.005, −13.27±5.28, −1.06±0.45 mmol m−3 and −2.99±9.11 %, respectively. Under the low-emission, high-mitigation scenario SSP1-2.6, the corresponding global changes are +1.42±0.32 ∘C, −0.16±0.002, −6.36±2.92, −0.52±0.23 mmol m−3, and −0.56±4.12 %. Projected exposure of the marine ecosystem to these drivers of ocean change depends largely on the extent of future emissions, consistent with previous studies. The ESMs in CMIP6 generally project greater warming, acidification, deoxygenation, and nitrate reductions but lesser primary production declines than those from CMIP5 under comparable radiative forcing. The increased projected ocean warming results from a general increase in the climate sensitivity of CMIP6 models relative to those of CMIP5. This enhanced warming increases upper-ocean stratification in CMIP6 projections, which contributes to greater reductions in upper-ocean nitrate and subsurface oxygen ventilation. The greater surface acidification in CMIP6 is primarily a consequence of the SSPs having higher associated atmospheric CO2 concentrations than their RCP analogues for the same radiative forcing. We find no consistent reduction in inter-model uncertainties, and even an increase in net primary production inter-model uncertainties in CMIP6, as compared to CMIP5.

Continue reading ‘Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections’

Video: What is the global community doing to address ocean acidification?

Continue reading ‘Video: What is the global community doing to address ocean acidification?’

Gene expression patterns of Red Sea urchins (Mesocentrotus Franciscanus) exposed to different combinations of temperature and pCO2 during early development

Red sea urchins were collected and spawned as described in [31]. Briefly, adults were collected from Ellwood Mesa, Goleta, California, USA (34° 25.065’N, 119° 54.092’W) at 14-m depth via SCUBA on February 21, 2018 under California Scientific Collecting Permit SC-1223 and transported to the Marine Science Institute at the University of California Santa Barbara (UCSB). Spawning was induced by injecting 0.53 M KCl into the coelom through the perioral membrane [145]. Eggs from five individual females and sperm from a single male were collected. A subsample of eggs from each female was fertilized with sperm from the male and high fertilization success was examined for each cross (i.e., visually confirming the formation of fertilization envelopes). These subsamples were only used to verify suitable male-female compatibility and were discarded prior to the experiment. An approximately equal number of eggs from each of the five females were gently pooled together. The pool of eggs was fertilized by slowly adding dilute, activated sperm from the male until approximately 98% fertilization success was reached. Performing crosses with a single male ensured that all cultures were composed of full- or half-sibling embryos. This approach was selected in an effort to limit paternal genetic variability and differences in male-female interactions that could otherwise impact the results of the study.

Continue reading ‘Gene expression patterns of Red Sea urchins (Mesocentrotus Franciscanus) exposed to different combinations of temperature and pCO2 during early development’

Responses of a coral reef shark acutely exposed to ocean acidification conditions

Anthropogenic ocean acidification (OA) is a threat to coral reef fishes, but few studies have investigated responses of high-trophic-level predators, including sharks. We tested the effects of 72-hr exposure to OA-relevant elevated partial pressures of carbon dioxide (pCO2) on oxygen uptake rates, acid–base status, and haematology of newborn tropical blacktip reef sharks (Carcharhinus melanopterus). Acute exposure to end-of-century pCO2 levels resulted in elevated haematocrit (i.e. stress or compensation of oxygen uptake rates) and blood lactate concentrations (i.e. prolonged recovery) in the newborns. Conversely, whole blood and mean corpuscular haemoglobin concentrations, blood pH, estimates of standard and maximum metabolic rates, and aerobic scope remained unaffected. Taken together, newborn blacktip reef sharks appear physiologically robust to end-of-century pCO2 levels, but less so than other, previously investigated, tropical carpet sharks. Our results suggest peak fluctuating pCO2 levels in coral reef lagoons could still physiologically affect newborn reef sharks, but studies assessing the effects of long-term exposure and in combination with other anthropogenic stressors are needed.

Continue reading ‘Responses of a coral reef shark acutely exposed to ocean acidification conditions’


Subscribe

Search

  • Reset

OA-ICC Highlights

Resources