Future acidification of the Baltic Sea – A sensitivity study

Highlights

• Sensitivity of pH and the carbonate system to potential future changes in the Baltic Sea

• pH response to future atmospheric CO2, climate change, and changes in the catchment

• CO2-induced acidification can be enhanced or mitigated by other processes in coastal seas.

• Unlikely that acidification of the Baltic Sea can be counteracted unless CO2 emissions decline

Abstract

Future acidification of coastal seas will depend not only on the development of atmospheric CO2 partial pressure (pCO2), but also on changes in the catchment areas, exchange with the adjacent ocean, and internal cycling of carbon and nutrients. Here we use a coupled physical-biogeochemical Baltic Sea model to quantify the sensitivity of pH to changes both in external forcing and internal processes. The experiments include changes in runoff, supply of dissolved inorganic carbon (DIC) and total alkalinity (AT), nutrient loads, exchange between the Baltic and North Seas, and atmospheric pCO2. We furthermore address the potential different future developments of runoff and river loads in boreal and continental catchments, respectively. Changes in atmospheric pCO2 exert the strongest control on future pH according to our calculations. This CO2-induced acidification could be further enhanced in the case of desalination of the Baltic Sea, although increased concentrations of AT in the river runoff due to increased weathering to some extent could counteract acidification. Reduced nutrient loads and productivity would reduce the average annual surface water pH but at the same time slightly increase wintertime surface water pH (the annual pH minimum). The response time of surface water pH to sudden changes in atmospheric pCO2 is approximately one month, whereas response times to changes in e.g. runoff and AT/DIC loads are more related to residence times of water and salt (>30 years). It seems unlikely that the projected future increase in atmospheric pCO2 and associated pH reduction could be fully counteracted by any of the other processes addressed in our experiments.

Gustafsson E. & Gustafsson B. G., in press. Future acidification of the Baltic Sea – A sensitivity study. Journal of Marine Systems. Article (subscription required).


  • Reset

Subscribe

OA-ICC Highlights


%d bloggers like this: