Emergent properties of branching morphologies modulate the sensitivity of coral calcification to high PCO2

Experiments with coral fragments (i.e. nubbins) have shown that net calcification is depressed by elevated PCO2. Evaluating the implications of this finding requires scaling of results from nubbins to colonies, yet the experiments to codify this process have not been carried out. Building from our previous research demonstrating that net calcification of Pocillopora verrucosa (2–13 cm diameter) was unaffected by PCO2 (400 and 1000 µatm) and temperature (26.5 and 29.7°C), we sought generality to this outcome by testing how colony size modulates PCO2 and temperature sensitivity in a branching acroporid. Together, these taxa represent two of the dominant lineages of branching corals on Indo-Pacific coral reefs. Two trials conducted over 2 years tested the hypothesis that the seasonal range in seawater temperature (26.5 and 29.2°C) and a future PCO2 (1062 µatm versus an ambient level of 461 µatm) affect net calcification of an ecologically relevant size range (5–20 cm diameter) of colonies of Acropora hyacinthus. As for P. verrucosa, the effects of temperature and PCO2 on net calcification (mg day−1) of A. verrucosa were not statistically detectable. These results support the generality of a null outcome on net calcification of exposing intact colonies of branching corals to environmental conditions contrasting seasonal variation in temperature and predicted future variation in PCO2. While there is a need to expand beyond an experimental culture relying on coral nubbins as tractable replicates, rigorously responding to this need poses substantial ethical and logistical challenges.

Edmunds P. J. & Burgess S. C., 2020. Emergent properties of branching morphologies modulate the sensitivity of coral calcification to high PCO2. Journal of Experimental Biology 223: jeb217000 doi: 10.1242/jeb.217000. Article (subscription required).

0 Responses to “Emergent properties of branching morphologies modulate the sensitivity of coral calcification to high PCO2”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.




Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,365,226 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book