Posts Tagged 'Antarctic'

Archival records of the Antarctic clam shells from Marian Cove, King George Island suggest a protective mechanism against ocean acidification

Abstract

Continuous emissions of anthropogenic CO2 are changing the atmospheric and oceanic environment. Although some species may have compensatory mechanisms to acclimatize or adapt to the changing environment, most marine organisms are negatively influenced by climate change. In this study, we aimed to understand the compensatory mechanisms of the Antarctic clam, Laternula elliptica, to climate-related stressors by using archived shells from 1995 to 2018. Principal component analysis revealed that seawater pCO2 and salinity in the Antarctic Ocean, which have increased since the 2000’s, are the most influential factors on the characteristics of the shell. The periostracum thickness ratio and nitrogen on the outermost surface have increased, and the dissolution area (%) has decreased. Furthermore, the calcium content and mechanical properties of the shells have not changed. The results suggest that L. elliptica retains the mechanism of protecting the shell from high pCO2 by thickening the periostracum as a phenotype plasticity.

Highlights

  • We analyzed archival shells of the Antarctic clams in response to climate change.
  • Seawater pCO2 and salinity in the Antarctic Ocean have increased since the 2000’s.
  • Shell dissolution decreased over time while total shell thickness remained constant.
  • The calcium content and mechanical properties of the shell remained unchanged.
  • Shell integrity was retained by thickening the organic layer enriched with nitrogen.
Continue reading ‘Archival records of the Antarctic clam shells from Marian Cove, King George Island suggest a protective mechanism against ocean acidification’

Transport of anthropogenic carbon from the Antarctic shelf to deep Southern Ocean triggers acidification

Abstract

Flow of dense shelf water provide an efficient mechanism for pumping CO2 to the deep ocean along the continental shelf slope, particularly around the Antarctic bottom water (AABW) formation areas where much of the global bottom water is formed. However, the contribution of the formation of AABW to sequestering anthropogenic carbon (Cant) and its consequences remain unclear. Here, we show prominent transport of Cant (25.0 ± 4.7 Tg C yr−1) into the deep ocean (>2,000 m) in four AABW formation regions around Antarctica based on an integrated observational data set (1974–2018). This maintains a lower Cant in the upper waters than that of other open oceans to sustain a stronger CO2 uptake capacity (16.9 ± 3.8 Tg C yr−1). Nevertheless, the accumulation of Cant can further trigger acidification of AABW at a rate of −0.0006 ± 0.0001 pH unit yr−1. Our findings elucidate the prominent role of AABW in controlling the Southern Ocean carbon uptake and storage to mitigate climate change, whereas its side effects (e.g., acidification) could also spread to other ocean basins via the global ocean conveyor belt.

Key Points

  • We show evidence for the accumulation of Cant along the Antarctic shelf-slope into the deep ocean
  • The process of AABW formation drives Cant downward transport at 25.0 ± 4.7 Tg C yr−1, sustaining the CO2 uptake in the surface ocean
  • This further triggers acidification of AABW at a rate of −0.0006 ± 0.0001 pH unit yr−1, which is faster than in other deep oceans
Continue reading ‘Transport of anthropogenic carbon from the Antarctic shelf to deep Southern Ocean triggers acidification’

A synthesis of ocean total alkalinity and dissolved inorganic carbon measurements from 1993 to 2022: the SNAPO-CO2-v1 dataset (update)

Total alkalinity (AT) and dissolved inorganic carbon (CT) in the oceans are important properties with respect to understanding the ocean carbon cycle and its link to global change (ocean carbon sinks and sources, ocean acidification) and ultimately finding carbon-based solutions or mitigation procedures (marine carbon removal). We present a database of more than 44 400 AT and CT observations along with basic ancillary data (spatiotemporal location, depth, temperature and salinity) from various ocean regions obtained, mainly in the framework of French projects, since 1993. This includes both surface and water column data acquired in the open ocean, coastal zones and in the Mediterranean Sea and either from time series or dedicated one-off cruises. Most AT and CT data in this synthesis were measured from discrete samples using the same closed-cell potentiometric titration calibrated with Certified Reference Material, with an overall accuracy of ±4 µmol kg−1 for both AT and CT. The data are provided in two separate datasets – for the Global Ocean and the Mediterranean Sea (https://doi.org/10.17882/95414, Metzl et al., 2023), respectively – that offer a direct use for regional or global purposes, e.g., AT–salinity relationships, long-term CT estimates, and constraint and validation of diagnostic CT and AT reconstructed fields or ocean carbon and coupled climate–carbon models simulations as well as data derived from Biogeochemical-Argo (BGC-Argo) floats. When associated with other properties, these data can also be used to calculate pH, the fugacity of CO2 (fCO2) and other carbon system properties to derive ocean acidification rates or air–sea CO2 fluxes.

Continue reading ‘A synthesis of ocean total alkalinity and dissolved inorganic carbon measurements from 1993 to 2022: the SNAPO-CO2-v1 dataset (update)’

Severe 21st-century ocean acidification in Antarctic Marine Protected Areas

Antarctic coastal waters are home to several established or proposed Marine Protected Areas (MPAs) supporting exceptional biodiversity. Despite being threatened by anthropogenic climate change, uncertainties remain surrounding the future ocean acidification (OA) of these waters. Here we present 21st-century projections of OA in Antarctic MPAs under four emission scenarios using a high-resolution ocean–sea ice–biogeochemistry model with realistic ice-shelf geometry. By 2100, we project pH declines of up to 0.36 (total scale) for the top 200 m. Vigorous vertical mixing of anthropogenic carbon produces severe OA throughout the water column in coastal waters of proposed and existing MPAs. Consequently, end-of-century aragonite undersaturation is ubiquitous under the three highest emission scenarios. Given the cumulative threat to marine ecosystems by environmental change and activities such as fishing, our findings call for strong emission-mitigation efforts and further management strategies to reduce pressures on ecosystems, such as the continuation and expansion of Antarctic MPAs.

Continue reading ‘Severe 21st-century ocean acidification in Antarctic Marine Protected Areas’

Skeletal Mg content in common echinoderm species from Deception and Livingston Islands (South Shetland Islands, Antarctica) in the context of global change

Highlights

  • This is the first assessment of the Mg content in echinoderms from Deception and Livingston Islands.
  • Echinoderms showed interclass as well as inter- and intraspecific differences in their Mg content.
  • The sea stars displayed the highest Mg content levels, followed by the brittle stars and sea urchins.
  • The Mg content of echinoderms inhabiting Deception Island may be influenced by local environmental conditions.

Abstract

Echinoderms with high levels of magnesium (Mg) in their skeletons may be especially sensitive to ocean acidification, as the solubility of calcite increases with its Mg content. However, other structural characteristics and environmental/biological factors may affect skeletal solubility. To better understand which factors can influence skeletal mineralogy, we analyzed the Mg content of Antarctic echinoderms from Deception Island, an active volcano with reduced pH and relatively warm water temperatures, and Livingston Island. We found significant interclass and inter- and intraspecific differences in the Mg content, with asteroids exhibiting the highest levels, followed by ophiuroids and echinoids. Specimens exposed to hydrothermal fluids showed lower Mg levels, which may indicate local environmental effects. These patterns suggest that environmental factors such as seawater Mg2+/Ca2+ ratio and temperature may influence the Mg content of some echinoderms and affect their susceptibility to future environmental changes.

Continue reading ‘Skeletal Mg content in common echinoderm species from Deception and Livingston Islands (South Shetland Islands, Antarctica) in the context of global change’

Combined effect of anthropogenic and “natural” carbon on acidification of the subsurface ocean water at the tip of the Antarctic Peninsula

Abstract

Dissolved inorganic carbon, total alkalinity, and dissolved N2O samples of upper 500 m were collected at the tip of the Antarctic Peninsula during the 32nd Chinese Antarctic National Research Expedition. The pH and anthropogenic carbon were calculated and the results show that the patterns of anthropogenic carbon uptake and acidification progresses are different in two adjacent regions of this study area. In the region of Weddell-Scotia confluence, hydrographic processes such as convection prompt the transport of anthropogenic carbon into the subsurface layer, whereas in the region east of Powell Basin, where stratification existed, the downward transport of anthropogenic carbon to this depth is inhibited. However, the pH values indicate that the acidification status of the subsurface waters that are influenced by the above two hydrographic features are similar or even identical at a certain depth range. The progress of ocean acidification in the well-ventilated region are dominated by anthropogenic carbon uptake, while in the adjacent well-stratified region, anthropogenic carbon uptake and in situ remineralization of organic matter or horizontal advection of carbon rich water masses or both. In the later region, anthropogenic carbon uptake and in situ remineralization (or horizontal advection) contribute 40% and 60% to pH decline, respectively, suggesting that pH value in water mass of this region may significantly influenced by natural processes.

Key points

  • Vertical convection enhancing the intrusion of anthropogenic carbon into the subsurface layer at the tip of Antarctic Peninsula
  • Both anthropogenic carbon and remineralization will contribute to ocean acidification at the tip of Antarctic Peninsula
Continue reading ‘Combined effect of anthropogenic and “natural” carbon on acidification of the subsurface ocean water at the tip of the Antarctic Peninsula’

Transport of anthropogenic carbon from the Antarctic shelf to deep Southern Ocean triggers acidification

Abstract

Flow of dense shelf water provide an efficient mechanism for pumping CO2 to the deep ocean along the continental shelf slope, particularly around the Antarctic bottom water (AABW) formation areas where much of the global bottom water is formed. However, the contribution of the formation of AABW to sequestering anthropogenic carbon (Cant) and its consequences remain unclear. Here, we show prominent transport of Cant (25.0 ± 4.7 Tg C yr−1) into the deep ocean (>2,000 m) in four AABW formation regions around Antarctica based on an integrated observational data set (1974–2018). This maintains a lower Cant in the upper waters than that of other open oceans to sustain a stronger CO2 uptake capacity (16.9 ± 3.8 Tg C yr−1). Nevertheless, the accumulation of Cant can further trigger acidification of AABW at a rate of −0.0006 ± 0.0001 pH unit yr−1. Our findings elucidate the prominent role of AABW in controlling the Southern Ocean carbon uptake and storage to mitigate climate change, whereas its side effects (e.g., acidification) could also spread to other ocean basins via the global ocean conveyor belt.

Key points

  • We show evidence for the accumulation of Cant along the Antarctic shelf-slope into the deep ocean
  • The process of AABW formation drives Cant downward transport at 25.0 ± 4.7 Tg C yr−1, sustaining the CO2 uptake in the surface ocean
  • This further triggers acidification of AABW at a rate of −0.0006 ± 0.0001 pH unit yr−1, which is faster than in other deep oceans
Continue reading ‘Transport of anthropogenic carbon from the Antarctic shelf to deep Southern Ocean triggers acidification’

Observed amplification of the seasonal CO2 cycle at the Southern Ocean Time Series

The Subantarctic Zone, the circumpolar region of the Southern Ocean between the Subtropical and Subantarctic fronts, plays an important role in air-sea CO2 exchange, the storage of anthropogenic CO2, and the ventilation of the lower thermocline. Here we use a time series from moored platforms deployed between 2011 and 2021 as part of the Southern Ocean Time Series (SOTS) observatory to investigate the seasonality and interannual variability of upper ocean hydrography and seawater CO2 partial pressure (pCO2). The region is a net sink for atmospheric CO2 over the nearly 10-year record, with trends revealing that the ocean pCO2 may be increasing slightly faster than the atmosphere, suggesting that oceanic as well as anthropogenic atmospheric forcing contributes to the decadal change, which includes a decline in pH on the order of 0.003 yr−1. The observations also show an amplification of the seasonal cycle in pCO2, potentially linked to changes in mixed layer depth and biological productivity.

Continue reading ‘Observed amplification of the seasonal CO2 cycle at the Southern Ocean Time Series’

Editorial: the changing carbonate systems in coastal, estuarine, shelf areas and marginal seas

Editorial on the Research Topic
The changing carbonate systems in coastal, estuarine, shelf areas and marginal seas

Global atmospheric CO2 concentrations have increased from 320 ppm in the 1960s to the present-day value of 420 ppm, primarily due to anthropogenic activities. This increase influences the seawater carbonate system, impacting the marine ecosystem. There are still gaps that need to be resolved for predicting how these marine systems respond to current and future CO2 levels. Any actions to mitigate the change in pH will require adaptive management of multiple stressors across several spatial scales. Combined, these perspectives yield a more comprehensive picture of events during ocean acidification (OA).

This Research Topic brings together articles from different regions, including coastal, estuarine, and shelf areas and marginal seas, all susceptible to changing atmospheric conditions, riverine inputs, air-sea CO2 exchanges, and multiple acid-base reactions that can alter carbonate chemistry. Articles on the long-term trends of CO2 system descriptors and the interactions with calcifying organisms were also sought. The present Research Topic is primarily based on original articles devoted to carbonate systems in the marginal seas, but it is a pity that some interesting papers dealing with freshwater inflows, estuaries, and related coastal areas were not accepted.

Fransson et al. examined the effects of glacial and sea-ice meltwater on ocean acidification in the waters near the 79 North Glacier (79 NG) and the northeast Greenland shelf. The researchers investigated various ocean acidification factors and the influence of freshening, primary production, and air-sea CO2 exchange. One of the key findings was that the biological removal of CO2 through primary production played a crucial role in offsetting the negative impact of freshwater dilution on the aragonite saturation state (ΩAr), which is a measure of ocean acidification. This compensation effect was most pronounced in 2012, especially in the vicinity of the 79 NG front, where there was a significant presence of glacial meltwater and surface stratification. In 2016, a different scenario was observed, with a more homogenized water column due to sea-ice meltwater. In this case, the compensation effect of biological CO2 removal on ΩAr was weaker compared to 2012. The study also suggests that in the future, with ongoing climate and ocean chemistry changes, the increasing influence of meltwater may surpass the mitigating effects of biological CO2 removal. This could lead to unfavorable conditions for organisms that rely on calcium carbonate for their shells and skeletons. Thus, all the proposed factors need to be closely monitored as they could have significant implications for marine ecosystems and calcifying organisms in the face of ongoing environmental changes.

Continue reading ‘Editorial: the changing carbonate systems in coastal, estuarine, shelf areas and marginal seas’

Global synthesis of the status and trends of ocean acidification impacts on shelled pteropods

The accumulation of anthropogenic CO₂ in the ocean has major ecological, socioeconomic, and biogeochemical impacts, with repercussions for the ocean as a critical carbon sink. Ocean acidification (OA) disproportionately affects marine calcifiers, among which pelagic zooplanktonic pteropods play a significant role in carbonate export. The pteropod, due to the susceptibility of its aragonite shell to rapid dissolution, is one of most vulnerable groups and a key indicator for OA regional monitoring, but its regional sensitivities have not yet been extrapolated over global scales. To delineate spatial and temporal changes in pteropod shell dissolution, global OA status and the OA rate of change were evaluated, based on gridded climatologies of observations and using a Regional Ocean Modeling System (ROMS) biogeochemical/ecosystem model. Pteropods, which dominate in the polar and subpolar regions, are characterized by low aragonite saturation state and low buffering capacity, where extended pteropod subsurface dissolution is projected. We show that pteropods are most susceptible to OA in the polar regions, subpolar North Pacific, and eastern boundary upwelling system regions, particularly the California and Humboldt Current Systems. Rates of acidification and corresponding increases in pteropod shell dissolution are projected to be the fastest in the North and South Equatorial Currents. These are the regions with the greatest impacts on pteropods and biogeochemical implications.

Continue reading ‘Global synthesis of the status and trends of ocean acidification impacts on shelled pteropods’

Interactive effects of ocean acidification and temperature on oxygen uptake rates in Calanus hyperboreus nauplii

The Arctic region is undergoing rapid and significant changes, characterized by high rates of acidification and warming. These transformations prompt critical questions about the resilience of marine communities in the face of environmental change. In the Arctic, marine zooplankton and in particular calanoid copepods play a vital role in the food web. Changes in environmental conditions could disrupt zooplankton communities, posing detrimental consequences for the entire ecosystem. Copepod early-life stages have been shown to be particularly sensitive to environmental stressors since they represent a bottleneck in the life cycle. Here, we investigated the responses of 4-day old Calanus hyperboreus nauplii when exposed to acidification (pH 7.5 and 8.1) and warming (0 and 3°C), both independently and in combination. Naupliar respiration rates increased when exposed to a combination of acidification and warming, but not when exposed to the stressors individually. Moreover, we found no discernible differences in lipid content and fatty acid (FA) composition of the nauplii across the different experimental treatments. Wax esters accounted for approximately 75% of the lipid reserves, and high amounts of long chain fatty acids 20:1 and 22:1, crucial for the reproduction cycle in copepods, were also detected. Our results indicate a sensitivity of these nauplii to a combination of acidification and warming, but not to the individual stressors, aligning with a growing body of evidence from related studies. This study sheds light on the potential implications of global change for Arctic copepod populations by elucidating the responses of early-life stages to these environmental stressors.

Continue reading ‘Interactive effects of ocean acidification and temperature on oxygen uptake rates in Calanus hyperboreus nauplii’

The Southern Ocean carbon and climate observations and modeling (SOCCOM) project: a review

Highlights

  • SOCCOM has deployed >260 BGC-Argo floats with O2, NO3, pH and bio-optical sensors.
  • SOCCOM floats operate throughout the Southern Ocean including the seasonal ice zone.
  • All SOCCOM float data is freely available in real-time.
  • A Biogeochemical Southern Ocean State Estimate (BSOSE) assimilates float data.
  • Float data and BSOSE are used with coupled models to better understand climate.

Abstract

The Southern Ocean serves as the primary gateway through which the intermediate, deep, and bottom waters of the ocean interact with the surface ocean (and thus the atmosphere), and it has a profound influence on the oceanic uptake of anthropogenic carbon and heat as well as nutrient resupply from the abyss to the surface. Yet it has been the least observed and understood region of the world ocean. The Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) project was implemented in 2014 with a goal to help remedy this deficit in observations and understanding. The SOCCOM project is based on two major advances that have the potential to transform understanding of the Southern Ocean. The first is the development of new biogeochemical sensors mounted on autonomous profiling floats that allow sampling of ocean biogeochemistry in 3-dimensional space. Floats may detect processes with a temporal resolution that ranges from hours to years. The second is that the climate modeling community finally has the computational resources and physical understanding to develop fully coupled climate models that can represent crucial, mesoscale processes in the Southern Ocean, as well as corresponding models that assimilate observations to produce a state estimate. The observational component, based on deployment of profiling floats with oxygen, nitrate, pH and bio-optical sensors, is generating vast amounts of new biogeochemical data that provide a year-round view of the Southern Ocean from the surface to 2000 m. The modeling effort is applying these observations and enhancing our understanding of the current ocean, and reducing uncertainty in projections of future carbon and nutrient cycles and climate. After nine years of operation, including a project renewal in the sixth year, the SOCCOM project has deployed more than 260 profiling floats. These floats have collected over 27,000 vertical profiles throughout the Southern Ocean. A data-assimilating biogeochemical state estimate model has been implemented. Here, the design of the SOCCOM project is reviewed and the scientific results that have been obtained are described. The project’s capability to help meet the observing system priorities outlined for a notional UN Decade for Ocean Sciences Southern Ocean observing system is assessed.

Continue reading ‘The Southern Ocean carbon and climate observations and modeling (SOCCOM) project: a review’

Molecular responses in an Antarctic bivalve and an ascidian to ocean acidification

Highlights

  • The non-calcifying species Cnemidocarpa verrucosa sp. A showed a greater number of differentially expressed genes than the calcifying Aequiyoldia eightsii.
  • The Ocean Acidification caused an upregulation of genes involved in the immune system and antioxidant response in the ascidian Cnemidocarpa verrucosa sp. A.
  • The abundance of the key marine organisms (such as Cnemidocarpa verrucosa), could be affected by Ocean Acidification if pH predictions for polar regions come true.
  • Contrary to expected, Ocean Acidification could not affect the mollusk Aequiyoldia eightsii compared to the non-calcifying species.

Abstract

Southern Ocean organisms are considered particularly vulnerable to Ocean acidification (OA), as they inhabit cold waters where calcite-aragonite saturation states are naturally low. It is also generally assumed that OA would affect calcifying animals more than non-calcifying animals. In this context, we aimed to study the impact of reduced pH on both types of species: the ascidian Cnemidocarpa verrucosa sp. A, and the bivalve Aequiyoldia eightsii, from an Antarctic fjord. We used gene expression profiling and enzyme activity to study the responses of these two Antarctic benthic species to OA. We report the results of an experiment lasting 66 days, comparing the molecular mechanisms underlying responses under two pCO2 treatments (ambient and elevated pCO2). We observed 224 up-regulated and 111 down-regulated genes (FC ≥ 2; p-value ≤ 0.05) in the ascidian. In particular, the decrease in pH caused an upregulation of genes involved in the immune system and antioxidant response. While fewer differentially expressed (DE) genes were observed in the infaunal bivalve, 34 genes were up-regulated, and 69 genes were downregulated (FC ≥ 2; p-value ≤ 0.05) in response to OA. We found downregulated genes involved in the oxidoreductase pathway (such as glucose dehydrogenase and trimethyl lysine dioxygenase), while the heat shock protein 70 was up-regulated. This work addresses the effect of OA in two common, widely distributed Antarctic species, showing striking results. Our major finding highlights the impact of OA on the non-calcifying species, results that differ from the general trend, in which one remarks the higher impact on calcifying species. Our result proposes a deep discussion about the potential effect on non-calcifying species, such as ascidians, a diverse and abundant group, that form extended three-dimensional clusters in the shallow waters and shelf areas along the Southern Ocean.

Continue reading ‘Molecular responses in an Antarctic bivalve and an ascidian to ocean acidification’

A synthesis of SNAPO-CO2 ocean total alkalinity and total dissolved inorganic carbon measurements from 1993 to 2022

Total alkalinity (AT) and total dissolved inorganic carbon (CT) in the oceans are important properties to understand the ocean carbon cycle and its link with climate change (ocean carbon sinks and sources) or global change (ocean acidification). We present a data-base of more than 44 400 AT and CT observations in various ocean regions obtained since 1993 mainly in the frame of French projects. This includes both surface and water columns data acquired in open oceans, coastal zones and in the Mediterranean Sea and either from time-series or punctual cruises. Most AT and CT data in this synthesis were measured from discrete samples using the same closed-cell potentiometric titration calibrated with Certified Reference Material, with an overall accuracy of ± 4 µmol kg-1 for both AT and CT. Given the lack of observations in the Indian and Southern Oceans, we added sea surface underway AT and CT data obtained in 1998–2018 in the frame of OISO cruises and in 2019 during the CLIM-EPARSES cruise measured onboard using the same technique. Separate datasets for the global ocean, and for the Mediterranean Sea are provided in a single format (https://doi.org/10.17882/95414, Metzl et al., 2023) that offers a direct use for regional or global purposes, e.g. AT/Salinity relationships, long-term CT estimates, constraint and validation of diagnostics CTAT reconstructed fields or ocean carbon and coupled climate/carbon models simulations, as well as data derived from BG-ARGO floats. When associated with other properties, these data can also be used to calculate pH, fugacity of CO2 (fCO2) and other carbon systems properties to derive ocean acidification rates or air-sea CO2 fluxes.

Continue reading ‘A synthesis of SNAPO-CO2 ocean total alkalinity and total dissolved inorganic carbon measurements from 1993 to 2022’

Rising snow line: Ocean acidification and the submergence of seafloor geomorphic features beneath a rising carbonate compensation depth

Highlights

  • Ocean acidification has caused the carbonate compensation depth (CCD) to rise by ~98 m.
  • Seafloor area below the CCD has increased by 3.6% in the last 200 years.
  • Risk of impact of rising CCD is greatest in the western equatorial Atlantic Ocean.
  • Different geomorphic features impacted by rising CCD in different ocean areas.

Abstract

Due to burning of fossil fuels, carbon dioxide is being absorbed by the ocean where its chemical conversion to carbonic acid has already caused the surface ocean to become more acidic than it has been for at least the last 2 million years. Global ocean modeling suggests that the carbonate compensation depth (CCD) has already risen by nearly 100 m on average since pre-industrial times and will likely rise further by several hundred meters more this century. Potentially millions of square kilometres of ocean floor will undergo a rapid transition in terms of the overlying water chemistry whereby calcareous sediment will become unstable causing the carbonate “snow line” to rise.We carried out a spatial analysis of seafloor geomorphology to assess the area newly submerged below the rising CCD. We found that shoaling of the CCD since the industrial revolution has submerged 12,432,096 km2 of ocean floor (3.60% of total ocean area) below the CCD. Further hypothetical shoaling of the CCD by 100 m increments illustrated that the surface area of seafloor submerged below the CCD has risen by 14% with 300 m of shoaling, such that 51% of the ocean area will be below the CCD. All categories of geomorphic feature mapped in one global database intersect the lysocline and will be (or already are) submerged below the CCD with much regional variation since the rise in CCD depth during the last 150 years varies significantly between different ocean regions. For seamounts, the highest percentages of increase in area submerged below the CCD occurred in the Southern Indian Ocean and the South West Atlantic regions (6.3% and 5.9%, respectively). For submarine canyons we found the South West Atlantic increased from 3.9% in pre-industrial times to 8.0% at the present time, the highest percentage of canyons found below the CCD in any ocean region.We also carried out a relative risk assessment for future submergence of ocean floor below the CCD in 17 ocean regions. In our assessment we assumed that the change in CCD from pre-industrial times to the present is an indicator of the likelihood and the change in percentage of seafloor submerged below the CCD due to a hypothetical 300 m rise in the CCD is an indicator of the consequences. We found that the western equatorial Atlantic is at high risk and 9 other Ocean Regions are at moderate risk. Overall, geomorphic features in the Atlantic Ocean and southern Indian Ocean are at greater risk of impact from a rising CCD than Pacific and other Indian Ocean regions.A separate analysis of the Arctic Ocean points to the possible submergence of glacial troughs incised on the continental shelf within a mid-depth (400–800 m) acidified water mass. We also found that the area of national Exclusive Economic Zones submerged below the rising CCD exhibits extreme variability; with 300 m of CCD shoaling we found a > 12% increase in area submerged below the CCD for 23 national EEZs, whereas there was virtually no change for other countries.

Continue reading ‘Rising snow line: Ocean acidification and the submergence of seafloor geomorphic features beneath a rising carbonate compensation depth’

Physiological response of an Antarctic cryptophyte to increasing temperature, CO2, and irradiance

The Southern Ocean, a globally important CO2 sink, is one of the most susceptible regions in the world to climate change. Phytoplankton of the coastal shelf waters around the Western Antarctic Peninsula have been experiencing rapid warming over the past decades and current ongoing climatic changes will expose them to ocean acidification and high light intensities due to increasing stratification. We conducted a multiple-stressor experiment to evaluate the response of the still poorly studied key Antarctic cryptophyte species Geminigera cryophila to warming in combination with ocean acidification and high irradiance. Based on the thermal growth response of G. cryophila, we grew the cryptophyte at suboptimal (2°C) and optimal (4°C) temperatures in combination with two light intensities (medium light: 100 μmol photons m−2 s−1 and high light [HL]: 500 μmol photons m−2 s−1) under ambient (400 μatm pCO2) and high pCO2 (1000 μatm pCO2) conditions. Our results reveal that G. cryophila was not susceptible to high pCO2, but was strongly affected by HL at 2°C, as both growth and carbon fixation were significantly reduced. In comparison, warming up to 4°C stimulated the growth of the cryptophyte and even alleviated the previously observed negative effects of HL at 2°C. When grown, however, at temperatures above 4°C, the cryptophyte already reached its maximal thermal limit at 8°C, pointing out its vulnerability toward even higher temperatures. Hence, our results clearly indicate that warming and high light and not pCO2 control the growth of G. cryophila.

Continue reading ‘Physiological response of an Antarctic cryptophyte to increasing temperature, CO2, and irradiance’

Variations in the Southern Ocean carbonate production, preservation, and hydrography for the past 41, 500 years: evidence from coccolith and CaCO3 records

Changes in ocean alkalinity affect atmospheric pCO2 (i.e., higher alkalinity lowers atmospheric pCO2). Ocean alkalinity is partly determined by sedimentary burial of carbonates, which is primarily controlled by carbonate flux and the degree of deep ocean carbonate saturation. In this study, we investigate the factors determining the coccolith burial in subantarctic sediments and the surface ocean changes in the subtropical South Indian Ocean. The downcore coccolith records from the subantarctic region (SK200/22a) of the Indian sector of the Southern Ocean display low coccolith concentration during the glacial period. A possible explanation for this is, 1) the low glacial production of coccolithophores due to the competition from diatoms and 2) dilution by biogenic silica in the glacial sediments. Additionally, reduced carbonate burial owing to the low carbonate saturation of the deep-water accounts for the decline in glacial coccolith concentration. This also explains the low coccolith dissolution index and enrichment of the large dissolution-resistant coccolith species, Coccolithus pelagicus subsp. braarudii in the glacial sediments. The low carbonate saturation is attributed to, 1) the replacement of carbonate saturated, North Atlantic Deep Waters by the undersaturated southern sourced water masses and 2) increased storage of dissolved CO2 in the deep glacial Southern Ocean. Our study suggests that changes in coccolith production and the deep ocean carbonate saturation determine their burial in subantarctic sediments for the last 41,500 years. Other than these changes, the study region also records the changes in the Agulhas Return Current via variation in the proportion of tropical-subtropical coccolith assemblage.

Continue reading ‘Variations in the Southern Ocean carbonate production, preservation, and hydrography for the past 41, 500 years: evidence from coccolith and CaCO3 records’

Severe 21st-century ocean acidification demands continuance and expansion of Antarctic Marine Protected Areas

Antarctic coastal waters are home to several established or proposed Marine Protected Areas (MPAs) supporting exceptional biodiversity, which is threatened by anthropogenic climate change. Despite a particular sensitivity to ocean acidification (OA), little is known about the future carbonate chemistry of high-latitude Southern Ocean waters. Here, we use a high resolution ocean–sea ice–biogeochemistry model with realistic ice-shelf geometry to investigate 21st-century OA in Antarctic MPAs under four emission scenarios. By 2100, we project surface pH declines of up to 0.42 (total scale), corresponding to a 161% increase in hydrogen ion concentration relative to the 1990s. End-of-century aragonite undersaturation is ubiquitous across MPAs under the three highest emission scenarios. Vigorous vertical mixing of anthropogenic carbon on the continental shelves produces severe OA within the Weddell Sea, East Antarctic, and Ross Sea MPAs. Our findings call for continuity and expansion of Antarctic MPAs to reduce pressures on ecosystem integrity.

Continue reading ‘Severe 21st-century ocean acidification demands continuance and expansion of Antarctic Marine Protected Areas’

Reduction in size of the calcifying phytoplankton Calcidiscus leptoporus to environmental changes between the Holocene and modern Subantarctic Southern Ocean

The Subantarctic Zone of the Southern Ocean plays a disproportionally large role on the Earth system. Model projections predict rapid environmental change in the coming decades, including ocean acidification, warming, and changes in nutrient supply which pose a serious risk for marine ecosystems. Yet despite the importance of the Subantarctic Zone, annual and inter-annual time series are extremely rare, leading to important uncertainties about the current state of its ecosystems and hindering predictions of future response to climate change. Moreover, as the longest observational time series available are only a few decades long, it remains unknown whether marine pelagic ecosystems have already responded to ongoing environmental change during the industrial era. Here, we take advantage of multiple sampling efforts – monitoring of surface layer water properties together with sediment trap, seafloor surface sediment and sediment core sampling – to reconstruct the modern and pre-industrial state of the keystone calcifying phytoplankton Calcidiscus leptoporus, central to the global marine carbonate cycle. Morphometric measurements reveal that modern C. leptoporus coccoliths are 15% lighter and 25% smaller than those preserved in the underlying Holocene-aged sediments. The cumulative effect of multiple environmental drivers appears responsible for the coccolith size variations since the Last Deglaciation, with warming and ocean acidification most likely playing a predominant role during the industrial era. Notably, extrapolation of our results suggests a future reduction in cell and coccolith size which will have a negative impact on the efficiency of the biological pump in the Southern Ocean through a reduction of carbonate ballasting. Lastly, our results tentatively suggest that C. leptoporus coccolith size could be used as a palaeo-proxy for growth rate. Future culture experiments will be needed to test this hypothesis.

Continue reading ‘Reduction in size of the calcifying phytoplankton Calcidiscus leptoporus to environmental changes between the Holocene and modern Subantarctic Southern Ocean’

A shift in the mechanism of CO2 uptake in the Southern Ocean under high emission-scenario

The Southern Ocean is a major region of ocean carbon uptake, but its future changes remain uncertain under climate warming. Here we show the projected shift in the Southern Ocean CO2 sink using a suite of Earth System Models, revealing changes in the mechanism, position and seasonality of the carbon uptake. Dominant CO2 uptake shifts from the Subtropical to the Antarctic region under the high-emission scenario by the end of the 21st century. The warming-driven sea-ice melt, increased ocean stratification, mixed layer shoaling, and a weaker vertical carbon gradient will together reduce the winter outgassing in the future, which will trigger the switch from mixing-driven outgassing to solubility-driven uptake in the Antarctic region during the winter season. The future Southern Ocean carbon sink will be poleward-shifted, operating in a hybrid mode between biologically-driven summertime and solubility-driven wintertime uptake with further amplification of biological uptake by the increasing Revelle Factor.

Continue reading ‘A shift in the mechanism of CO2 uptake in the Southern Ocean under high emission-scenario’

Subscribe

Search

  • Reset

OA-ICC Highlights

Resources