Anthropogenic CO2 emissions drive ocean acidification (OA). Trichodesmium, a key marine N2 fixer, displays contrasting growth responses to OA across morphotypes, with negative responses in free trichomes but neutral or positive in colonies. However, the lack of mechanistic understanding for these discrepancies has impaired our ability to predict the ecophysiological response of Trichodesmium in the changing ocean. Here, we developed ecophysiological models of Trichodesmium and underpin mechanisms behind contrasting responses to OA by distinct morphological adaptations. For free trichomes, our diurnal model corroborated previous findings that OA impairs nitrogenase efficiency and photosynthetic energy production. In colonies, however, OA alleviated copper and ammonia toxicity within the microenvironment, potentially with increased iron acquisition synergies, outweighing the minor effects of inorganic carbon limitation relief in the colony center. Projections suggest that globally, OA will reduce N2 fixation of trichomes by 16±6% but increase that of colonies by 19±24% within this century. By resolving morphotype-specific mechanisms, our study clarifies Trichodesmium’s adaptive strategies, which may enable it to sustain its competitiveness and biogeochemical impacts in the changing ocean.
Continue reading ‘Colony formation sustains the global competitiveness of N2-fixing Trichodesmium under ocean acidification’Posts Tagged 'nitrogen fixation'
Colony formation sustains the global competitiveness of N2-fixing Trichodesmium under ocean acidification
Published 10 November 2025 Science ClosedTags: biological response, growth, individualmodeling, modeling, nitrogen fixation, photosynthesis, primary production, prokaryotes
The effects of ocean acidification on the epiphytic bacterial community of Sargassum thunbergii via high-throughput sequencing
Published 11 September 2025 Science ClosedTags: abundance, adaptation, algae, biological response, BRcommunity, community composition, laboratory, molecular biology, nitrogen fixation, North Pacific, otherprocess, physiology, prokaryotes
Marine macroalgae and their epiphytic bacteria have established a symbiotic relationship. Although the effects of ocean acidification (OA) on macroalgae have been extensively studied, its impact on these epiphytic bacteria remains unclear. This study investigated the OA-induced shifts in the epiphytic bacterial community of Sargassum thunbergii from Qingdao’s intertidal zone using 16S rDNA sequencing. The results indicated that elevated CO2 altered bacterial community structure and function, reducing diversity while maintaining dominant taxa but significantly changing their relative abundances. The abundances of Proteobacteria, Firmicutes, and Verrucomicrobiota declined, whereas Campylobacterota, Desulfobacterota, and Spirochaetota increased. The specific phyla like Cloacimonadota, Calditrichota and Entotheonellaeota also emerged. These shifts were linked to the environmental adaptability and stress resistance of epiphytic bacteria as well as the metabolic activities of the host algae, particularly in protein and fatty acid degradation.
Functional predictions revealed that OA primarily affected nitrogen and sulfur metabolism in the epiphytic bacterial community, with effects intensifying over time. Specifically, nitrogen fixation increased, while dark oxidation of sulfur compounds, dark sulfite oxidation, and dark sulfur oxidation decreased. In conclusion, ocean acidification directly induced changes in the abundance of epiphytic bacterial taxa with varying stress resistance and adaptability. Simultaneously, it promoted shifts in bacterial taxa closely associated with the host algal metabolic activities, ultimately reshaping the epiphytic bacterial community on S. thunbergii. These findings provided new insights into the macroalgae-epiphytic bacteria interactions under ocean acidification and provided important guidance for macroalgal cultivation.
Continue reading ‘The effects of ocean acidification on the epiphytic bacterial community of Sargassum thunbergii via high-throughput sequencing’Microbe-host associations as drivers of benthic carbon and nitrogen cycling in a changing Mediterranean Sea
Published 14 April 2025 Science ClosedTags: biological response, BRcommunity, field, Mediterranean, nitrogen fixation, otherprocess, phanerogams, primary production, respiration, vents
Seagrasses, such as the endemic Mediterranean species Posidonia oceanica, are critical components of coastal marine ecosystems, providing essential ecosystem services, including carbon sequestration, nutrient cycling, and habitat formation. P. oceanica forms extensive meadows that serve as biodiversity hotspots and play a crucial role in mitigating climate change through long-term carbon storage. Despite their ecological significance, the interactions between P. oceanica and associated organisms, as well as their combined contributions to biogeochemical cycling, remain poorly understood, particularly under changing environmental conditions. This thesis explores the carbon and nitrogen cycling processes within the P. oceanica holobiont, focusing on the epiphytic and microbial communities, microbial driven metabolic processes, and the interaction between P. oceanica and larger associated invertebrates, such as the sponge Chondrilla nucula. Through field and laboratory experiments, this work demonstrates the significant role of epiphytic algae in the primary production of the seagrass holobiont, contributing a substantial portion of net primary production. Nitrogen cycling processes such as N₂ fixation, nitrification, and denitrification in the seagrass phyllosphere were quantified, revealing their importance in meeting the N demands of the seagrass holobiont, especially under natural ocean acidification conditions. Experiments near marine CO₂ vents indicated that ocean acidification accelerates net primary production and nitrogen cycling, while the structure of the microbial community associated with P. oceanica leaves remains largely stable. The facultative mutualism between P. oceanica and the sponge C. nucula further highlights the complexity of the seagrass holobiont. P. oceanica releases dissolved organic carbon, which meets a portion of the sponge’s respiratory carbon demand. Conversely, C. nucula releases dissolved inorganic nitrogen, including ammonium and nitrate generated by microbial nitrification, which supports seagrass growth. Stable isotope analysis suggests that the association facilitates nutrient exchange, with P. oceanica preferentially absorbing sponge-derived ammonium, while epiphytes may benefit from sponge-produced nitrate. This dynamic reduces seasonal fluctuations in productivity, stabilizing the seagrass ecosystem during periods of senescence. Sponge-associated nitrification contributes to the nitrogen budget of the seagrass holobiont, potentially reducing nutrient limitations in oligotrophic Mediterranean waters. The microbiome of C. nucula plays a key role in these processes, harboring nitrifiers that mediate the production of nitrate. High-throughput sequencing revealed taxonomic diversity among microbes associated with both the sponge and seagrass, including microorganisms involved in carbon and nitrogen cycling processes. These microbial communities not only mediate nutrient exchange within the seagrass-sponge association but also contribute to the overall resilience and productivity of the ecosystem. This thesis highlights the intricate interactions within the P. oceanica holobiont and its nested ecosystem with C. nucula. These findings underscore the importance of microbial and epiphytic communities in maintaining the resilience and productivity of seagrass meadows, particularly in nutrient-poor environments like the Mediterranean Sea. This research enhances our understanding of the biogeochemical processes that support seagrass ecosystem stability and provides valuable insights to guide conservation efforts in the face of climate change and anthropogenic pressures.
Continue reading ‘Microbe-host associations as drivers of benthic carbon and nitrogen cycling in a changing Mediterranean Sea’Iron and phosphorus limitations modulate the effects of carbon dioxide enrichment on a unicellular nitrogen-fixing cyanobacterium
Published 21 January 2025 Science ClosedTags: biological response, growth, laboratory, multiple factors, nitrogen fixation, nutrients, physiology, prokaryotes
Iron (Fe) and phosphorus (P) availability constrain the growth and N2 fixation of diazotrophic cyanobacteria in the global ocean. However, how Fe and P limitation may modulate the effects of ocean acidification on the unicellular diazotrophic cyanobacterium Crocosphaera remains largely unknown. Here, we examined the physiological responses of Crocosphaera watsonii WH8501 to CO2 enrichment under both nutrient-replete and steadily Fe- or P-limited conditions. Increased CO2 (750 μatm vs. 400 μatm) reduced the growth and N2 fixation rates of Crocosphaera, with Fe limitation intensifying the negative effect, whereas CO2 enrichment had a minimal impact under P limitation. Mechanistically, the high CO2 treatment may have led to a reallocation of limited Fe to nitrogenase synthesis to compensate for the reduction in nitrogenase efficiency caused by low pH; consequently, other Fe-requiring metabolic pathways, such as respiration and photosynthesis, were impaired, which in turn amplified the negative effects of acidification. Conversely, under P limitation, CO2 enrichment had little or no effect on cellular P allocation among major P-containing molecules (polyphosphate, phospholipids, DNA, and RNA). Cell volumes were significantly reduced in P-limited and high CO2 cultures, which increased the surface : volume ratio and could facilitate nutrient uptake, thereby alleviating some of the negative effect of acidification on N2 fixation. These findings highlight the distinct responses of Crocosphaera to high CO2 under different nutrient conditions, improving a predictive understanding of global N2 fixation in future acidified oceans.
Continue reading ‘Iron and phosphorus limitations modulate the effects of carbon dioxide enrichment on a unicellular nitrogen-fixing cyanobacterium’Uptake of dissolved inorganic nitrogen and N2 fixation by Crocosphaera watsonii under climate change scenarios
Published 22 July 2024 Science ClosedTags: abundance, biological response, chemistry, growth, laboratory, multiple factors, nitrogen fixation, otherprocess, physiology, prokaryotes, temperature
The response of N2 fixation to projected future conditions in the ocean cannot be reliably predicted to date. We conducted a minicosm experiment with pre-acclimated cultures of the globally significant diazotroph Crocosphaera watsonii strain WH8501 (“Crocosphaera”). PH and temperature were altered simultaneously to match the RCP scenarios 4.5 and 6 and investigate a more realistic future scenario compared to studies that focus on changes of a single stressor only. The cell abundance and nitrogen metabolism of Crocosphaera was monitored over 5 days. Our results imply that Crocosphaera is able to simultaneously perform N2 fixation and assimilate dissolved inorganic nitrogen (DIN, i.e., nitrate and ammonium) under all the conditions tested and implies a competition with non-diazotrophic phytoplankton for DIN, which should be further investigated. Using NanoSIMS analysis of single cells, our results point towards a preference for DIN assimilation over N2 fixation under more acidic and warmer conditions. Overall, our results show that while the combined alteration of pH and temperature had a negative effect on the diazotroph’s growth and N2 fixation, Crocosphaera is likely to cope well with conditions in the future ocean. The high intra-population variability in nitrogen assimilation pathways may give this species the flexibility to quickly react to environmental changes.
Continue reading ‘Uptake of dissolved inorganic nitrogen and N2 fixation by Crocosphaera watsonii under climate change scenarios’Effects of CO2 on the nitrogen isotopic composition of Trichodesmium and Crocosphaera
Published 11 April 2024 Science ClosedTags: biogeochemistry, biological response, chemistry, growth, laboratory, nitrogen fixation, physiology, prokaryotes
Biological nitrogen (N2) fixation is the main input of fixed nitrogen to ecosystems on Earth. Nitrogen isotope fractionation during this process is a key parameter for understanding the nitrogen cycle, however, relatively little is known about its regulatory mechanisms. Here we examine the effects of varying CO2 concentrations on biomass δ15N signatures of the cyanobacterial diazotrophs Trichodesmium erythraeum and Crocosphaera watsonii. We show that these organisms produce biomass up to ~3 ‰ lower in δ15N under either decreased (~180 µatm) or elevated (~1400 µatm) CO2 concentrations in comparison to modern levels (~380 µatm). Our results pointed towards changes in nitrogenase enzyme efficiency in response to CO2 perturbations impacting isotopic fractionation during N2 fixation and thus the biomass δ15N. This study contributes to an improved interpretation of the observed fluctuations in the δ15N records, and thus the past nitrogen cycle on Earth.
Continue reading ‘Effects of CO2 on the nitrogen isotopic composition of Trichodesmium and Crocosphaera’Accelerated nitrogen cycling on Mediterranean seagrass leaves at volcanic CO2 vents
Published 22 March 2024 Science ClosedTags: adaptation, biogeochemistry, biological response, laboratory, Mediterranean, molecular biology, nitrogen fixation, otherprocess, phanerogams, physiology, prokaryotes, protists, vents
Seagrass meadows form highly productive and diverse ecosystems in coastal areas worldwide, where they are increasingly exposed to ocean acidification (OA). Efficient nitrogen (N) cycling and uptake are essential to maintain plant productivity, but the effects of OA on N transformations in these systems are poorly understood. Here we show that complete N cycling occurs on leaves of the Mediterranean seagrass Posidonia oceanica at a volcanic CO2 vent near Ischia Island (Italy), with OA affecting both N gain and loss while the epiphytic microbial community structure remains largely unaffected. Daily leaf-associated N2 fixation contributes to 35% of the plant’s N demand under ambient pH, while it contributes to 45% under OA. Nitrification potential is only detected under OA, and N-loss via N2 production increases, although the balance remains decisively in favor of enhanced N gain. Our work highlights the role of the N-cycling microbiome in seagrass adaptation to OA, with key N transformations accelerating towards increased N gain.
Continue reading ‘Accelerated nitrogen cycling on Mediterranean seagrass leaves at volcanic CO2 vents’Changes in isotope fractionation during nitrate assimilation by marine eukaryotic and prokaryotic algae under different pH and CO2 conditions
Published 13 March 2024 Science ClosedTags: algae, biological response, nitrogen fixation, physiology
The impact of environmental factors on nitrogen (N) and oxygen (O) isotope effects during algal nitrate assimilation causes uncertainty in the field application of sedimentary N isotope records and nitrate isotopes to understand the marine nitrogen cycle. Ocean acidification is predicted to change nitrogen cycling including nitrate assimilation, but how N and O isotope effects during algal nitrate assimilation vary in response to changes in seawater pH and partial pressure CO2 (pCO2) remains unknown. We measured N and O isotope effects during nitrate assimilation and physiological states of the marine diatom Thalassiosira weissflogii and Synechococcus under different pH (8.1 or 7.8) and pCO2 (400 or 800 μatm) conditions. Low pH and/or high pCO2 equally decreased N and O isotope effects during nitrate assimilation by diatoms possibly due to reducing cellular nitrate efflux/uptake ratio and decreased isotope effects for nitrate uptake, whereas they did not affect those by Synechococcus with low intracellular nitrate concentration and limited nitrate efflux. Our results provide compelling experimental evidence showing different changes in N and O isotope effects during nitrate assimilation by marine eukaryotic and prokaryotic phytoplankton at low pH and/or high pCO2. These findings suggest new insight into environmental controls on variability in the isotope effect during algal nitrate assimilation, and have implications for improving a predictive understanding of N and O isotope tools in acidified oceans.
Continue reading ‘Changes in isotope fractionation during nitrate assimilation by marine eukaryotic and prokaryotic algae under different pH and CO2 conditions’Microbial associates of an endemic Mediterranean seagrass enhance the access of the host and the surrounding seawater to inorganic nitrogen under ocean acidification
Published 21 November 2023 Science ClosedTags: biogeochemistry, biological response, BRcommunity, field, Mediterranean, molecular biology, nitrogen fixation, otherprocess, phanerogams, physiology, primary production, prokaryotes, vents
Seagrasses are important primary producers in oceans worldwide. They live in shallow coastal waters that are experiencing carbon dioxide enrichment and ocean acidification. Posidonia oceanica, an endemic seagrass species that dominates the Mediterranean Sea, achieves high abundances in seawater with relatively low concentrations of dissolved inorganic nitrogen. Here we tested whether microbial metabolisms associated with P. oceanica and surrounding seawater enhance seagrass access to nitrogen. Using stable isotope enrichments of intact seagrass with amino acids, we showed that ammonification by free-living and seagrass-associated microbes produce ammonium that is likely used by seagrass and surrounding particulate organic matter. Metagenomic analysis of the epiphytic biofilm on the blades and rhizomes support the ubiquity of microbial ammonification genes in this system. Further, we leveraged the presence of natural carbon dioxide vents and show that the presence of P. oceanica enhanced the uptake of nitrogen by water column particulate organic matter, increasing carbon fixation by a factor of 8.6–17.4 with the greatest effect at CO2 vent sites. However, microbial ammonification was reduced at lower pH, suggesting that future ocean climate change will compromise this microbial process. Thus, the seagrass holobiont enhances water column productivity, even in the context of ocean acidification.
Continue reading ‘Microbial associates of an endemic Mediterranean seagrass enhance the access of the host and the surrounding seawater to inorganic nitrogen under ocean acidification’Unraveling prokaryotic diversity distribution and functional pattern on nitrogen and methane cycling in the subtropical Western North Pacific Ocean
Published 9 November 2023 Science ClosedTags: biological response, BRcommunity, community composition, field, molecular biology, nitrogen fixation, North Pacific, otherprocess, physiology, prokaryotes, respiration
Prokaryotes play an important role in marine nitrogen and methane cycles. However, their community changes and metabolic modifications to the concurrent impact of ocean warming (OW), acidification (OA), deoxygenation (OD), and anthropogenic‑nitrogen-deposition (AND) from the surface to the deep ocean remains unknown. We examined here the amplicon sequencing approach across the surface (0–200 m; SL), intermediate (200–1000 m; IL), and deep layers (1000–2200 m; DL), and characterized the simultaneous impacts of OW, OA, OD, and AND on the Western North Pacific Ocean prokaryotic changes and their functional pattern in nitrogen and methane cycles. Results showed that SL possesses higher ammonium oxidation community/metabolic composition assumably the reason for excess nitrogen input from AND and modification of their kinetic properties to OW adaptation. Expanding OD at IL showed hypoxic conditions in the oxygen minimum layer, inducing higher microbial respiration that elevates the dimerization of nitrification genes for higher nitrous oxide production. The aerobic methane-oxidation composition was dominant in SL presumably the reason for adjustment in prokaryotic optimal temperature to OW, while anaerobic oxidation composition was dominant at IL due to the evolutionary changes coupling with higher nitrification. Our findings refocus on climate-change impacts on the open ocean ecosystem from the surface to the deep-environment integrating climate-drivers as key factors for higher nitrous-oxide and methane emissions.
Continue reading ‘Unraveling prokaryotic diversity distribution and functional pattern on nitrogen and methane cycling in the subtropical Western North Pacific Ocean’Impact of ocean acidification on bioactive compounds production by marine phytoplankton, Off Visakhapatnam, Bay of Bengal
Published 27 September 2023 Science ClosedTags: biological response, Indian, laboratory, mesocosms, nitrogen fixation, photosynthesis, physiology, phytoplankton
Shallow coastal regions face heightened vulnerability due to human development, making them susceptible to substantial influxes of human-caused inputs alongside waters with low pH levels. This research delved into a microcosm pH alteration experiment to explore the impact of pH reduction on the generation of bioactive substances by marine phytoplankton in the eutrophic coastal waters of the Bay of Bengal. Initially, the prevalent compounds in the surface seawater were fucoxanthin at 75%, zeaxanthin at 10%, and other bioactive elements like diadinoxanthin, diatoxanthin, and β-carotene collectively contributing to around 15%. Notably, all bioactive compounds and Chl-a concentrations significantly favored the control container (ranging from 35–70%), while the least growth occurred in the more acidified experimental containers (15–40%).
In alignment with the above findings, the nutrient uptake rates were comparably diminished in the acidified experimental containers compared to the control group. The ratio between protective bioactive compounds (Diato + Diadino + Zea + β-Car) and synthetic bioactive compounds (Fuco + Chl-a) varied from 0.03 to 0.8, with the control container exhibiting the lowest values, and the more acidified experimental containers displaying the highest values of significance. Similarly, the DT index (diatoxanthin / (diatoxanthin + diadinoxanthin)) ratios followed a parallel pattern, with the control container showing the lowest average ratios and the acidified experimental containers displaying the highest ratios. Furthermore, based on our current study, we postulated that acidified water stimulates the proliferation of carotenoid-based bioactive compounds in marine regions more prominently than their synthetic counterparts. Mainly, the production of bioactive compounds in these experiments could also be influenced by our acidification method.
Continue reading ‘Impact of ocean acidification on bioactive compounds production by marine phytoplankton, Off Visakhapatnam, Bay of Bengal’Acidification alters sediment nitrogen source-sink dynamics in eelgrass (Zostera marina (L.)) beds
Published 9 May 2023 Science ClosedTags: biogeochemistry, biological response, BRcommunity, laboratory, morphology, nitrogen fixation, North Atlantic, phanerogams, physiology, prokaryotes, sediment
Dissolved carbon dioxide (CO2) in seawater lowers water pH and can disrupt microbial nutrient cycles. It is unclear how acidification impacts hot spots of nutrient cycling in marine ecosystems such as eelgrass (Zostera marina) beds. We measured nutrient and gas fluxes in sediment cores from Z. marina beds and unvegetated-sediment habitats in Shinnecock Bay, New York, USA in a continuous-flow system with acidified and ambient pH treatments. Under ambient conditions, uptake of N2 by nitrogen (N) fixation was greater than production of N2 by denitrification. Denitrification, however, was dominant under acidified conditions. We then enriched flowing seawater with 15NO3− to test the impact of a nutrient pulse with ambient pH or acidified conditions in the eelgrass and unvegetated cores. Sediment N2 efflux was higher in eelgrass than unvegetated sediments under acidified pH with N-enriched treatments. Results suggest that eelgrass beds may serve as sinks rather than sources of N under the combined stressors of acidification and N-loading. Documenting changes to N pathways under acidification can inform efforts to manage marine ecosystems and conserve benthic habitats.
Continue reading ‘Acidification alters sediment nitrogen source-sink dynamics in eelgrass (Zostera marina (L.)) beds’Ocean acidification has a strong effect on communities living on plastic in mesocosms
Published 26 April 2023 Science ClosedTags: abundance, biological response, BRcommunity, chemistry, community composition, field, gastrotricha, mesocosms, molecular biology, nitrogen fixation, North Pacific, otherprocess, prokaryotes, protists
We conducted a mesocosm experiment to examine how ocean acidification (OA) affects communities of prokaryotes and eukaryotes growing on single-use drinking bottles in subtropical eutrophic waters of the East China Sea. Based on 16S rDNA gene sequencing, simulated high CO2 significantly altered the prokaryotic community, with the relative abundance of the phylum Planctomycetota increasing by 49%. Under high CO2, prokaryotes in the plastisphere had enhanced nitrogen dissimilation and ureolysis, raising the possibility that OA may modify nutrient cycling in subtropical eutrophic waters. The relative abundance of pathogenic and animal parasite bacteria also increased under simulated high CO2. Our results show that elevated CO2 levels significantly affected several animal taxa based on 18S rDNA gene sequencing. For example, Mayorella amoebae were highly resistant, whereas Labyrinthula were sensitive to OA. Thus, OA may alter plastisphere food chains in subtropical eutrophic waters.
Scientific Significance Statement
Plastic waste in the ocean is an urgent environmental concern and has given rise to a novel habitat, known as the “plastisphere.” Under ocean acidification (OA), changes in plastisphere community composition may alter plastic degradation, deposition, and passage through food webs, but these have not been studied yet. This is the first study about the effects of simulated high CO2 on the plastisphere using a mesocosm. We discovered that after 1 month the beta diversity of prokaryotic communities living on single-use plastic drinking bottles was significantly different under different carbon dioxide concentrations, with more pathogens at high CO2. Based on function prediction analysis, the relative abundance of bacterial taxa involved in nitrogen and nitrate respiration and ureolysis was significantly higher under simulated high CO2. We conclude that OA has significant effects on the plastisphere and its predicted functions.
Continue reading ‘Ocean acidification has a strong effect on communities living on plastic in mesocosms’Deoxygenation enhances photosynthetic performance and increases N2 fixation in the marine cyanobacterium Trichodesmium under elevated pCO2
Published 12 April 2023 Science ClosedTags: biological response, growth, laboratory, multiple factors, nitrogen fixation, oxygen, photosynthesis, physiology, phytoplankton, respiration
Effects of changed levels of dissolved O2 and CO2 on marine primary producers are of general concern with respect to ecological effects of ongoing ocean deoxygenation and acidification as well as upwelled seawaters. We investigated the response of the diazotroph Trichodesmium erythraeum IMS 101 after it had acclimated to lowered pO2 (~60 μM O2) and/or elevated pCO2 levels (HC, ~32 μM CO2) for about 20 generations. Our results showed that reduced O2 levels decreased dark respiration significantly, and increased the net photosynthetic rate by 66 and 89% under the ambient (AC, ~13 μM CO2) and the HC, respectively. The reduced pO2 enhanced the N2 fixation rate by ~139% under AC and only by 44% under HC, respectively. The N2 fixation quotient, the ratio of N2 fixed per O2 evolved, increased by 143% when pO2 decreased by 75% under the elevated pCO2. Meanwhile, particulate organic carbon and nitrogen quota increased simultaneously under reduced O2 levels, regardless of the pCO2 treatments. Nevertheless, changed levels of O2 and CO2 did not bring about significant changes in the specific growth rate of the diazotroph. Such inconsistency was attributed to the daytime positive and nighttime negative effects of both lowered pO2 and elevated pCO2 on the energy supply for growth. Our results suggest that Trichodesmium decrease its dark respiration by 5% and increase its N2-fixation by 49% and N2-fixation quotient by 30% under future ocean deoxygenation and acidification with 16% decline of pO2 and 138% rise of pCO2 by the end of this century.
Continue reading ‘Deoxygenation enhances photosynthetic performance and increases N2 fixation in the marine cyanobacterium Trichodesmium under elevated pCO2’Impact of increasing carbon dioxide on dinitrogen and carbon fixation rates under oligotrophic conditions and simulated upwelling
Published 11 June 2021 Science ClosedTags: community composition, field, light, mesocosms, molecular biology, multiple factors, nitrogen fixation, North Atlantic, otherprocess
Dinitrogen (N2) fixation is a major source of bioavailable nitrogen to oligotrophic ocean communities. Yet, we have limited understanding how ongoing climate change could alter N2 fixation. Most of our understanding is based on short-term laboratory experiments conducted on individual N2-fixing species whereas community-level approaches are rare. In this longer-term in situ mesocosm study, we aimed to improve our understanding on the role of rising atmospheric carbon dioxide (CO2) and simulated deep water upwelling on N2 and carbon (C) fixation rates in a natural oligotrophic plankton community. We deployed nine mesocosms in the subtropical North Atlantic Ocean and enriched seven of these with CO2 to yield a range of treatments (partial pressure of CO2, pCO2 = 352–1025 μatm). We measured rates of N2 and C fixation in both light and dark incubations over the 55-day study period. High pCO2 negatively impacted light and dark N2 fixation rates in the oligotrophic phase before simulated upwelling, while the effect reversed in the light N2 fixation rates in the bloom decay phase after added nutrients were consumed. Dust deposition and simulated upwelling of nutrient-rich deep water increased N2 fixation rates and nifH gene abundances of selected clades including the unicellular diazotrophic cyanobacterium clade UCYN-B. Elevated pCO2 increased C fixation rates in the decay phase. We conclude that elevated pCO2 and pulses of upwelling have pronounced effects on diazotrophy and primary producers, and upwelling and dust deposition modify the pCO2 effect in natural assemblages.
Continue reading ‘Impact of increasing carbon dioxide on dinitrogen and carbon fixation rates under oligotrophic conditions and simulated upwelling’Everything is everywhere: physiological responses of the Mediterranean sea and Eastern Pacific ocean Epiphyte Cobetia Sp. to varying nutrient concentration
Published 25 May 2021 Science ClosedTags: adaptation, biological response, BRcommunity, laboratory, molecular biology, nitrogen fixation, otherprocess, phanerogams, physiology, prokaryotes
Bacteria are essential in the maintenance and sustainment of marine environments (e.g., benthic systems), playing a key role in marine food webs and nutrient cycling. These microorganisms can live associated as epiphytic or endophytic populations with superior organisms with valuable ecological functions, e.g., seagrasses. Here, we isolated, identified, sequenced, and exposed two strains of the same species (i.e., identified as Cobetia sp.) from two different marine environments to different nutrient regimes using batch cultures: (1) Cobetia sp. UIB 001 from the endemic Mediterranean seagrass Posidonia oceanica and (2) Cobetia sp. 4B UA from the endemic Humboldt Current System (HCS) seagrass Heterozostera chilensis. From our physiological studies, both strains behaved as bacteria capable to cope with different nutrient and pH regimes, i.e., N, P, and Fe combined with different pH levels, both in long-term (12 days (d)) and short-term studies (4 d/96 h (h)). We showed that the isolated strains were sensitive to the N source (inorganic and organic) at low and high concentrations and low pH levels. Low availability of phosphorus (P) and Fe had a negative independent effect on growth, especially in the long-term studies. The strain UIB 001 showed a better adaptation to low nutrient concentrations, being a potential N2-fixer, reaching higher growth rates (μ) than the HCS strain. P-acquisition mechanisms were deeply investigated at the enzymatic (i.e., alkaline phosphatase activity, APA) and structural level (e.g., alkaline phosphatase D, PhoD). Finally, these results were complemented with the study of biochemical markers, i.e., reactive oxygen species (ROS). In short, we present how ecological niches (i.e., MS and HCS) might determine, select, and modify the genomic and phenotypic features of the same bacterial species (i.e., Cobetia spp.) found in different marine environments, pointing to a direct correlation between adaptability and oligotrophy of seawater.
Continue reading ‘Everything is everywhere: physiological responses of the Mediterranean sea and Eastern Pacific ocean Epiphyte Cobetia Sp. to varying nutrient concentration’Elevated pCO2 reinforces preference among intertidal algae in both a specialist and generalist herbivore
Published 26 April 2021 Science ClosedTags: algae, biological response, BRcommunity, crustaceans, laboratory, mollusks, morphology, nitrogen fixation, North Pacific, performance, physiology
Highlights
- Elevated pCO2 influences growth and chemical composition of some intertidal algae.
- Herbivore preference is reinforced by resilience of preferred alga to pCO2 exposure.
- Preference is also influenced by changes in lesser-preferred algal species.
- Specialist and generalist feeding may be indirectly affected by ocean acidification.
Abstract
Ocean acidification (OA) can induce changes in marine organisms and species interactions. We examined OA effects on intertidal macroalgal growth, palatability, and consumption by a specialist crab (Pugettia producta) and a generalist snail (Tegula funebralis) herbivore. Moderate increases in pCO2 increased algal growth in most species, but effects of pCO2 on C:N and phenolic content varied by species. Elevated pCO2 had no effect on algal acceptability to herbivores, but did affect their preference ranks. Under elevated pCO2, electivity for a preferred kelp (Egregia menziesii) and preference rankings among algal species strengthened for both P. producta and T. funebralis, attributable to resilience of E. menziesii in elevated pCO2 and to changes in palatability among less-preferred species. Preferred algae may therefore grow more under moderate pCO2 increases in the future, but their appeal to herbivores may be strengthened by associated shifts in nutritional quality and defensive compounds in other species.
Continue reading ‘Elevated pCO2 reinforces preference among intertidal algae in both a specialist and generalist herbivore’Increased light availability modulates carbon and nitrogen accumulation in the macroalga Gracilariopsis lemaneiformis (Rhodophyta) in response to ocean acidification
Published 26 April 2021 Science ClosedTags: algae, biological response, laboratory, light, morphology, multiple factors, nitrogen fixation, photosynthesis, physiology
Highlights
- The effects of light and elevated pCO2 on Gracilariopsis were examined.
- Ocean acidification enhanced algal biomass, photosynthesis and total C/N ratios.
- Increasing light and elevated pCO2 lowered nutritional quality of G. lemaneiformis.
Abstract
The economically important red macroalga Gracilariopsis lemaneiformis has demonstrated positive ecological functions in nutrient bioextraction efficiency and high harvestable biomass, as well as being a food and agar source owing to its richness in proteins and polysaccharides. Carbon dioxide (CO2)-induced ocean acidification has resulted in mixed nutrient compound accumulations in this marine autotroph. G. lemaneiformis also experiences light variations resulting from self-shading and varied cultivation depths. Therefore, a factorial coupling experiment was conducted to examine how growth, photosynthesis performance, soluble cell components and metabolic enzyme-driven activities respond to light availability changes and CO2 enrichment. The ocean acidification enhanced the growth characteristics, total carbon/nitrogen ratios and metabolic nutrient accumulation processes in G. lemaneiformis regardless of the light level. Photosynthetic performances, including relative electron transport rate and maximum photochemical quantum yield, were increased by high pCO2 concentrations, resulting in soluble carbohydrate accumulation. The carbon and nitrogen accumulations might result from variations in carbonic anhydrase and nitrate reductase activities under high pCO2 conditions. The soluble protein and free amino acids contents declined in response to CO2 elevation, and this effect was more pronounced as the light intensity increased. Thus, future climate changes may cause greater algal biomass accumulations, but they may negatively affect the cell composition and nutritional quality of G. lemaneiformis.
Continue reading ‘Increased light availability modulates carbon and nitrogen accumulation in the macroalga Gracilariopsis lemaneiformis (Rhodophyta) in response to ocean acidification’Effects of ocean acidification on carbon and nitrogen fixation in the hermatypic coral Galaxea fascicularis
Published 22 April 2021 Science ClosedTags: biological response, calcification, corals, laboratory, nitrogen fixation, protists
The supply of metabolites from symbionts to scleractinian corals is crucial to coral health. Members of the Symbiodiniaceae can enhance coral calcification by providing photosynthetically fixed carbon (PFC) and energy, whereas dinitrogen (N2)-fixing bacteria can provide additional nutrients such as diazotrophically-derived nitrogen (DDN) that sustain coral productivity especially when alternative external nitrogen sources are scarce. How these mutualistic associations benefit corals in the future acidifying ocean is not well understood. In this study, we investigated the possible effects of ocean acidification (OA; pHs 7.7 and 7.4 vs. 8.1) on calcification in the hermatypic coral Galaxea fascicularis with respect to PFC and DDN assimilation. Our measurements based on isotopic tracing showed no significant differences in the assimilation of PFC among different pH treatments, but the assimilation of DDN decreased significantly after 28 days of stress at pH 7.4. The decreased DDN assimilation suggests a nitrogenous nutrient deficiency in the coral holotiont, potentially leading to reduced coral calcification and resilience to bleaching and other stressful events. This contrasting impact of OA on carbon and N flux demonstrates the flexibility of G. fascicularis in coping with OA, apparently by sustaining a largely undamaged photosystem at the expense of N2 fixation machinery, which competes with coral calcification for energy from photosynthesis. These findings shed new light on the critically important but more vulnerable N cycling in hospite, and on the trade-off between coral hosts and symbionts in response to future climate change.
Continue reading ‘Effects of ocean acidification on carbon and nitrogen fixation in the hermatypic coral Galaxea fascicularis’Coastal ocean acidification and nitrogen loading facilitate invasions of the non-indigenous red macroalga, Dasysiphonia japonica
Published 4 February 2021 Science ClosedTags: abundance, algae, biological response, communityMF, field, laboratory, morphology, multiple factors, nitrogen fixation, North Atlantic, nutrients
Coastal ecosystems are prone to multiple anthropogenic and natural stressors including eutrophication, acidification, and invasive species. While the growth of some macroalgae can be promoted by excessive nutrient loading and/or elevated pCO2, responses differ among species and ecosystems. Native to the western Pacific Ocean, the filamentous, turf-forming rhodophyte, Dasysiphonia japonica, appeared in estuaries of the northeastern Atlantic Ocean during the 1980s and the northwestern Atlantic Ocean during the late 2000s. Here, we report on the southernmost expansion of the D. japonica in North America and the effects of elevated nutrients and elevated pCO2 on the growth of D. japonica over an annual cycle in Long Island, New York, USA. Growth limitation of the macroalga varied seasonally. During winter and spring, when water temperatures were < 15 °C, growth was significantly enhanced by elevated pCO2 (p < 0.05). During summer and fall, when the water temperature was 15–24 °C, growth was significantly higher under elevated nutrient treatments (p < 0.05). When temperatures reached 28 °C, the macroalga grew poorly and was unaffected by nutrients or pCO2. The δ13C content of regional populations of D. japonica was −30‰, indicating the macroalga is an obligate CO2-user. This result, coupled with significantly increased growth under elevated pCO2 when temperatures were < 15 °C, indicates this macroalga is carbon-limited during colder months, when in situ pCO2 was significantly lower in Long Island estuaries compared to warmer months when estuaries are enriched in metabolically derived CO2. The δ15N content of this macroalga (9‰) indicated it utilized wastewater-derived N and its N limitation during warmer months coincided with lower concentrations of dissolved inorganic N in the water column. Given the stimulatory effect of nutrients on this macroalga and that eutrophication can promote seasonally elevated pCO2, this study suggests that eutrophic estuaries subject to peak annual temperatures < 28 °C may be particularly vulnerable to future invasions of D. japonica as ocean acidification intensifies. Conversely, nutrient reductions would serve as a management approach that would make coastal regions more resilient to invasions by this macroalga.
Continue reading ‘Coastal ocean acidification and nitrogen loading facilitate invasions of the non-indigenous red macroalga, Dasysiphonia japonica’

