Posts Tagged 'temperature'

A new mesocosm system to study the effects of environmental variability on marine species and communities

Climate change will shift mean environmental conditions and also increase the frequency and intensity of extreme events, exerting additional stress on ecosystems. While field observations on extremes are emerging, experimental evidence of their biological consequences is rare. Here, we introduce a mesocosm system that was developed to study the effects of environmental variability of multiple drivers (temperature, salinity, pH, light) on single species and communities at various temporal scales (diurnal ‐ seasonal): the Kiel Indoor Benthocosms (KIBs). Both, real‐time offsets from field measurements or various dynamic regimes of environmental scenarios, can be implemented, including sinusoidal curve functions at any chosen amplitude or frequency, stochastic regimes matching in situ dynamics of previous years and modeled extreme events. With temperature as the driver in focus, we highlight the strengths and discuss limitations of the system. In addition, we examined the effects of different sinusoidal temperature fluctuation frequencies on mytilid mussel performance. High‐frequency fluctuations around a warming mean (+2°C warming, ± 2°C fluctuations, wavelength = 1.5 d) increased mussel growth as did a constant warming of 2°C. Fluctuations at a lower frequency (+2 and ± 2°C, wavelength = 4.5 d), however, reduced the mussels’ growth. This shows that environmental fluctuations, and importantly their associated characteristics (such as frequency), can mediate the strength of global change impacts on a key marine species. The here presented mesocosm system can help to overcome a major short‐coming of marine experimental ecology and will provide more robust data for the prediction of shifts in ecosystem structure and services in a changing and fluctuating world.

Continue reading ‘A new mesocosm system to study the effects of environmental variability on marine species and communities’

Future ocean warming may prove beneficial for the northern population of European seabass, but ocean acidification does not

The world’s oceans are acidifying and warming due to increasing amounts of atmospheric CO2. Thermal tolerance of fish much depends on the cardiovascular ability to supply the tissues with oxygen. The heart itself is highly dependent on oxygen and heart mitochondria thus might play a key role in shaping an organism’s tolerance to temperature. The present study aimed to investigate the effects of acute and chronic warming on respiratory capacities of European sea bass (Dicentrarchus labrax L.) heart mitochondria. We hypothesized that acute warming would impair mitochondrial respiratory capacities, but be compensated after long-term. Increasing PCO2 may cause intracellular changes, likely further constricting cellular energy metabolism. We found increased leak respiration rates in acutely warmed heart mitochondria of cold-conditioned fish in comparison to measurements at their rearing temperature, suggesting a lower aerobic capacity to synthesize ATP. However, thermal acclimation led to increased mitochondrial functionality, e.g. higher RCRo in heart mitochondria of warm-conditioned compared to cold-conditioned fish. Exposure to high PCO2 synergistically amplified the effects of acute and long-term warming, but did not result in changes by itself. We explained the high ability to maintain mitochondrial function under OA with the fact that seabass are moving between various environmental conditions. Improved mitochondrial capacities after warm conditioning could be due to the origin of this species in the warm waters of the Mediterranean. Our results also indicate that seabass are not yet fully adapted to the colder temperatures in their northern distribution range and might benefit from warmer temperatures.

Continue reading ‘Future ocean warming may prove beneficial for the northern population of European seabass, but ocean acidification does not’

Impact of climate change and contamination in the oxidative stress response of marine organisms

Atmospheric carbon dioxide (CO2) levels are increasing at an unprecedented rate, changing the carbonate chemistry (in a process known as ocean acidification) and temperature of the worlds ocean. Moreover, the simultaneous occurrence of highly toxic and persistent contaminants, such as mercury, will play a key role in further shaping the ecophysiology of marine organisms. Thus, the main goal of the present dissertation was to undertake the first comprehensive and comparative analysis of the biochemical strategies, namely antioxidant defense (both enzymatic and non-enzymatic antioxidants) and protein repair and removal mechanisms, of several marine organisms – from invertebrate (Veretillum cynomorium and Gammarus locusta) to vertebrate species (Argyrosomus regius, Chiloscyllium plagiosum and Scyliorhinus canicula) – encompassing different life-stages and life-strategies to the predicted climate-mediated changes. The findings provided in the present dissertation proved that organisms’ responses were mostly underpinned by temperature (increasing lipid, protein and nucleic acid damage), that also culminated into increased mercury bioaccumulation and toxicity, while ocean acidification as a sole stressor usually played a minor role in defining species vulnerability (i.e. responsible for increased oxidative damage in the marine calcifying organisms G. locusta). Nonetheless when co-occurring with warming and contamination scenarios, acidification was usually responsible for the reduction of heavy metal accumulation and toxicity, as well as decreased warming and contamination-elicited oxidative stress. Additionally, organisms’ responses were species-specific, and organisms that usually occupy more variable environments (e.g. daily changes in abiotic conditions) usually displayed greater responses towards environmental change than organisms inhabiting more stable environments. Furthermore, and assuming the relevance of transgenerational effects, it seems that the negative effects of OA are potentially being inherited by the offspring’s, compromising the efficiency of future generations to endure the upcoming conditions.

Continue reading ‘Impact of climate change and contamination in the oxidative stress response of marine organisms’

Indirect effects of ocean warming and acidification on the realized recruitment of Agaricia agaricites

Over the past few decades, coral cover has declined worldwide due to overfishing, disease, and storms, and these effects have been exacerbated by ocean warming and acidification. Corals are extremely susceptible to these changes because they are already living close to their thermal and aragonite saturation thresholds. Ocean warming and acidification (OAW) may also impact coral survival and growth by impacting their settlement cues. Coral larvae use crustose coralline algae (CCA) and their associated biofilms as cues for settlement, i.e., habitat selection. Settlement cues can also be negatively affected by increased water temperature and acidity. It was hypothesized that the impacts of OAW on settlement substrate can further threaten coral persistence by altering/inhibiting larval settlement and potentially decreasing the post-settlement survival and growth of coral recruits. In this study, we 1) assessed the effect of substrate quality (substrate conditioned in ambient or OAW conditions) on settlement of A. agaricites larvae, 2) determined the effect of substrate quality on post-settlement survival and growth of A. agaricites recruits, and 3) determined the effect of ocean warming and acidification on the post-settlement survival and growth of A. agaricites recruits. Aragonite settlement tiles were placed offshore for one month to accrue CCA and associated biofilms, and were then conditioned in either ambient (29°C, 8.2 pH) or predicted future oceanic conditions (31°C, 7.9 pH) conditions for 7 – 10 days. Agaricia agaricites larvae were then introduced to the settlement tiles, and their settlement percentage was calculated. Once a week for 12 weeks after larval settlement, the size, survival, and pigmentation of A. agaricites recruits was recorded. Larvae settled marginally more on optimally conditioned tiles than on tiles previously exposed to OAW conditions (p=0.053). The survival of coral recruits in OAW conditions was greatly reduced, their growth was very limited, and they became paler over time. When reared in ambient conditions, recruits on OAW treated substrate initially displayed higher survival rates than recruits on ambient treated substrate. After 3 weeks in ambient conditions, however, survival rates were similar for recruits on ambient and OAW treated substrate; their growth curves were very similar, and coral recruits became more pigmented over time. Ocean warming and acidification conditions not only directly impacted the growth, survival, and pigmentation of A. agaricites recruits, but it also indirectly affected larval 5 settlement by likely altering microbial composition in bacterial biofilms on the settlement tiles. These results indicate that future conditions of ocean warming and acidification can be deleterious for A. agaricites, particularly after settlement. If the early life stages of scleractinian corals are negatively affected by OAW conditions, successful recruitment throughout the Caribbean and Florida Reef Tract could decrease. As a result, recovery from disturbances could be hindered, thus compromising the sustainability of many coral species and other marine ecosystems that depend on coral reefs for protection, habitat, and food.

Continue reading ‘Indirect effects of ocean warming and acidification on the realized recruitment of Agaricia agaricites’

Effects of ocean warming and acidification on fertilization success and early larval development in the green sea urchin Lytechinus variegatus


• Acidification delayed larval development, stunted growth, and increased asymmetry.

• Warming decreased fertilization success and accelerated larval development.

• Warming outweighed acidification and led to accelerated development.

• Acidification and warming had additive effects on fertilization and growth.


Ocean acidification and warming are predicted to affect the early life of many marine organisms, but their effects can be synergistic or antagonistic. This study assessed the combined effects of near-future (2100) ocean acidification (pH 7.8) and warming (+3 °C) on the fertilization, larval development and growth of the green sea urchin, Lytechinus variegatus, common in tropical reefs of Florida and the Caribbean. Acidification had no effect on fertilization, but delayed larval development, stunted growth, and increased asymmetry. Warming decreased fertilization success when the sperm:egg ratio was higher (1847:1), accelerated larval development, but had no effect on growth. When exposed to both acidification and warming, fertilization rates decreased, larval development accelerated (due to increased respiration/metabolism), but larvae were smaller and more asymmetric, meaning acidification and warming had additive effects. Thus, climate change is expected to decrease the abundance of this important herbivore, exacerbating macroalgal growth and dominance on coral reefs.

Continue reading ‘Effects of ocean warming and acidification on fertilization success and early larval development in the green sea urchin Lytechinus variegatus’

Implicações fisiológicas e ecológicas de interações interespecíficas nos bentos marinho-subsídio para o entendimento de cenários atuais e futuros (in Portuguese)

Biotic interactions are increasingly known to shape ecosystem community structure. Recently, there has been a renewed focus on species interactions in light of global change, especially ocean warming (OW) and ocean acidification (OA) in marine ecosystems. In coastal environments, macroalgae are among the most important taxa as they are often the most abundant primary producers and form the base of food webs. However, due to their sedentary nature, they are also vulnerable to the effects of climate change. In order to better understand how species interactions will be affected by climate change stressors, a solid understanding of how interspecies interactions operate under present-day conditions is needed. The first chapter of this thesis attempts to characterize seasonal variation in macroalgal physiology and biochemistry, and how interspecific interactions might affect algal fitness and palatability to a sea urchin herbivore (Echinometra lucunter). Specimens of Jania rubens, Sargassum cymosum, and Ulva lactuca were collected from monospecific patches or from associations , where individuals were in physical contact with another species, in both summer and winter. Net photosynthesis, nitrogen reductase activity, and pigment, phenolic and carbonate content of algae were evaluated among different associations across the two seasons. The results indicate that in addition to seasonal variation in most parameters measured, interactions between algae could change in both magnitude and sign (positive, negative or neutral) in different seasons. The no-choice herbivory assay (conducted in winter) revealed that both Jania and Ulva were consumed at higher rates when they were associated with each other, whereas Sargassum was not affected. These results suggest that macroalgae may influence the physiology and biochemical composition of neighboring species and subsequently affect their palatability, which may influence local community structure. To further evaluate effects of species interactions under climate change stressors, an experiment was performed to assess algal-herbivore interactions under OW and OA conditions. The most preferentially consumed algae from the first experiment (Jania rubens) and the sea urchin E. lucunter were evaluated in a 21-day mesocosm study with treatments of control, OW, OA, and OW+OA. Algal physiology was unaffected by increased temperature (+4°C) and pCO2 (1,000 ppm), but changes in the biochemical composition of the algal tissue were found. Metabolic rates of the sea urchin E. lucunter were higher in the ambient temperature, high pCO2 treatment, and feeding assays showed that this influenced consumption, with increased feeding rates in this treatment. The results here show that although algal biochemical composition was affected by future pCO2, at least in the short term, direct effects to sea urchin metabolism were more important for impacting this algae-herbivore interaction.

Continue reading ‘Implicações fisiológicas e ecológicas de interações interespecíficas nos bentos marinho-subsídio para o entendimento de cenários atuais e futuros (in Portuguese)’

Future climate change is predicted to affect the microbiome and condition of habitat-forming kelp

Climate change is driving global declines of marine habitat-forming species through physiological effects and through changes to ecological interactions, with projected trajectories for ocean warming and acidification likely to exacerbate such impacts in coming decades. Interactions between habitat-formers and their microbiomes are fundamental for host functioning and resilience, but how such relationships will change in future conditions is largely unknown. We investigated independent and interactive effects of warming and acidification on a large brown seaweed, the kelp Ecklonia radiata, and its associated microbiome in experimental mesocosms. Microbial communities were affected by warming and, during the first week, by acidification. During the second week, kelp developed disease-like symptoms previously observed in the field. The tissue of some kelp blistered, bleached and eventually degraded, particularly under the acidification treatments, affecting photosynthetic efficiency. Microbial communities differed between blistered and healthy kelp for all treatments, except for those under future conditions of warming and acidification, which after two weeks resembled assemblages associated with healthy hosts. This indicates that changes in the microbiome were not easily predictable as the severity of future climate scenarios increased. Future ocean conditions can change kelp microbiomes and may lead to host disease, with potentially cascading impacts on associated ecosystems.

Continue reading ‘Future climate change is predicted to affect the microbiome and condition of habitat-forming kelp’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,182,929 hits


Ocean acidification in the IPCC AR5 WG II

OUP book