Posts Tagged 'temperature'

Toxic algae silence physiological responses to multiple climate drivers in a tropical marine food chain

Research on the effects of climate change in the marine environment continues to accelerate, yet we know little about the effects of multiple climate drivers in more complex, ecologically relevant settings – especially in sub-tropical and tropical systems. In marine ecosystems, climate change (warming and freshening from land run-off) will increase water column stratification which is favorable for toxin producing dinoflagellates. This can increase the prevalence of toxic microalgal species, leading to bioaccumulation of toxins by filter feeders, such as bivalves, with resultant negative impacts on physiological performance. In this study we manipulated multiple climate drivers (warming, freshening, and acidification), and the availability of toxic microalgae, to determine their impact on the physiological health, and toxin load of the tropical filter-feeding clam, Meretrix meretrix. Using a structural equation modeling (SEM) approach, we found that exposure to projected marine climates resulted in direct negative effects on metabolic and immunological function and, that these effects were often more pronounced in clams exposed to multiple, rather than single climate drivers. Furthermore, our study showed that these physiological responses were modified by indirect effects mediated through the food chain. Specifically, we found that when bivalves were fed with a toxin-producing dinoflagellate (Alexandrium minutum) the physiological responses, and toxin load changed differently and in a non-predictable way compared to clams exposed to projected marine climates only. Specifically, oxygen consumption data revealed that these clams did not respond physiologically to climate warming or the combined effects of warming, freshening and acidification. Our results highlight the importance of quantifying both direct and, indirect food chain effects of climate drivers on a key tropical food species, and have important implications for shellfish production and food safety in tropical regions.

Continue reading ‘Toxic algae silence physiological responses to multiple climate drivers in a tropical marine food chain’

Common Caribbean corals exhibit highly variable responses to future acidification and warming

We conducted a 93-day experiment investigating the independent and combined effects of acidification (280−3300 µatm pCO2) and warming (28°C and 31°C) on calcification and linear extension rates of four key Caribbean coral species (Siderastrea sidereaPseudodiploria strigosaPorites astreoidesUndaria tenuifolia) from inshore and offshore reefs on the Belize Mesoamerican Barrier Reef System. All species exhibited nonlinear declines in calcification rate with increasing pCO2. Warming only reduced calcification in Ps. strigosa. Of the species tested, only S. siderea maintained positive calcification in the aragonite-undersaturated treatment. Temperature and pCO2 had no effect on the linear extension of S. siderea and Po. astreoides, and natal reef environment did not impact any parameter examined. Results suggest that S. siderea is the most resilient of these corals to warming and acidification owing to its ability to maintain positive calcification in all treatments, Ps. strigosa and U. tenuifolia are the least resilient, and Po. astreoides falls in the middle. These results highlight the diversity of calcification responses of Caribbean corals to projected global change.

Continue reading ‘Common Caribbean corals exhibit highly variable responses to future acidification and warming’

Ocean acidification alters thermal cardiac performance, hemocyte abundance, and hemolymph chemistry in subadult American lobsters Homarus americanus H. Milne Edwards, 1837 (Decapoda: Malcostraca: Nephropidae)

Increased anthropogenic input of carbon dioxide into the atmosphere has caused widespread patterns of ocean acidification (OA) and increased the frequency of extreme warming events. We explored the sublethal effects of OA on the hemolymph chemistry and physiological response to acute thermal stress in the American lobster (Homarus americanus H. Milne Edwards, 1837). We exposed subadult lobsters to current or predicted end-century pH conditions (8.0 and 7.6, respectively) for 60 days. Following exposure, we assessed hemolymph Llactate and calcium concentrations (as indicators of oxygen carrying capacity), ecdysterone concentrations, total protein content, and total hemocyte counts (THCs) as an indicator of immune response. We also assessed cardiac performance in the context of an acute warming event using impedance pneumography. Calcium, total protein, and ecdysterone concentrations were not significantly altered (P ≥ 0.10) by OA exposure. Control lobsters, however, had significantly higher levels of Llactate concentrations compared to acidified lobsters, suggesting reduced oxygen carrying capacity under OA. THCs were also 61% higher in control versusacidified lobsters, suggesting immunosuppression under chronic OA. Lobsters exposed to acidified conditions exhibited reduced cardiac performance under acute warming as indicated by significantly lower (P = 0.040) Arrhenius Break Temperatures compared to control lobsters. These results suggest that although some physiological endpoints of American lobster are not impacted by OA, the stress of OA will likely be compounded by acute heat shock and may present additional physiological challenges for this species in the face of future change.

Continue reading ‘Ocean acidification alters thermal cardiac performance, hemocyte abundance, and hemolymph chemistry in subadult American lobsters Homarus americanus H. Milne Edwards, 1837 (Decapoda: Malcostraca: Nephropidae)’

Diverse responses of sporophytic photochemical efficiency and gametophytic growth for two edible kelps, Saccharina japonica and Undaria pinnatifida, to ocean acidification and warming


• Increased pCO2 enhanced sporophytic photosynthesis of S. japonica and U. pinnatifida.
• Increased pCO2 inhibited gametophytic growth of these two kelps.
• Ocean acidification and warming represent major threats to kelp mariculture.
• U. pinnatifida showed higher productivity in warmer ocean than S. japonica.


Ocean acidification and warming represent major environmental threats to kelp mariculture. In this study, sporophytic photochemical efficiency and gametophytic growth of Saccharina japonica and Undaria pinnatifidawere evaluated under different pCO2 levels (360, 720, and 980 ppmv) and temperatures (5, 10, 15, and 20 °C for sporophytes; 15 and 20 °C for gametophytes). Sporophytic photochemical efficiencies of both kelps were significantly greater at 720 ppmv than at 360 and 980 ppmv. Female gametophytes of both kelps grew significantly better at 360 ppmv than at higher pCO2 levels. The growth of U. pinnatifida gametophytes was significantly greater at 20 °C than at 15 °C, while no significant difference was observed for the growth of S. japonica. These results indicate that increased pCO2 stimulated sporophytic photochemical efficiency while inhibited gametophytic growth of these kelps, which might negatively affect their seedling cultivation. U. pinnatifida exhibited higher productivity in warmer ocean than S. japonica.

Continue reading ‘Diverse responses of sporophytic photochemical efficiency and gametophytic growth for two edible kelps, Saccharina japonica and Undaria pinnatifida, to ocean acidification and warming’

Grazers increase the sensitivity of coralline algae to ocean acidification and warming


  • Stimulation of the primary production and calcification of corallines by grazing
  • Different response of maerl between winter and summer conditions
  • High vulnerability of corallines to ocean acidification in the presence of grazers


Coralline algae are expected to be adversely impacted by ocean acidification and warming. Most research on these algae has involved experiments on isolated species, without considering species interactions, such as grazing. This myopic view is challenging because the impact of climate change on coralline algae will depend on the direct impacts on individual coralline species and the indirect effects of altered interactions with other species. Here, we tested the influence of grazing on the response of the coralline alga Lithothamnion corallioides to near-future ocean acidification and warming. Two three-month experiments were performed in the winter and summer seasons in mesocosms under crossed conditions of pCO2 (ambient and high pCO2) and temperature (ambient and +3 °C) in the presence and absence of grazers. In the winter, L. corallioides photosynthesis decreased with rising temperature in the presence of grazers, while calcification increased. It is likely that increased calcification may act as a structural protection to prevent damage from grazing. However, increasing calcification rates in the presence of grazers may be detrimental to other physiological processes, such as photosynthesis. In the summer, L. corallioides primary production, respiration, and calcification were higher in the presence of grazers than in their absence. Light calcification rates were reduced under high pCO2 in the presence of grazers only. Moreover, dark calcification rates were more adversely affected by pCO2 increase in the presence of grazers. Through their feeding activity, grazers may alter the structural integrity of thalli and increase the sensitivity of coralline algae to ocean acidification. Our results indicate that both season and grazing play a key role in the response of L. corallioides to acidification and warming. Seasonal variations and species interactions are thus critical to consider to make ecologically relevant predictions of the effects of future environmental changes.

Continue reading ‘Grazers increase the sensitivity of coralline algae to ocean acidification and warming’

Contrasting effects of acidification and warming on dimethylsulfide concentrations during a temperate estuarine fall bloom mesocosm experiment

The effects of ocean acidification and warming on the concentrations of dimethylsulfoniopropionate (DMSP) and dimethylsulfide (DMS) were investigated during a mesocosm experiment in the Lower St. Lawrence Estuary (LSLE) in the fall of 2014. Twelve mesocosms covering a range of pHT (pH on the total hydrogen ion concentration scale) from 8.0 to 7.2, corresponding to a range of CO2 partial pressures (pCO2) from 440 to 2900 µatm, at two temperatures (in situ and +5 ∘C; 10 and 15 ∘C) were monitored during 13 days. All mesocosms were characterized by the rapid development of a diatom bloom dominated by Skeletonema costatum, followed by its decline upon the exhaustion of nitrate and silicic acid. Neither the acidification nor the warming resulted in a significant impact on the abundance of bacteria over the experiment. However, warming the water by 5 ∘C resulted in a significant increase in the average bacterial production (BP) in all 15 ∘C mesocosms as compared to 10 ∘C, with no detectable effect of pCO2 on BP. Variations in total DMSP (DMSPt = particulate + dissolved DMSP) concentrations tracked the development of the bloom, although the rise in DMSPt persisted for a few days after the peaks in chlorophyll a. Average concentrations of DMSPt were not affected by acidification or warming. Initially low concentrations of DMS (<1 nmol L−1) increased to reach peak values ranging from 30 to 130 nmol L−1 towards the end of the experiment. Increasing the pCO2 reduced the averaged DMS concentrations by 66 % and 69 % at 10 and 15 ∘C, respectively, over the duration of the experiment. On the other hand, a 5 ∘C warming increased DMS concentrations by an average of 240 % as compared to in situ temperature, resulting in a positive offset of the adverse pCO2 impact. Significant positive correlations found between bacterial production and concentrations of DMS throughout our experiment point towards temperature-associated enhancement of bacterial DMSP metabolism as a likely driver of the mitigating effect of warming on the negative impact of acidification on the net production of DMS in the LSLE and potentially the global ocean.

Continue reading ‘Contrasting effects of acidification and warming on dimethylsulfide concentrations during a temperate estuarine fall bloom mesocosm experiment’

Warming and CO2 enhance Arctic heterotrophic microbial activity

Ocean acidification and warming are two main consequences of climate change that can directly affect biological and ecosystem processes in marine habitats. The Arctic Ocean is the region of the world experiencing climate change at the steepest rate compared with other latitudes. Since marine planktonic microorganisms play a key role in the biogeochemical cycles in the ocean it is crucial to simultaneously evaluate the effect of warming and increasing CO2 on marine microbial communities. In 20 L experimental microcosms filled with water from a high-Arctic fjord (Svalbard), we examined changes in phototrophic and heterotrophic microbial abundances and processes [bacterial production (BP) and mortality], and viral activity (lytic and lysogenic) in relation to warming and elevated CO2. The summer microbial plankton community living at 1.4°C in situ temperature, was exposed to increased CO2 concentrations (135–2,318 μatm) in three controlled temperature treatments (1, 6, and 10°C) at the UNIS installations in Longyearbyen (Svalbard), in summer 2010. Results showed that chlorophyll a concentration decreased at increasing temperatures, while BP significantly increased with pCO2 at 6 and 10°C. Lytic viral production was not affected by changes in pCO2 and temperature, while lysogeny increased significantly at increasing levels of pCO2, especially at 10°C (R2 = 0.858, p = 0.02). Moreover, protistan grazing rates showed a positive interaction between pCO2 and temperature. The averaged percentage of bacteria grazed per day was higher (19.56 ± 2.77% d-1) than the averaged percentage of lysed bacteria by virus (7.18 ± 1.50% d-1) for all treatments. Furthermore, the relationship among microbial abundances and processes showed that BP was significantly related to phototrophic pico/nanoflagellate abundance in the 1°C and the 6°C treatments, and BP triggered viral activity, mainly lysogeny at 6 and 10°C, while bacterial mortality rates was significantly related to bacterial abundances at 6°C. Consequently, our experimental results suggested that future increases in water temperature and pCO2 in Arctic waters will produce a decrease of phytoplankton biomass, enhancement of BP and changes in the carbon fluxes within the microbial food web. All these heterotrophic processes will contribute to weakening the CO2 sink capacity of the Arctic plankton community.

Continue reading ‘Warming and CO2 enhance Arctic heterotrophic microbial activity’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,250,194 hits


Ocean acidification in the IPCC AR5 WG II

OUP book