Posts Tagged 'temperature'

Future warming and acidification result in multiple ecological impacts to a temperate coralline alga

Coralline algae are a crucial component of reef systems, stabilising reef substrate, providing habitat and contributing to accretion. Coralline algae and their surface microbial biofilms are also important as settlement cues for marine invertebrates, yet few studies address the impact of future environmental conditions on interactions between coralline algae, reef microbes and settlement by larvae of marine invertebrates. We exposed the temperate coralline algal species Amphiroa gracilis to warming and/or acidification scenarios for 21 days. Algae became bleached but photosystem II (PSII) function was not measurably impacted. Settlement by larvae of the sea urchin Heliocidaris erythrogramma was reduced and the structure of the prokaryotic community associated with A. gracilis was altered. Coralline algae in ambient conditions were dominated by Alphaproteobacteria from the Rhodobacteraceae including Loktonella; those under warming were dominated by Bacteroidetes and Verrucomicrobia; acidification resulted in less Loktonella and more Planctomycetes; and a combination of warming and acidification caused increases in Bacteroidetes, Verrucomicrobia and the Alphaproteobacteria family Hyphomonadaceae. These experiments indicate that predicted future environmental change may reduce the ability of some temperate reef coralline algae and associated reef microbes to facilitate settlement of invertebrate larvae as well as having a direct impact to algae via bleaching.

Continue reading ‘Future warming and acidification result in multiple ecological impacts to a temperate coralline alga’

Bleaching and mortality of a photosymbiotic bioeroding sponge under future carbon dioxide emission scenarios

The bioeroding sponge Cliona orientalis is photosymbiotic with dinoflagellates of the genus Symbiodinium and is pervasive on the Great Barrier Reef. We investigated how C. orientalis responded to past and future ocean conditions in a simulated community setting. The experiment lasted over an Austral summer under four carbon dioxide emission scenarios: a pre-industrial scenario (PI), a present-day scenario (PD; control), and two future scenarios of combined ocean acidification and ocean warming, i.e., B1 (intermediate) and A1FI (extreme). The four scenarios also simulated natural variability of carbon dioxide partial pressure and temperature in seawater. Responses of C. orientalis generally remained similar between the PI and PD treatments. C. orientalis under B1 displayed a dramatic increase in lateral tissue extension, but bleached and displayed reduced rates of respiration and photosynthesis. Some B1 sponge replicates died by the end of the experiment. Under A1FI, strong bleaching and subsequent mortality of all C. orientalis replicates occurred at an early stage of the experiment. Mortality arrested bioerosion by C. orientalis under B1 and A1FI. Overall, the absolute amount of calcium carbonate eroded by C. orientalis under B1 or A1FI was similar to that under PI or PD at the end of the experiment. Although bioerosion rates were raised by short-term experimental acidification in previous studies, our findings from the photosymbiotic C. orientalis imply that the effects of bioerosion on reef carbonate budgets may only be temporary if the bioeroders cannot survive long-term in the future oceans.

Continue reading ‘Bleaching and mortality of a photosymbiotic bioeroding sponge under future carbon dioxide emission scenarios’

Biological responses of two marine organisms of ecological relevance to on-going ocean acidification and global warming


• CO2 emissions are changing ocean carbonate chemistry at an unprecedented rate.
• Effects of climate changes are tested in species representative of the basis of the trophic web.
• pH homeostasis has energetic costs that divert energy from cellular processes.
• Further studies are needed to assess effects on ecosystem structure changes.


Recently, there has been a growing concern that climate change may rapidly and extensively alter global ecosystems with unknown consequences for terrestrial and aquatic life. While considerable emphasis has been placed on terrestrial ecology consequences, aquatic environments have received relatively little attention. Limited knowledge is available on the biological effects of increments of seawater temperature and pH decrements on key ecological species, i.e., primary producers and/or organisms representative of the basis of the trophic web. In the present study, we addressed the biological effects of global warming and ocean acidification on two model organisms, the microbenthic marine ciliate Euplotes crassus and the green alga Dunaliella  tertiocleta using a suite of high level ecological endpoint tests and sub-lethal stress measures. Organisms were exposed to combinations of pH and temperature (TR1: 7.9[pH], 25.5 °C and TR2: 7.8[pH, 27,0 °C) simulating two possible environmental scenarios predicted to occur in the habitats of the selected species before the end of this century. The outcomes of the present study showed that the tested scenarios did not induce a significant increment of mortality on protozoa. Under the most severe exposure conditions, sub-lethal stress indices show that pH homeostatic mechanisms have energetic costs that divert energy from essential cellular processes and functions. The marine protozoan exhibited significant impairment of the lysosomal compartment and early signs of oxidative stress under these conditions. Similarly, significant impairment of photosynthetic efficiency and an increment in lipid peroxidation were observed in the autotroph model organism held under the most extreme exposure condition tested.

Continue reading ‘Biological responses of two marine organisms of ecological relevance to on-going ocean acidification and global warming’

Analysis of recruitment of Pocillopora damicornis under climate change scenarios

Ocean warming and acidification are among the greatest threats to coral reefs, and
severe bleaching events have become more common in recent decades, putting coral reefs  at risk of extinction. The loss of coral reefs would have a catastrophic cascading effect on all marine life and would mean a loss of one the world’s largest pools of biodiversity.  There have been many studies conducted on the individual effects of warming and  acidification on coral response, but not as many that attempt to assess the combined  effect, which could possibly be synergistic. This study looks at the individual and  combined effects of warming and acidification on Pocillopora damicornis under four  different treatments: ambient, heated, acidified, and heated/acidified, in a multi-annual mesocosm experiment. P. damicornis were able to recruit under these stressors, and the  recruits were measured for size, condition, and abundance during two separate  assessments and the differences across treatments and within treatments were analyzed. The results showed that more bleaching occurred in the heated treatments than in the non-heated treatments, and that mean size significantly increased in the treatments with acidification from July to October.

Continue reading ‘Analysis of recruitment of Pocillopora damicornis under climate change scenarios’

Effects of seawater pCO2 and temperature on calcification and productivity in the coral genus Porites spp.: an exploration of potential interaction mechanisms

Understanding how rising seawater pCO2 and temperatures impact coral aragonite accretion is essential for predicting the future of reef ecosystems. Here, we report 2 long-term (10–11 month) studies assessing the effects of temperature (25 and 28 °C) and both high and low seawater pCO2 (180–750 μatm) on the calcification, photosynthesis and respiration of individual massive Porites spp. genotypes. Calcification rates were highly variable between genotypes, but high seawater pCO2 reduced calcification significantly in 4 of 7 genotypes cultured at 25 °C but in only 1 of 4 genotypes cultured at 28 °C. Increasing seawater temperature enhanced calcification in almost all corals, but the magnitude of this effect was seawater pCO2 dependent. The 3 °C temperature increase enhanced calcification rate on average by 3% at 180 μatm, by 35% at 260 μatm and by > 300% at 750 μatm. The rate increase at high seawater pCO2 exceeds that observed in inorganic aragonites. Responses of gross/net photosynthesis and respiration to temperature and seawater pCO2 varied between genotypes, but rates of all these processes were reduced at the higher seawater temperature. Increases in seawater temperature, below the thermal stress threshold, may mitigate against ocean acidification in this coral genus, but this moderation is not mediated by an increase in net photosynthesis. The response of coral calcification to temperature cannot be explained by symbiont productivity or by thermodynamic and kinetic influences on aragonite formation.

Continue reading ‘Effects of seawater pCO2 and temperature on calcification and productivity in the coral genus Porites spp.: an exploration of potential interaction mechanisms’

Effects of ocean warming and acidification combined with eutrophication on chemical composition and functional properties of Ulva rigida


• Ocean warming and eutrophication increased total amino acids.
• Ocean warming, acidification, and eutrophication increased total fatty acids.
• Ocean warming enhanced swelling capacity and water holding capacity.
• Ocean warming promoted oil holding capacity.


Ulva is increasingly viewed as a food source in the world. Here, Ulva rigida was cultured at two levels of temperature (14, 18°C), pH (7.95, 7.55, corresponding to low and high pCO2), and nitrate conditions (6 μmol L-1, 150 μmol L-1), to investigate the effects of ocean warming, acidification, and eutrophication on food quality of Ulva species. High temperature increased the content of each amino acid. High nitrate increased the content of all amino acid except aspartic acid and cysteine. High temperature, pCO2, and nitrate also increased content of most fatty acids. The combination of high temperature, pCO2, and nitrate increased the swelling capacity, water holding capacity, and oil holding capacity by 15.60%, 7.88%, and 16.32% respectively, compared to the control. It seems that future ocean environment would enhance the production of amino acid and fatty acid as well as the functional properties in Ulva species.

Continue reading ‘Effects of ocean warming and acidification combined with eutrophication on chemical composition and functional properties of Ulva rigida’

Effect of temperature rise and ocean acidification on growth of calcifying tubeworm shells (Spirorbis spirorbis): an in situ benthocosm approach (update)

The calcareous tubeworm Spirorbis spirorbis is a widespread serpulid species in the Baltic Sea, where it commonly grows as an epibiont on brown macroalgae (genus Fucus). It lives within a Mg-calcite shell and could be affected by ocean acidification and temperature rise induced by the predicted future atmospheric CO2 increase. However, Spirorbis tubes grow in a chemically modified boundary layer around the algae, which may mitigate acidification. In order to investigate how increasing temperature and rising pCO2 may influence S. spirorbisshell growth we carried out four seasonal experiments in the Kiel Outdoor Benthocosms at elevated pCO2 and temperature conditions. Compared to laboratory batch culture experiments the benthocosm approach provides a better representation of natural conditions for physical and biological ecosystem parameters, including seasonal variations. We find that growth rates of S. spirorbis are significantly controlled by ontogenetic and seasonal effects. The length of the newly grown tube is inversely related to the initial diameter of the shell. Our study showed no significant difference of the growth rates between ambient atmospheric and elevated (1100 ppm) pCO2 conditions. No influence of daily average CaCO3 saturation state on the growth rates of S. spirorbis was observed. We found, however, net growth of the shells even in temporarily undersaturated bulk solutions, under conditions that concurrently favoured selective shell surface dissolution. The results suggest an overall resistance of S. spirorbis growth to acidification levels predicted for the year 2100 in the Baltic Sea. In contrast, S. spirorbis did not survive at mean seasonal temperatures exceeding 24 °C during the summer experiments. In the autumn experiments at ambient pCO2, the growth rates of juvenile S. spirorbis were higher under elevated temperature conditions. The results reveal that S. spirorbis may prefer moderately warmer conditions during their early life stages but will suffer from an excessive temperature increase and from increasing shell corrosion as a consequence of progressing ocean acidification.

Continue reading ‘Effect of temperature rise and ocean acidification on growth of calcifying tubeworm shells (Spirorbis spirorbis): an in situ benthocosm approach (update)’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,075,524 hits


Ocean acidification in the IPCC AR5 WG II

OUP book